Содержание

Термоядерное оружие — это… Что такое Термоядерное оружие?

Схема Теллера-Улама

Термоя́дерное ору́жие (оно же водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется колоссальное количество энергии.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов, вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (

При этом используемый в водородной бомбе уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5-10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно,

6Li — единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формой второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур. Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий заканчивает плутониевый стержень, который переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.

A  Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B  Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C  В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D  Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E  В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).

Устройство термоядерного боеприпаса

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.

История

1 ноября 1952 года США взорвали первый термоядерный заряд на атолле Эниветок. Первая в мире водородная бомба — советская РДС-6 была взорвана 12 августа 1953 года на полигоне в Семипалатинске. Устройство, испытанное США в 1952 году фактически не являлось «бомбой», а представляла собой лабораторный образец, «3-х этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же ученые разработали именно бомбу — законченное устройство, пригодное к практическому применению

[2].

Самая крупная когда-либо взорванная водородная бомба — советская 50-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Любопытно, что после этого прекратился рост мегатоннажа ядерного арсенала США.

СССР

Взрыв первого советского термоядерного устройства РДС-6с («слойка», оно же «Джо-4»)

Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама (англ.)русск.. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства (современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз). Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство РДС-6с типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» (первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо»). Мощность взрыва была эквивалентна 400 килотоннам при КПД всего 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения Соединёнными Штатами испытания «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Франк-Каменецким, Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно был выполнен

Проект 49, предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний «РДС-37» мощностью 1,6 мегатонн в ноябре 1955 года. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. 97 % энергии устройства выделилось в результате термоядерной реакции (это максимальное значение из всех испытанных устройств). В первоначальном варианте предполагалось мощность 100 Мт, из которых 50 % выделяется в результате термоядерной реакции, а 50 % — в результате деления урановой оболочки нейтронами первых ступеней. Однако, такой вариант отвергли, так как он бы привел к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую.

[3] Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру ещё в 1941 году, в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием «Operation Greenhouse», в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт реакции синтеза водорода, что подтвердило на практике общую концепцию двухступенчатых устройств.

«Иви Майк»

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стрежень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма излучения от первичного заряда к вторичному.

Монтаж боеголовок

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[5].

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47 развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 700 фунтов (320 кг) и диаметр 18 дюймов (50 см). Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис и необходимость их доработок. К середине 70-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

Великобритания

В Великобритании разработки термоядерного оружия были начаты в 1954 в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на весьма зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (не термоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов. Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1.8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

Китай

Китайская Народная Республика испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,36 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.

Франция

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны мало.

Другие страны

Детали развития проекта Теллер-Улам в других странах менее известны.

Происшествия с термоядерными боеприпасами

США, 1958

Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.

Испания, 1966

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

Гренландия, 1968

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находилось 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 г. почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все из четырёх атомных боезарядов были найдены и уничтожены. Но в ноябре 2008 года в связи с истечением срока секретности информация, находящаяся под грифом «Секретно», была раскрыта. В документах было сказано, что разбившийся бомбардировщик нёс четыре боезаряда, но в течение нескольких недель учёным удалось по фрагментам обнаружить только 3 боезаряда. В августе 1968 подводная лодка «Star III» была отослана на базу для поисков утерянной бомбы, серийный номер которой 78252, в море. Но найдена она не была до сих пор. Во избежание паники среди населения Соединённые Штаты опубликовали информацию о четырёх найденных уничтоженных бомбах.

Сообщение Би-би-си о том, что во льдах Гренландии находится ядерная бомба, было опровергнуто в датском докладе 2009 года, в котором говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[6]

США, 2007

29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.

См. также

Примечания

  1. Лоуренс У. Л. Люди и атомы. — Москва, Атомиздат, 1967, с. 207.
  2. Термоядерная бомба и дейтерид лития
  3. 1 2 В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана
  4. Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжелых бомбардировщиков
  5. http://atomas.ru/milit/index-16.htm Испытания в США
  6. The Marshal’s Baton, 2009

Ссылки

dic.academic.ru

Термоядерный заряд Википедия

Схема Теллера-Улама

Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}
Дейтерий-тритиевая реакция

Эта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E1 = 4,784 МэВ. Образовавшийся тритий (3H) далее вступает в реакцию с дейтерием, выделяя энергию E2 = 17,59 МэВ:

13H+12H→24He+01n+E2,{\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}

причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ, который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше: реакция n + 7Li → 3H + 4He + n − 2,467 МэВ является эндотермической, поглощающей энергию.

Термоядерная бомба, действующая по принципу Теллера — Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер — это небольшой плутониевый ядерный заряд с усилением (Boosted fission weapon (англ.)русск.) мощностью в несколько килотонн. Назначение триггера — создать необходимые условия для инициирования термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и, расположенный по оси контейнера, плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера.

Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формой второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе с давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур. Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).

Виды боеприпасов

Термоядерные заряды существуют как в виде авиационных бомб (свободного падения), боевых блоков для баллистических и крылатых ракет, зарядных отделений торпед и глубинных, донных мин.

История

1 ноября 1952 года США взорвали первый в мире термоядерный заряд по схеме Теллера-Улама на атолле Эниветок.

12 августа 1953 года в СССР на Семипалатинском полигоне была взорвана первая в мире водородная бомба по схеме «слойка» — советская РДС-6.

Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению[2].

1 марта 1954 года во время испытаний Кастл Браво США произвели взрыв бомбы, собранной по схеме Теллера-Улама. СССР произвел испытания бомбы РДС-37 по той же схеме 22 ноября 1955 года.

Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.

США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года[5], в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» (англ. Operation Greenhouse), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств.

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному.

Монтаж боеголовок

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle (англ.)русск.» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[6].

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. К середине 1970-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

СССР

Взрыв первого советского термоядерного устройства РДС-6с («слойка», оно же «Джо-4»)

Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Юлием Харитоном и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера — Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления, имел коэффициент умножения до 30 раз меньший по сравнению с современными устройствами по схеме Теллер — Улам. Области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство РДС-6с типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4»[к. 1]. Мощность взрыва была эквивалентна 400 килотоннам при КПД 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения США испытания «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким, Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний РДС-37 мощностью 1,6 мегатонны в ноябре 1955 года.

Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн, доставленная бомбардировщиком Ту-95. 97 % энергии устройства выделилось в результате термоядерной реакции (это максимальное значение из всех испытанных устройств). В первоначальном варианте предполагалась мощность 100 Мт, из которых около 50 % выделяется в результате термоядерной реакции, а 50 % — в результате деления 238U в оболочке из обеднённого урана нейтронами первых ступеней (т. н. «реакция Джекила — Хайда»). Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую[3]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

Великобритания

В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии.

Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (нетермоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов.

Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 года была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1,8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

Китай

Китайская Народная Республика испытала своё первое термоядерное устройство по схеме Теллер-Улам мощностью 3,36 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.

Франция

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство по схеме Теллер-Улам мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны мало[кому?].

Северная Корея

В декабре 2015 года ЦТАК распространило заявление руководителя КНДР Ким Чен Ына, в котором он сообщает о наличии у Пхеньяна собственной водородной бомбы[7]. В январе 2016 года Северная Корея провела успешное испытание водородной бомбы, о чём объявили в эфире центрального телевидения КНДР. Ранее сейсмологи нескольких стран сообщили о землетрясении, которое спровоцировали ядерные испытания[8].

3 сентября 2017 года КНДР объявила о наличии термоядерного заряда, готового к применению в качестве боеголовки для межконтинентальной ракеты. В тот же день Северной Кореей было проведено испытание бомбы, мощность взрыва которой по оценкам японских сейсмологов составила до 100 килотонн[9][10]. 12 сентября эксперты ​американского Университета Джона Хопкинса оценили мощность ядерного заряда, испытанного в КНДР 3 сентября, и по их оценке он составил 250 килотонн в тротиловом эквиваленте[11].

Происшествия с термоядерными боеприпасами

США, 1958

Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.

Испания, 1966

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

Гренландия, 1968

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находились 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 году почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все четыре атомных боезаряда были найдены и уничтожены. Но в ноябре 2008 года обозреватель Би-би-си Гордон Корера (англ. Gordon Corera) высказал предположение, основанное на анализе рассекреченных документов, что, вопреки утверждениям Пентагона, четвёртая атомная бомба могла быть не разрушена, а потеряна в результате катастрофы, и целью подводных работ 1968 года были её поиски. История получила широкое распространение в СМИ различных стран[12][13]. Министр иностранных дел Дании Пер Стиг Меллер поручил Датскому институту международных отношений провести независимый анализ рассекреченных документов, оказавшихся в распоряжении журналиста. Отчёт был опубликован в 2009 году. В нём говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[14]

США, 2007

29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.

Чистое термоядерное оружие

Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе в настоящее время создать чистый термоядерный снаряд разумных размеров и веса практически не представляется возможным.

Следует отметить, что в Снежинске разработан самый чистый ядерный заряд, предназначенный для мирных применений, в котором 99,85 % энергии получается за счёт синтеза ядер лёгких элементов[15], то есть на долю реакций деления приходится лишь 1/700 общего количества энергии.

См. также

Примечания

Комментарии
  1. ↑ Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
Источники
  1. Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
  2. ↑ Термоядерная бомба и дейтерид лития
  3. 1 2 В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
  4. ↑ Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
  5. ↑ Teller, 2001, p. 157.
  6. ↑ Операция Castle
  7. ↑ Ким Чен Ын о водородной бомбе КНДР: «В целях надёжной защиты суверенитета и достоинства»
  8. ↑ КНДР объявила об успешном испытании водородной бомбы // РБК
  9. ↑ Пхеньян объявил об успешном испытании водородной бомбы, РБК. Проверено 3 сентября 2017.
  10. ↑ North Korea says it can make new bomb in volume, CNN (3 сентября 2017). Проверено 3 сентября 2017.
  11. ↑ Мощность испытанной в КНДР ядерной бомбы оценили в четверть мегатонны (рус.), TUT.BY (13 сентября 2017). Проверено 20 сентября 2017.
  12. Gordon Corera. Mystery of lost US nuclear bomb (англ.). BBC News (10 November 2008). Проверено 28 октября 2011. Архивировано 1 февраля 2012 года.
  13. Карера Г. 40 лет назад ВВС США потеряли атомную бомбу (рус.). BBC Russian.com (11 ноября 2008). Проверено 31 октября 2011. Архивировано 1 февраля 2012 года.
  14. ↑ The Marshal’s Baton, 2009
  15. ↑ РФЯЦ-ВНИИТФ: Об Институте — История института — Сделано в Снежинске

Литература

Ссылки

wikiredia.ru

Термоядерный заряд Вики

Схема Теллера-Улама

Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание[ | код]

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}
Дейтерий-тритиевая реакция

Эта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E1 = 4,784 МэВ. Образовавшийся тритий (3H) далее вступает в реакцию с дейтерием, выделяя энергию E2 = 17,59 МэВ:

13H+12H→24He+01n+E2,{\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}

причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ, который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше: реакция n + 7Li → 3H + 4He + n − 2,467 МэВ является эндотермической, поглощающей энергию.

Термоядерная бомба, действующая по принципу Теллера — Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер — это небольшой плутониевый ядерный заряд с усилением (Boosted fission weapon (англ.)русск.) мощностью в несколько килотонн. Назначение триггера — создать необходимые условия для инициирования термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и, расположенный по оси контейнера, плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера.

Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формой второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе с давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур. Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).

Виды боеприпасов[ | код]

Термоядерные заряды существуют как в виде авиационных бомб (свободного падения), боевых блоков для баллистических и крылатых ракет, зарядных отделений торпед и глубинных, донных мин.

История[ | код]

1 ноября 1952 года США взорвали первый в мире термоядерный заряд по схеме Теллера-Улама на атолле Эниветок.

12 августа 1953 года в СССР на Семипалатинском полигоне была взорвана первая в мире водородная бомба по схеме «слойка» — советская РДС-6.

Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению[2].

1 марта 1954 года во время испытаний Кастл Браво США произвели взрыв бомбы, собранной по схеме Теллера-Улама. СССР произвел испытания бомбы РДС-37 по той же схеме 22 ноября 1955 года.

Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.

США[ | код]

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года[5], в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» (англ. Operation Greenhouse), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств.

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному.

Монтаж боеголовок

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle (англ.)русск.» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[6].

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. К середине 1970-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

СССР[ | код]

Взрыв первого советского термоядерного устройства РДС-6с («слойка», оно же «Джо-4»)

Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Юлием Харитоном и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера — Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления, имел коэффициент умножения до 30 раз меньший по сравнению с современными устройствами по схеме Теллер — Улам. Области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство РДС-6с типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4»[к. 1]. Мощность взрыва была эквивалентна 400 килотоннам при КПД 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения США испытания «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким, Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний РДС-37 мощностью 1,6 мегатонны в ноябре 1955 года.

Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн, доставленная бомбардировщиком Ту-95. 97 % энергии устройства выделилось в результате термоядерной реакции (это максимальное значение из всех испытанных устройств). В первоначальном варианте предполагалась мощность 100 Мт, из которых около 50 % выделяется в результате термоядерной реакции, а 50 % — в результате деления 238U в оболочке из обеднённого урана нейтронами первых ступеней (т. н. «реакция Джекила — Хайда»). Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую[3]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

Великобритания[ | код]

В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии.

Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (нетермоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов.

Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 года была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1,8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

Китай[ | код]

Китайская Народная Республика испытала своё первое термоядерное устройство по схеме Теллер-Улам мощностью 3,36 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.

Франция[ | код]

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство по схеме Теллер-Улам мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны мало[кому?].

Северная Корея[ | код]

В декабре 2015 года ЦТАК распространило заявление руководителя КНДР Ким Чен Ына, в котором он сообщает о наличии у Пхеньяна собственной водородной бомбы[7]. В январе 2016 года Северная Корея провела успешное испытание водородной бомбы, о чём объявили в эфире центрального телевидения КНДР. Ранее сейсмологи нескольких стран сообщили о землетрясении, которое спровоцировали ядерные испытания[8].

3 сентября 2017 года КНДР объявила о наличии термоядерного заряда, готового к применению в качестве боеголовки для межконтинентальной ракеты. В тот же день Северной Кореей было проведено испытание бомбы, мощность взрыва которой по оценкам японских сейсмологов составила до 100 килотонн[9][10]. 12 сентября эксперты ​американского Университета Джона Хопкинса оценили мощность ядерного заряда, испытанного в КНДР 3 сентября, и по их оценке он составил 250 килотонн в тротиловом эквиваленте[11].

Происшествия с термоядерными боеприпасами[ | код]

США, 1958[ | код]

Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.

Испания, 1966[ | код]

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

Гренландия, 1968[ | код]

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находились 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 году почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все четыре атомных боезаряда были найдены и уничтожены. Но в ноябре 2008 года обозреватель Би-би-си Гордон Корера (англ. Gordon Corera) высказал предположение, основанное на анализе рассекреченных документов, что, вопреки утверждениям Пентагона, четвёртая атомная бомба могла быть не разрушена, а потеряна в результате катастрофы, и целью подводных работ 1968 года были её поиски. История получила широкое распространение в СМИ различных стран[12][13]. Министр иностранных дел Дании Пер Стиг Меллер поручил Датскому институту международных отношений провести независимый анализ рассекреченных документов, оказавшихся в распоряжении журналиста. Отчёт был опубликован в 2009 году. В нём говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[14]

США, 2007[ | код]

29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.

Чистое термоядерное оружие[ | код]

Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе в настоящее время создать чистый термоядерный снаряд разумных размеров и веса практически не представляется возможным.

Следует отметить, что в Снежинске разработан самый чистый ядерный заряд, предназначенный для мирных применений, в котором 99,85 % энергии получается за счёт синтеза ядер лёгких элементов[15], то есть на долю реакций деления приходится лишь 1/700 общего количества энергии.

См. также[ | код]

Примечания[ | код]

Комментарии
  1. ↑ Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
Источники
  1. Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
  2. ↑ Термоядерная бомба и дейтерид лития
  3. 1 2 В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
  4. ↑ Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
  5. ↑ Teller, 2001, p. 157.
  6. ↑ Операция Castle
  7. ↑ Ким Чен Ын о водородной бомбе КНДР: «В целях надёжной защиты суверенитета и достоинства»
  8. ↑ КНДР объявила об успешном испытании водородной бомбы // РБК
  9. ↑ Пхеньян объявил об успешном испытании водородной бомбы, РБК. Проверено 3 сентября 2017.
  10. ↑ North Korea says it can make new bomb in volume, CNN (3 сентября 2017). Проверено 3 сентября 2017.
  11. ↑ Мощность испытанной в КНДР ядерной бомбы оценили в четверть мегатонны (рус.), TUT.BY (13 сентября 2017). Проверено 20 сентября 2017.
  12. Gordon Corera. Mystery of lost US nuclear bomb (англ.). BBC News (10 November 2008). Проверено 28 октября 2011. Архивировано 1 февраля 2012 года.
  13. Карера Г. 40 лет назад ВВС США потеряли атомную бомбу (рус.). BBC Russian.com (11 ноября 2008). Проверено 31 октября 2011. Архивировано 1 февраля 2012 года.
  14. ↑ The Marshal’s Baton, 2009
  15. ↑ РФЯЦ-ВНИИТФ: Об Институте — История института — Сделано в Снежинске

Литература[ | код]

Ссылки[ | код]

ru.wikibedia.ru

Термоядерный заряд Википедия

Схема Теллера-Улама

Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание[ | ]

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}

ru-wiki.ru

Термоядерное оружие

Термоя́дерное ору́жие (оно же Водородная бомба) — тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом используемый в водородной бомбе уран-238 распадается под действиембыстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков[1].

Схема Теллера-Улама.

Содержание

  [убрать

  • 1 Общее описание

  • 2 Устройство термоядерного боеприпаса

  • 3 История

  • 4 Происшествия с термоядерными боеприпасами

    • 4.1 США, 1958

    • 4.2 Испания, 1966

    • 4.3 Гренландия, 1968

    • 4.4 США, 2007

  • 5 См. также

  • 6 Примечания

  • 7 Ссылки

[править]Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопаводорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Он изготовлен из урана-238 — вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.

A  Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы. B  Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления. C  В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола. D  Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла. E  В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).

[править]Устройство термоядерного боеприпаса

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок длябаллистических и крылатых ракет.

[править]История

1 ноября 1952 года США взорвали первый термоядерный заряд на атолле Эниветок. Первая в мире водородная бомба — советскаяРДС-6 была взорвана 12 августа 1953 года на полигоне в Семипалатинске. Устройство, испытанное США в 1952 году фактически не являлось «бомбой», а представляла собой лабораторный образец, «3-х этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же ученые разработали именно бомбу — законченное устройство, пригодное к практическому применению[2]. Впрочем, мощность взорванного американцами устройства составляла 10 мегатонн, в то время как мощность бомбы конструкции Сахарова — Лаврентьева[источник не указан 715 дней] — 400 килотонн. Самая крупная когда-либо взорванная водородная бомба — советская 50-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая ЗемляНикита Хрущёввпоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Любопытно отметить, что после этого прекратился рост мегатоннажа ядерного арсенала США.

[править]СССР

Схема подрыва заряда имплозивного типа

Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства (современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз). Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» (первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо»). Мощность взрыва была эквивалентна 400 килотоннам при КПД всего 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения Соединёнными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Франк-Каменецким,Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно был выполнен Проект 49, предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, т.е. была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний «РДС-37» мощностью 1,6 мегатонн в ноябре 1955 года. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. КПД устройства составил почти 97 %, и изначально оно было рассчитано на мощность в 100 мегатонн, урезанных впоследствии волевым решением руководства проекта вдвое.[3] Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

[править]США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеруещё в 1941 году, в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллерпосвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием «Operation Greenhouse» (Операция Оранжерея), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт реакции синтеза водорода, что подтвердило на практике общую концепцию двухступенчатых устройств.

«Иви Майк»

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стрежень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма излучения от первичного заряда к вторичному.

Монтаж боеголовок

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[5].

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 годуна вооружение были приняты боеголовки мегатонного класса W47 развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 700 фунтов (320 кг) и диаметр 18 дюймов (50 см). Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис и необходимость их доработок. К середине 70-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

[править]Великобритания

В Великобритании разработки термоядерного оружия были начаты в 1954 в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на весьма зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (не термоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов. Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1.8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

[править]Китай

Китайская Народная Республика испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,36 мегатонны в июне1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.

[править]Франция

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны слабо.

[править]Другие страны

Детали развития проекта Теллер-Улам в других странах менее известны.

[править]Происшествия с термоядерными боеприпасами

[править]США, 1958

Основная статьяСтолкновение над островом Тайби

Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.

[править]Испания, 1966

Основная статьяАвиакатастрофа над Паломарес 17 января 1966

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

[править]Гренландия, 1968

Основная статьяАвиакатастрофа над базой Туле

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времениврезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находилось 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя ядерное загрязнение. В 1987 г. почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все из четырёх атомных боезарядов были найдены и уничтожены. Но в ноябре 2008 года в связи с истечением срока секретности информация, находящаяся под грифом «Секретно», была раскрыта. В документах было сказано, что разбившийся бомбардировщик нёс четыре боезаряда, но в течение нескольких недель учёным удалось по фрагментам обнаружить только 3 боезаряда. В августе 1968 подводная лодка «Star III» была отослана на базу для поисков утерянной бомбы, серийный номер которой 78252, в море. Но найдена она не была до сих пор. Во избежание паники среди населения Соединённые Штаты опубликовали информацию о четырёх найденных уничтоженных бомбах.

Сообщение Би-би-си о том, что во льдах Гренландии находится ядерная бомба, было опровергнуто в датском докладе 2009 года, в котором говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[6]

[править]США, 2007

Основная статьяИнцидент с ядерными боезарядами в ВВС США (2007)

29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейлв Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.

[править]См. также

studfiles.net

Рукотворная звезда: Термоядерная бомба | Журнал Популярная Механика

У многих наших читателей водородная бомба ассоциируется с атомной, только гораздо более мощной. На самом деле это принципиально новое оружие, потребовавшее для своего создания несоизмеримо больших интеллектуальных усилий и работающее на принципиально других физических принципах.

Единственно, что роднит атомную и водородную бомбу, так это то, что обе высвобождают колоссальную энергию, скрытую в атомном ядре. Сделать это можно двумя путями: разделить тяжелые ядра, например, урана или плутония, на более легкие (реакция деления) или заставить слиться легчайшие изотопы водорода (реакция синтеза). В результате обеих реакций масса получившегося материала всегда меньше массы исходных атомов. Но масса не может исчезнуть бесследно — она переходит в энергию по знаменитой формуле Эйнштейна E=mc2.

A-bomb

Для создания атомной бомбы необходимым и достаточным условием является получение делящегося материала в достаточном количестве. Работа довольно трудоемкая, но малоинтеллектуальная, лежащая ближе к горнорудной промышленности, чем к высокой науке. Основные ресурсы при создании такого оружия уходят на строительство гигантских урановых рудников и обогатительных комбинатов. Свидетельством простоты устройства является тот факт, что между получением необходимого для первой бомбы плутония и первым советским ядерным взрывом не прошло и месяца.

Напомним вкратце принцип работы такой бомбы, известный из курса школьной физики. В ее основе лежит свойство урана и некоторых трансурановых элементов, например, плутония, при распаде выделять более одного нейтрона. Эти элементы могут распадаться как самопроизвольно, так и под воздействием других нейтронов.

Высвободившийся нейтрон может покинуть радиоактивный материал, а может и столкнуться с другим атомом, вызвав очередную реакцию деления. При превышении определенной концентрации вещества (критической массе) количество новорожденных нейтронов, вызывающих дальнейшее деление атомного ядра, начинает превышать количество распадающихся ядер. Количество распадающихся атомов начинает расти лавинообразно, рождая новые нейтроны, то есть происходит цепная реакция. Для урана-235 критическая масса составляет около 50 кг, для плутония-239 — 5,6 кг. То есть шарик плутония массой чуть меньше 5,6 кг представляет собой просто теплый кусок металла, а массой чуть больше существует всего несколько наносекунд.

Собственно схема работы бомбы простая: берем две полусферы урана или плутония, каждая чуть меньше критической массы, располагаем их на расстоянии 45 см, обкладываем взрывчаткой и взрываем. Уран или плутоний спекается в кусок надкритической массы, и начинается ядерная реакция. Все. Существует другой способ запустить ядерную реакцию — обжать мощным взрывом кусок плутония: расстояние между атомами уменьшится, и реакция начнется при меньшей критической массе. На этом принципе работают все современные атомные детонаторы.

Проблемы атомной бомбы начинаются с того момента, когда мы хотим нарастить мощность взрыва. Простым увеличением делящегося материала не обойтись — как только его масса достигает критической, он детонирует. Придумывались разные хитроумные схемы, например, делать бомбу не из двух частей, а из множества, отчего бомба начинала напоминать распотрошенный апельсин, а потом одним взрывом собирать ее в один кусок, но все равно при мощности свыше 100 килотонн проблемы становились непреодолимыми.

H-bomb

А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития (тяжелого и сверхтяжелого изотопа водорода) энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235.

Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом. Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. д.

Классический супер

К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички. Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики.

Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США.

Слойка с сахаром

В середине 1946 года Теллер предложил очередную схему водородной бомбы — «будильник». Она состояла из чередующихся сферических слоев урана, дейтерия и трития. При ядерном взрыве центрального заряда плутония создавалось необходимое давление и температура для начала термоядерной реакции в других слоях бомбы. Однако для «будильника» требовался атомный инициатор большой мощности, а США (как, впрочем, и СССР) испытывали проблемы с наработкой оружейного урана и плутония.

Осенью 1948 года к аналогичной схеме пришел и Андрей Сахаров. В Советском Союзе конструкция получила название «слойка». Для СССР, который не успевал в достаточном количестве нарабатывать оружейный уран-235 и плутоний-239, сахаровская слойка была панацеей. И вот почему.

В обычной атомной бомбе природный уран-238 не только бесполезен (энергии нейтронов при распаде не хватает для инициации деления), но и вреден, поскольку жадно поглощает вторичные нейтроны, замедляя цепную реакцию. Поэтому оружейный уран на 90% состоит из изотопа уран-235. Однако нейтроны, появляющиеся в результате термоядерного синтеза, в 10 раз более энергетичные, чем нейтроны деления, и облученный такими нейтронами природный уран-238 начинает превосходно делиться. Новая бомба позволяла использовать в качестве взрывчатки уран-238, который прежде рассматривался как отходы производства.

Изюминкой сахаровской «слойки» было также применение вместо остродефицитного трития белого легкого кристаллического вещества — дейтрида лития 6LiD.

Как упоминалось выше, смесь дейтерия и трития поджигается гораздо легче, чем чистый дейтерий. Однако на этом достоинства трития заканчиваются, а остаются одни недостатки: в нормальном состоянии тритий — газ, из-за чего возникают трудности с хранением; тритий радиоактивен и, распадаясь, превращается в стабильный гелий-3, активно пожирающий столь необходимые быстрые нейтроны, что ограничивает срок годности бомбы несколькими месяцами.

Нерадиоактивный дейтрид лития же при облучении его медленными нейтронами деления — последствиями взрыва атомного запала — превращается в тритий. Таким образом, излучение первичного атомного взрыва за мгновение вырабатывает достаточное для дальнейшей термоядерной реакции количество трития, а дейтерий в дейтриде лития присутствует изначально.

Именно такая бомба, РДС-6с, и была успешно испытана 12 августа 1953 на башне Семипалатинского полигона. Мощность взрыва составила 400 килотонн, и до сих пор не прекратились споры, был ли это настоящий термоядерный взрыв или сверхмощный атомный. Ведь на реакцию термоядерного синтеза в сахаровской слойке пришлось не более 20% суммарной мощности заряда. Основной вклад во взрыв внесла реакция распада облученного быстрыми нейтронами урана-238, благодаря которому РДС-6с и открыла эру так называемых «грязных» бомб.

Дело в том, что основное радиоактивное загрязнение дают как раз продукты распада (в частности, стронций-90 и цезий-137). По существу, сахаровская «слойка» была гигантской атомной бомбой, лишь незначительно усиленной термоядерной реакцией. Не случайно всего один взрыв «слойки» дал 82% стронция-90 и 75% цезия-137, которые попали в атмосферу за всю историю существования Семипалатинского полигона.

Американ бомб

Тем не менее, первыми водородную бомбу взорвали именно американцы. 1 ноября 1952 года на атолле Элугелаб в Тихом океане было успешно испытано термоядерное устройство «Майк» мощностью 10 мегатонн. Назвать бомбой 74-тонное американское устройство можно с большим трудом. «Майк» представлял собой громоздкое устройство размером с двухэтажный дом, заполненное жидким дейтерием при температуре, близкой к абсолютному нулю (сахаровская «слойка» была вполне транспортабельным изделием). Однако изюминкой «Майка» были не размеры, а гениальный принцип обжатия термоядерной взрывчатки.

Напомним, что основная идея водородной бомбы состоит в создании условий для синтеза (сверхвысокого давления и температуры) посредством ядерного взрыва. В схеме «слойка» ядерный заряд расположен в центре, и поэтому он не столько сжимает дейтерий, сколько разбрасывает его наружу — увеличение количества термоядерной взрывчатки не приводит к увеличению мощности — она просто не успевает детонировать. Именно этим и ограничена предельная мощность данной схемы — самая мощная в мире «слойка» Orange Herald, взорванная англичанами 31 мая 1957 года, дала только 720 килотонн.

Идеально было бы, если бы заставить взрываться атомный запал внутрь, сжимая термоядерную взрывчатку. Но как это сделать? Эдвард Теллер выдвинул гениальную идею: сжимать термоядерное горючее не механической энергией и нейтронным потоком, а излучением первичного атомного запала.

В новой конструкции Теллера инициирующий атомный узел был разнесен с термоядерным блоком. Рентгеновское излучение при срабатывании атомного заряда опережало ударную волну и распространялось вдоль стенок цилиндрического корпуса, испаряя и превращая в плазму полиэтиленовую внутреннюю облицовку корпуса бомбы. Плазма, в свою очередь, переизлучала более мягкое рентгеновское излучение, которое поглощалось внешними слоями внутреннего цилиндра из урана-238 — «пушера». Слои начинали взрывообразно испаряться (это явление называют абляция). Раскаленную урановую плазму можно сравнить со струями сверхмощного ракетного двигателя, тяга которого направлена внутрь цилиндра с дейтерием. Урановый цилиндр схлопывался, давление и температура дейтерия достигала критического уровня. Это же давление обжимало центральную плутониевую трубку до критической массы, и она детонировала. Взрыв плутониевого запала давил на дейтерий изнутри, дополнительно сжимая и нагревая термоядерную взрывчатку, которая детонировала. Интенсивный поток нейтронов расщепляет ядра урана-238 в «пушере», вызывая вторичную реакцию распада. Все это успевало произойти до того момента, когда взрывная волна от первичного ядерного взрыва достигала термоядерного блока. Расчет всех этих событий, происходящих за миллиардные доли секунды, и потребовал напряжения ума сильнейших математиков планеты. Создатели «Майка» испытывали от 10-мегатонного взрыва не ужас, а неописуемый восторг — им удалось не только разобраться в процессах, которые в реальном мире идут только в ядрах звезд, но и экспериментально проверить свои теории, устроив свою небольшую звезду на Земле.

Браво

Обойдя русских по красоте конструкции, американцы не смогли сделать свое устройство компактным: они использовали жидкий переохлажденный дейтерий вместо порошкообразного дейтрида лития у Сахарова. В Лос-Аламосе на сахаровскую «слойку» реагировали с долей зависти: «вместо огромной коровы с ведром сырого молока русские используют пакет молока сухого». Однако утаить секреты друг от друга обеим сторонам не удалось. Первого марта 1954 года у атолла Бикини американцы испытали 15-мегатонную бомбу «Браво» на дейтриде лития, а 22 ноября 1955 года над семипалатинским полигоном рванула первая советская двухступенчатая термоядерная бомба РДС-37 мощностью 1,7 мегатонн, снеся чуть ли не полполигона. С тех пор конструкция термоядерной бомбы претерпела незначительные изменения (например, появился урановый экран между инициирующей бомбой и основным зарядом) и стала канонической. А в мире не осталось больше столь масштабных загадок природы, разгадать которые можно было бы столь эффектным экспериментом. Разве что рождение сверхновой звезды.

www.popmech.ru

Термоядерное оружие — Википедия

Схема Теллера-Улама

Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}
Дейтерий-тритиевая реакция

Эта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E1 = 4,784 МэВ. Образовавшийся тритий (3H) далее вступает в реакцию с дейтерием, выделяя энергию E2 = 17,59 МэВ:

13H+12H→24He+01n+E2,{\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}

причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ, который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше: реакция n + 7Li → 3H + 4He + n − 2,467 МэВ является эндотермической, поглощающей энергию.

Термоядерная бомба, действующая по принципу Теллера — Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер — это небольшой плутониевый ядерный заряд с усилением (Boosted fission weapon (англ.)русск.) мощностью в несколько килотонн. Назначение триггера — создать необходимые условия для инициирования термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и, расположенный по оси контейнера, плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 — вещества, расщепляющегося под воздействием быстрых нейтронов (>0,5 МэВ), выделяющихся при реакции синтеза, так и из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера.

Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формой второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе с давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур. Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Если оболочка контейнера была изготовлена из природного урана, то быстрые нейтроны, образующиеся в результате реакции синтеза, вызывают в ней реакции деления атомов урана-238, добавляющие свою энергию в общую энергию взрыва. Подобным образом создаётся термоядерный взрыв практически неограниченной мощности, так как за оболочкой могут располагаться ещё другие слои дейтерида лития и слои урана-238 (слойка).

Видео по теме

Виды боеприпасов

Термоядерные заряды существуют как в виде авиационных бомб (свободного падения), боевых блоков для баллистических и крылатых ракет, зарядных отделений торпед и глубинных, донных мин.

История

1 ноября 1952 года США взорвали первый в мире термоядерный заряд по схеме Теллера-Улама на атолле Эниветок.

12 августа 1953 года в СССР на Семипалатинском полигоне была взорвана первая в мире водородная бомба по схеме «слойка» — советская РДС-6.

Устройство, испытанное США в 1952 году, фактически не являлось бомбой, а представляло собой лабораторный образец, «3-этажный дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции. Советские же учёные разработали именно бомбу — законченное устройство, пригодное к практическому военному применению[2].

1 марта 1954 года во время испытаний Кастл Браво США произвели взрыв бомбы, собранной по схеме Теллера-Улама. СССР произвел испытания бомбы РДС-37 по той же схеме 22 ноября 1955 года.

Самая крупная когда-либо взорванная водородная бомба — советская 58-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв впоследствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый[3]. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила[4]; тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала.

США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом, была предложена Энрико Ферми его коллеге Эдварду Теллеру осенью 1941 года[5], в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма-излучение, порождённые первичным взрывом, могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию (обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

Взрыв «Джордж»

В 1951 году была проведена серия испытаний под общим наименованием Операция «Парник» (англ. Operation Greenhouse), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж» (англ. George), в котором было взорвано экспериментальное устройство, представлявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещённым в центре. Основная часть мощности взрыва была получена именно за счёт водородного синтеза, что подтвердило на практике общую концепцию двухступенчатых устройств.

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» (англ. Ivy Mike) было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную ёмкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной ёмкости проходил плутониевый стержень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма-излучения от первичного заряда к вторичному.

Монтаж боеголовок

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твёрдого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle (англ.)русск.» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчёты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами[6].

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47, развёрнутые на подводных лодках, оснащённых баллистическими ракетами Поларис. Боеголовки имели массу 320 кг и диаметр 50 см. Более поздние испытания показали низкую надёжность боеголовок, установленных на ракеты Поларис, и необходимость их доработок. К середине 1970-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

СССР

Взрыв первого советского термоядерного устройства РДС-6с («слойка», оно же «Джо-4»)

Первый советский проект термоядерного устройства напоминал слоёный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (ещё до испытания первой советской ядерной бомбы) Андреем Сахаровым и Юлием Харитоном и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера — Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления, имел коэффициент умножения до 30 раз меньший по сравнению с современными устройствами по схеме Теллер — Улам. Области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство РДС-6с типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4»[к. 1]. Мощность взрыва была эквивалентна 400 килотоннам при КПД 15—20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения США испытания «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Харитоном ещё в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объёмах, повторив таким образом схему Теллера — Улама. Следующий большой шаг был предложен и развит Франк-Каменецким, Трутневым, Сахаровым и Зельдовичем в 1953 году. А именно, был выполнен «Проект 49», предполагающий использование рентгеновского излучения реакции деления для сжатия дейтерида лития перед синтезом, то есть была разработана идея радиационной имплозии. «Третья идея» Сахарова была проверена в ходе испытаний РДС-37 мощностью 1,6 мегатонны в ноябре 1955 года.

Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 58 мегатонн, доставленная бомбардировщиком Ту-95. 97 % энергии устройства выделилось в результате термоядерной реакции (это максимальное значение из всех испытанных устройств). В первоначальном варианте предполагалась мощность 100 Мт, из которых около 50 % выделяется в результате термоядерной реакции, а 50 % — в результате деления 238U в оболочке из обеднённого урана нейтронами первых ступеней (т. н. «реакция Джекила — Хайда»). Однако такой вариант отвергли, так как он бы привёл к сильнейшему загрязнению полигона осколками деления, и урановая оболочка была заменена на свинцовую[3]. Это было самое мощное взрывное устройство, когда-либо разработанное и испытанное на Земле.

Великобритания

В Великобритании разработки термоядерного оружия были начаты в 1954 году в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на зачаточном уровне, так как Соединённые Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолёт для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии.

Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных (нетермоядерных) бомб. Почти все свидетели испытаний (включая экипаж самолёта, который её сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в её состав входил заряд плутония массой 117 килограммов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов.

Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 года была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1,8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегчённый вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трёхступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединённые Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

Китай

Китайская Народная Республика испытала своё первое термоядерное устройство по схеме Теллер-Улам мощностью 3,36 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу.

Франция

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство по схеме Теллер-Улам мощностью около 2,6 мегатонны. Подробности о развитии французской программы известны мало[кому?].

Северная Корея

В декабре 2015 года ЦТАК распространило заявление руководителя КНДР Ким Чен Ына, в котором он сообщает о наличии у Пхеньяна собственной водородной бомбы[7]. В январе 2016 года Северная Корея провела успешное испытание водородной бомбы, о чём объявили в эфире центрального телевидения КНДР. Ранее сейсмологи нескольких стран сообщили о землетрясении, которое спровоцировали ядерные испытания[8].

3 сентября 2017 года КНДР объявила о наличии термоядерного заряда, готового к применению в качестве боеголовки для межконтинентальной ракеты. В тот же день Северной Кореей было проведено испытание бомбы, мощность взрыва которой по оценкам японских сейсмологов составила до 100 килотонн[9][10]. 12 сентября эксперты ​американского Университета Джона Хопкинса оценили мощность ядерного заряда, испытанного в КНДР 3 сентября, и по их оценке он составил 250 килотонн в тротиловом эквиваленте[11].

Происшествия с термоядерными боеприпасами

США, 1958

Столкновение бомбардировщика B-47 и истребителя F-86 над островом Тайби 5 февраля 1958 года — авиационное происшествие над побережьем американского штата Джорджия, в результате которого истребитель был потерян, а экипажу бомбардировщика пришлось аварийно сбросить в океан водородную бомбу Mark 15. Бомба до сих пор не найдена; считается, что она покоится на дне залива Уоссо (англ. Wassaw Sound) к югу от курортного города Тайби-Айленд.

Испания, 1966

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

Гренландия, 1968

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле. На борту самолёта находились 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привёл к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя радиоактивное загрязнение. В 1987 году почти 200 датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличения смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все четыре атомных боезаряда были найдены и уничтожены. Но в ноябре 2008 года обозреватель Би-би-си Гордон Корера (англ. Gordon Corera) высказал предположение, основанное на анализе рассекреченных документов, что, вопреки утверждениям Пентагона, четвёртая атомная бомба могла быть не разрушена, а потеряна в результате катастрофы, и целью подводных работ 1968 года были её поиски. История получила широкое распространение в СМИ различных стран[12][13]. Министр иностранных дел Дании Пер Стиг Меллер поручил Датскому институту международных отношений провести независимый анализ рассекреченных документов, оказавшихся в распоряжении журналиста. Отчёт был опубликован в 2009 году. В нём говорится: «Мы показали, что четыре ядерные бомбы были уничтожены при взрывах, последовавших за крушением. Это не обсуждается, и мы можем дать ясный ответ: никакой бомбы нет, никакой бомбы не было, и американцы не искали бомбу.»[14]

США, 2007

29 августа 2007 года 6 крылатых ракет AGM-129 ACM с термоядерными боевыми частями (боеголовки W80 изменяемой мощности 5-150 кт) были по ошибке установлены на бомбардировщик B-52H на авиабазе Майнот в Северной Дакоте и отправлены на авиабазу Барксдейл в Луизиане. О факте наличия на ракетах ядерных боезарядов стало известно случайно и лишь 36 часов спустя. После погрузки в Майноте и по прилёте в Барксдейл, самолёт около суток не охранялся. Инцидент стал причиной громкого скандала в США, ряда отставок в Военно-воздушных силах и реорганизации управления стратегическими ядерными силами США.

Чистое термоядерное оружие

Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе в настоящее время создать чистый термоядерный снаряд разумных размеров и веса практически не представляется возможным.

Следует отметить, что в Снежинске разработан самый чистый ядерный заряд, предназначенный для мирных применений, в котором 99,85 % энергии получается за счёт синтеза ядер лёгких элементов[15], то есть на долю реакций деления приходится лишь 1/700 общего количества энергии.

См. также

Примечания

Комментарии
  1. ↑ Первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо».
Источники
  1. Лоуренс У. Л. Люди и атомы. — М.: Атомиздат, 1967, с. 207.
  2. ↑ Термоядерная бомба и дейтерид лития
  3. 1 2 В случае оставления в «царь-бомбе» уранового слоя, она, конечно, взорвалась бы на 100 мегатонн вместо 50, однако это вызвало бы катастрофически сильное загрязнение полигона радиоактивными продуктами реакции урана[значимость факта?]
  4. ↑ Её боевое значение вообще было довольно спорно из-за слишком большого веса — для испытаний специально переделывали несколько тяжёлых бомбардировщиков
  5. ↑ Teller, 2001, p. 157.
  6. ↑ Операция Castle
  7. ↑ Ким Чен Ын о водородной бомбе КНДР: «В целях надёжной защиты суверенитета и достоинства»
  8. ↑ КНДР объявила об успешном испытании водородной бомбы // РБК
  9. ↑ Пхеньян объявил об успешном испытании водородной бомбы, РБК. Проверено 3 сентября 2017.
  10. ↑ North Korea says it can make new bomb in volume, CNN (3 сентября 2017). Проверено 3 сентября 2017.
  11. ↑ Мощность испытанной в КНДР ядерной бомбы оценили в четверть мегатонны (рус.), TUT.BY (13 сентября 2017). Проверено 20 сентября 2017.
  12. Gordon Corera. Mystery of lost US nuclear bomb (англ.). BBC News (10 November 2008). Проверено 28 октября 2011. Архивировано 1 февраля 2012 года.
  13. Карера Г. 40 лет назад ВВС США потеряли атомную бомбу (рус.). BBC Russian.com (11 ноября 2008). Проверено 31 октября 2011. Архивировано 1 февраля 2012 года.
  14. ↑ The Marshal’s Baton, 2009
  15. ↑ РФЯЦ-ВНИИТФ: Об Институте — История института — Сделано в Снежинске

Литература

Ссылки

wiki2.red

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *