Содержание

КОСМОС, ВСЕЛЕННАЯ — В ЧЕМ РАЗНИЦА?

Barnard 33, или Туманность Конская Голова — тёмная туманность в созвездии Ориона



Позиция: 05h 40m, –02°, 27′, расстояние от Земли: 1,600 св. лет; прибор/год: WFC3/IR, 2012.

M83, или галактика Южная Вертушка — спиральная галактика с перемычкой в созвездии Гидра



Позиция: 13h 37m, –29°, 51′, расстояние от Земли: 15,000,000 св.лет, прибор/год: WFC3/UVIS, 2009–2012.

M16, или Туманность Орёл — молодое рассеянное звёздное скопление в созвездии Змеи



Позиция: 18h 18m, –13°, 49′, расстояние от Земли: 6,500 св.лет, прибор/год: WFC3/IR, 2014.

Книга называется Expanding Universe («Расширяющаяся Вселенная») и приурочена к 25-летию запуска Хаббла. Фотографии Хаббла, опубликованные в этой книге, это не просто завораживающие дух изображения, это также возможность узнать больше об исследовании космоса. В книге есть эссе от критика фотографий, интервью со специалистом, который рассказывает, как именно создаются эти снимки, а также два рассказа астронавтов о том, какую роль в изучении космоса играет этот уникальный телескоп. 

RS Puppis — переменная звезда в созвездии Корма



Позиция: 08h 13m, –34°, 34′, расстояние от Земли: 6,500 св.лет, прибор/год: ACS/WFC, 2010.

M82, или Галактика Сигара — спиральная галактика в созвездии Большая Медведица



Позиция: 09h 55m, +69° 40′, расстояние от Земли: 12,000,000 св.лет, прибор/год: ACS/WFC, 2006.

M16, или Туманность Орёл — молодое рассеянное звёздное скопление в созвездии Змеи



Позиция: 18h 18m, –13°, 49′, расстояние от Земли: 6,500 св.лет, прибор/год: WFC3/UVIS, 2014.

Благодаря тому, что телескоп находится в космосе, он может регистрировать излучение в инфракрасном диапазоне, что совершенно невозможно сделать с поверхности Земли. Поэтому разрешающая способность Хаббла в 7—10 раз больше, чем у аналогичного телескопа, расположенного на поверхности нашей планеты. Так, например, среди прочего, ученые впервые получили карты поверхности Плутона, узнали дополнительные данные о планетах вне солнечной системы, им удалось значительно продвинуться в изучении столь загадочных черных дыр в центрах галактик, а также, что кажется уж совсем невероятным, — смогли сформулировать современную космологическую модель и узнать более точный возраст Вселенной (13,7 млрд лет). 

Юпитер и его спутник Ганимед



Позиция: непостоянна, расстояние от Земли: 443,000,000 mi, прибор/год: WFPC2, 2007.

Sharpless 2-106, или Туманность Снежный Ангел в созвездии Лебедь



Позиция: 20h 27m, +37°, 22′, расстояние от Земли: 2,000 св.лет, прибор/год: Subaru, Telescope, 1999; WFC3/UVIS, WFC3/IR, 2011.

M16, или Туманность Орёл — молодое рассеянное звёздное скопление в созвездии Змеи



Позиция: 18h 18m, –13°, 49′, расстояние от Земли: 6,500 св.лет, прибор/год: ACS/WFC, 2004.

HCG 92, или Квинтет Стефана — группа из пяти галактик в созвездии Пегаса



Позиция: 22h 35m, +33°, 57′, расстояние от Земли: 290,000,000 св.лет, прибор/год: WFC3/UVIS, 2009.

M81, NGC 3031, или Галактика Боде — спиральная галактика в созвездии Большая Медведица



Позиция: 09h 55m, +69° 03′, расстояние от Земли: 11,600,000 св.лет, прибор/год: ACS/WFC, 2004-2006.

NGC 2264, или туманность Конус в созвездии Единорог



Позиция: 06h 41m, +09°, 25′, расстояние от Земли: 2,500 св.лет, прибор/год: ACS/WFC, 2002.

M1 Крабовидная туманность в созвездии Тельца



Позиция: 05h 34m, +22°, 00′, расстояние от Земли: 6,500 св.лет, прибор/год: WFPC2, 1999, 2000.

HST Космический телескоп «Хаббл»




maxpark.com

С чего начинается космос и где кончается Вселенная

С чего начинается космос и где кончается Вселенная?  Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и  зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

Атмосфера

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза 

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Пузырь в рукаве

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

Источник

Похожие записи:

ogend.ru

В чем различие между Вселенной и космосом и пространством, ведь Земля находится и в том, и в другом, и в третьем?

Ответы:

представим, что космос это галактика, получается, что космос находится во вселенной, а вот с пространсвтом както сложно, слишком абстрактное понятие. Вы матрешку видели? тот же принцип В чем разница между понедельником, 29 числом, октябрем и 2008 годом? Ведь сегодня и то и другое и третье и четвертое? как, сегодня 29-ое??? ааааа значит с Земли разницы никакой Мне кажется, космос и пространство — одно и тоже, и это всё хозяйство называют Вселенной. Мое мнение:
 Вселенная — это все что мы видим или когда-либо можем увидеть (есть места откуда свет к нам только долетает) следовательно  для нас Вселенная расширяется с каждой секундой на 300000км.
 Космос — понятие которое возникло задолго до освоения космоса и думаю означает все что находится вне Земли
 Пространство — для человека это те три измерения в которых существует человек, космос и вселенная.
По некоторым теориям пространство состоит из неисчислимого количества измерений и в каждом подпространстве (3-х, 4-х, 5-мерном) есть свои вселенные, но мы их не можем зафиксировать из-за ограниченности нашего восприятия ПРОСТРАНСТВО — место (вакуум), которое теоретически существовало до большого взрыва (или появления материи)
ВСЕЛЕННАЯ — вся существующая материя со всеми вытекающими её свойствами.
КОСМОС — часть вселенной, или часть пространства между космическими телами.
вроде всё просто =)) Пространство — все сущее в котором теоретически возможно существование других вселенных, других измерений — того что сегодня непознаваймо.
Вселенная — весь материальный мир с момента Большого Взрыва, включая макро и микро миры,
Космос — Пространство вне планеты Земля. У меня возник другой вопрос: какое из этих слов начали использовать первым в русском языке? 1    Вселе́нная — фундаментальное понятие астрономии, строго не определяемое, включает в себя весь окружающий мир[1][2][3]. На практике под Вселенной часто понимают часть материального мира, доступную изучению естественнонаучными методами[4]. Вселенная как единое целое является предметом изучения раздела астрономии — космологии.Ко́смос (греч. κόσμος — порядок, красивое) — строение, мир, вселенная, мироздание, материальный мир. В пространстве космоса находится вся солнечная система.


11 лет назад

www.rpi.su

Космос и Вселенная

Тема данного эссе — будущее Вселенной, точнее — каким представляют его ученые. Конечно, предсказывать будущее очень трудно. Мне как-то подумалось, не написать ли кишу под названием «Вчерашнее завтра: история будущего». Это была бы история предсказании будущего, почти все из которых оказались весьма далеки от истины. Но несмотря на эти неудачи, ученые по-прежнему думают, что могут предсказать будущее.

В древние времена предсказания были делом оракулов или сивилл. Часто это были женщины, погруженные в транс каким-либо наркотическим веществом или надышавшиеся вулканических испарений. Их бред толковали окружавшие их жрецы. Действительное искусство крылось в толковании. Знаменитый Дельфийский оракул в Древней Греции был знаменит своей уклончивостью и двусмысленностями. Когда персы напали на Грецию и спартанцы спросили, что будет дальше, оракул ответил: «Или Спарта будет разрушена, или ее царь будет убит». Полагаю, жрец рассчитывал, что если не сбудется ни то, ни другое, спартанцы будут так благодарны Аполлону, что не заметят ошибки оракула. На самом деле царь был убит в бою, защищая проход у Фермопил, что спасло Спарту и привело к окончательному разгрому персов.

В другом случае лидийский царь Крёз, богатейший человек в мире, спросил, что будет, если он вторгнется в Персию. Ответ был таков: «Великое царство погибнет». Крёз подумал, что имеется в виду Персидская держава, но погибло его собственное царство.

Недавние пророки с большей готовностью рисковали головой, указывая точные даты конца света. Им даже удавалось сбить цены на фондовом рынке, хотя не могу взять в толк, почему конец света заставляет людей продавать свои акции. Полагаю, ни деньги, ни акции все равно с собой не возьмешь.

Пока что все эти даты конца света прошли без каких-либо инцидентов. Но пророки часто находили объяснение своим очевидным ошибкам. Например, Уильям Миллер, основатель секты адвентистов седьмого дня, предсказал, что второе пришествие будет между 21 марта 1843 года и 21 марта 1844 года. Когда ничего не произошло, дата была перенесена на 22 октября 1844 года. Когда и она прошла без происшествий, была выдвинута новая интерпретация, согласно которой 1844 год являлся началом второго пришествия — но прежде нужно пересчитать имена в Книге жизни. Только тогда настанет день Страшного суда для тех, кого в Книге не оказалось. К счастью, подсчет занял долгое время.

Конечно, и научные прогнозы могут оказаться не надежнее, чем предсказания оракулов и пророков. Можно вспомнить прогнозы погоды. Но представляется, что в определенных ситуациях мы можем дать надежный прогноз, и будущее Вселенной, в очень большом масштабе, попадает в число таких тем.

За последние триста лет мы открыли научные законы, управляющие существованием материи в нормальных условиях. Но для экстремальных ситуаций мы по-прежнему законов не знаем. Эти законы важны для понимания того, как возникла Вселенная, по они не влияют на ее будущее развитие, если только (или пока) Вселенная опять не сожмется в сверхплотное состояние. По сути, мерилом того, как мало эти законы высоких энергий влияют на нынешнюю Вселенную, является тот факт, что для их проверки мы тратим огромные деньги на строительство гигантских ускорителей частиц.

Даже зная соответствующие законы, управляющие Вселенной, мы не можем использовать их для предсказания далекого будущего. Это объясняется тем, что решения физических уравнений могут проявить свойство, известное как хаотичность, то есть уравнения могут оказаться нестабильными: малейшее изменение в параметрах — и поведение системы вскоре совершенно изменится. Например, если вы чуть-чуть измените усилие, с которым толкнули колесо рулетки, то измените выигрышный номер. Выигрышный номер практически невозможно предугадать — иначе физики сколачивали бы себе состояние в казино.

В нестабильных хаотических системах, как правило, существует временной масштаб, малое изменение которого приводит к вдвое большему изменению начального состояния. В приложении к земной атмосфере этот временной масштаб составляет порядка пяти дней — примерно столько, сколько нужно ветру, чтобы облететь вокруг Земли. На период около пяти дней предсказать погоду можно довольно точно, но чтобы предсказать ее дальше, нужно очень точно знать настоящее состояние атмосферы и произвести невероятно сложные вычисления. Нет способа предсказать погоду на шесть месяцев вперед точнее, чем дать среднее сезонное значение.

Мы также знаем основные законы химии и биологии и в принципе могли бы определить, как работает мозг. Но описывающие мозг уравнения почти наверняка имеют хаотический характер, и малейшее изменение начального состояния ведет к совершенно иному результату. Поэтому на практике мы не можем предсказать человеческое поведение, даже если бы знали уравнения, им управляющие. Наука не может предсказать будущее человечества, даже если это будущее есть. Опасность заключается в том, что наша способность разрушать и губить окружающую среду и друг друга возрастает гораздо быстрее, чем наша мудрость в использовании этой способности.

Что бы ни случилось на Земле, остальная Вселенная не обратит на это внимания. Представляется, что движение планет вокруг Солнца в конечном счете хаотично, хотя и в далекой перспективе. Это означает, что ошибки в предсказании становятся с течением времени больше. Далее какого-то времени движение в деталях предсказать невозможно. Мы можем быть относительно уверены, что Земля очень долго не встретится с Венерой, но не можем гарантировать, что малые возмущения орбит не сложатся так, что через миллиард лет это столкновение случится. Движение Солнца и других звезд вокруг центра Галактики и движение Галактики вокруг центра группы галактик тоже хаотичны. Мы наблюдаем, что другие галактики удаляются от нас, и более отдаленные удаляются быстрее. Это означает, что Вселенная расширяется в близлежащее пространство: расстояние между галактиками со временем возрастает.

Наблюдаемое нами фоновое микроволновое излучение из внешнего пространства свидетельствует, что это расширение равномерно и нехаотично. Вы можете сами наблюдать это излучение, настроив ваш телевизор на свободный канал. Небольшая часть пятнышек, увиденных вами на экране, вызвана микроволнами, пришедшими из-за пределов Солнечной системы. Это тот же вид излучения, что и в микроволновой печи, просто гораздо слабее. Оно может разогреть пищу лишь до 2,7 градуса выше абсолютного нуля и потому не очень подойдет для приготовления пиццы. Считается, что это излучение осталось от ранней — горячей стадии развития Вселенной. Но самое замечательное в нем то, что почти одно и то же количество излучения поступает со всех направлений. Его очень точно измеряет спутник-исследователь космического фона. Карта неба, сделанная по результатам этих наблюдений, показала бы разную температуру излучения. С разных направлений приходит излучение разной температуры, но отклонения очень невелики — примерно в одной части из 100000. Какая-то разница в микроволнах, пришедших с разных направлений, должна быть, так как Вселенная не совершенно равномерна — в ней есть местные аномалии вроде звезд, галактик и скоплений галактик. Но отклонение микроволнового фона мало, насколько это возможно, учитывая наблюдаемые нами местные аномалии. В 99 999 частях из 100 000 микроволновый фон одинаков во всех направлениях.

В древние времена люди верили, что Земля находится в центре Вселенной. И потому они бы не удивились, что фон со всех сторон одинаков. Однако со времен Коперника нас понизили до одной из малых планет, вращающихся вокруг очень заурядной звезды на окраине обыкновенной галактики — одной из ста миллиардов видимых нами. Теперь мы стали настолько скромны, что не можем претендовать на особое положение во Вселенной, и потому должны допустить, что фон одинаков во всех направлениях почти в любой галактике. Это возможно только в том случае, если средняя плотность Вселенной и скорость ее расширения везде одинаковы. Любое отклонение средней плотности или скорости расширения в большой области привело бы к тому, что фон с разных направлений различался бы. Из этого следует, что в очень большом масштабе поведение Вселенной просто и нехаотично, и потому можно делать предсказания на далекое будущее.

Поскольку расширение Вселенной столь равномерно, его можно описать одним числом — расстоянием между двумя галактиками. В настоящее время оно возрастает, но можно предположить, что гравитационное притяжение между разными галактиками замедляет это возрастание. Если плотность Вселенной больше некоторой критической величины, гравитационное притяжение в конце концов остановит расширение и снова заставит Вселенную сжиматься. Произойдет Большое Сжатие. Это будет подобно Большому Взрыву, с которого Вселенная началась. Большое Сжатие окажется так называемой сингулярностью — состоянием с бесконечной плотностью, в котором нарушаются физические законы. Это означает, что даже если бы после Большого Сжатия были какие-то события, предсказать их невозможно. Но без причинной связи между событиями нет никакого осмысленного способа определить, что за чем последует. Наша Вселенная может даже закончиться Большим Сжатием, и тогда любое событие «после» этого будет частью другой, особой Вселенной. Это немного напоминает перевоплощение, реинкарнацию. Какое значение можно придавать утверждению, будто новорожденный ребенок — тот же человек, что и умерший, если ребенок не унаследовал никаких свойств и никаких воспоминаний из своей предыдущей жизни? Точно так же можно сказать, что это другая личность.

Если средняя плотность Вселенной меньше критического значения, она не будет сжиматься, а ее расширение продолжится. Через какое-то время ее плотность станет так мала, что гравитационное притяжение не будет оказывать существенного влияния на скорость расширения, и галактики продолжат разлетаться с постоянной скоростью.

Значит, ключевой вопрос относительно будущего Вселенной заключается в том, какова ее средняя плотность. Если она меньше критического значения, Вселенная будет расширяться вечно, но если больше, то она снова захлопнется, и само время тоже закончится в Большом Сжатии. Однако у меня есть некоторое преимущество перед предсказателями судеб. Даже если Вселенной суждено сжаться, я могу с уверенностью предсказать, что расширение не остановится еще по крайней мере десять миллиардов лет. Не думаю, что кто-то уличит меня в ошибке.

Среднюю плотность Вселенной мы можем попытаться оценить по наблюдениям. Если пересчитаем видимые звезды и сложим их массы, то получим менее одного процента от критической плотности. Даже если мы присовокупим массу газовых облаков, наблюдаемых во Вселенной, это увеличит сумму примерно на один процент от критического значения. Однако мы знаем, что Вселенная содержит так называемую темную материю, которую нельзя увидеть непосредственно. Частично свидетельства о такой темной материи приходят из спиральных галактик. Это огромные скопления звезд и газа, имеющие форму сковороды. Мы наблюдаем, как они вращаются вокруг своего центра, но скорость вращения очень велика, и если бы они содержали только видимые звезды и газ, то разлетелись бы. Там должна быть какая-то невидимая форма материи, чье гравитационное притяжение достаточно велико, чтобы при вращении удержать галактики в целости.

Другие свидетельства о темной материи поступают из скоплений галактик. Мы наблюдаем, что галактики в пространстве распределены не равномерно — они собираются в скопления, насчитывающие от нескольких галактик до миллиона. Предположительно, эти скопления сформировались потому, что галактики притягиваются друг к другу. Однако мы можем измерить скорость, с которой в этих скоплениях движутся отдельные галактики. Оказывается, скорости так высоки, что скопления разлетелись бы, не сдерживай их гравитационное притяжение. Это случится, даже если галактики имеют достаточную массу, чтобы сохранить свою целостность при вращении. Отсюда следует, что в скоплениях галактик должна быть дополнительная, темная, материя, кроме той, что мы видим.

Можно довольно достоверно оценить количество темной материи в тех галактиках и скоплениях, о которых у нас есть определенные свидетельства. Но эта оценка по-прежнему составит около десяти процентов критической плотности, необходимой для того, чтобы заставить Вселенную снова сжаться. Таким образом, если основываться на наблюдениях, можно утверждать, что Вселенная будет расширяться вечно. Еще через пять миллиардов лет у Солнца иссякнет ядерное топливо, Солнце раздуется, образуя так называемый красный гигант, и поглотит Землю и ближайшие планеты. Потом оно установится в состояние белого карлика диаметром в несколько тысяч миль. Так я предсказываю конец света, по он наступит еще не сейчас. Не думаю, что мое предсказание вызовет большую депрессию на фондовом рынке. На горизонте видны более насущные проблемы. Во всяком случае, к тому времени, когда Солнце раздуется, нам нужно освоить искусство межзвездных путешествий, если мы еще не уничтожим себя сами.

Примерно через миллиард лет большинство звезд во Вселенной сгорит. Звезды с массой вроде нашего Солнца станут пли белыми карликами, или нейтронными звездами, которые еще меньше и плотнее. Более массивные звезды станут черными дырами, которые еще меньше и имеют такое сильное гравитационное поле, что даже свет не может его преодолеть. Однако эти остатки будут по-прежнему вращаться вокруг центра Галактики с периодом около ста миллионов лет. Столкновения между остатками вытолкнут некоторые из них прочь из Галактики. Остальные установятся на более близких к центру орбитах и в конце концов соберутся вместе, образовав в центре Галактики гигантскую черную дыру. Чем бы ни была темная материя в галактиках и их скоплениях, она тоже, видимо, упадет в эти большие черные дыры.

Следовательно, можно предположить, что большая часть материи в галактиках и их скоплениях закончит свой путь в черных дырах. Однако не так давно я открыл, что черные дыры не такие уж черные, как их принято изображать. Принцип неопределенности в квантовой механике гласит, что нельзя точно предсказать и положение частицы, и ее скорость. Чем более точно определяется положение, тем менее точно — скорость, и наоборот. Если частица находится в черной дыре, ее положение четко определено — в черной дыре. Следовательно, ее скорость точно определить нельзя, и, стало быть, она может оказаться выше скорости света. Это дает ей возможность вырваться из черной дыры. И таким образом частицы и излучение будут потихоньку вытекать из черной дыры. Диаметр гигантской черной дыры в центре Галактики будет составлять миллионы миль. Следовательно, положение частицы в такой дыре будет обладать большой степенью неопределенности. Стало быть, неопределенность скорости будет небольшой, и частице понадобится очень долгое время, чтобы вырваться оттуда. Но в конце концов она вырвется. Большой черной дыре в центре Галактики может понадобиться 10 90 лет, чтобы испариться совсем и прекратить свое существование, — это единица с 90 нулями, то есть гораздо больше, чем срок существования нынешней Вселенной, составляющий всего 10 10 лет — единица с 10 нулями. Так что если Вселенная собирается расширяться вечно, у нас еще куча времени.

Будущее вечно расширяющейся Вселенной будет довольно скучным. Но будет ли она расширяться вечно, еще ни в коей мере не решено. У нас есть определенные свидетельства, что имеется примерно лишь одна десятая от плотности, нужной для того, чтобы Вселенная снова сжалась. И все же могут быть другие виды темной материи, которые мы пока не выявили, но которые могут повысить плотность Вселенной до критической величины или превысить ее. Эта дополнительная темная материя должна располагаться вне галактик и их скоплений. Иначе мы бы заметили ее воздействие на вращение галактик или их движение внутри скоплений.

С чего бы нам предполагать, что может найтись до

www.evoluts.ru

Космос (Вселенная) — это… Что такое Космос (Вселенная)?


Космос (Вселенная)
Космос (греч. kosmos ≈ строй, порядок, мир, Вселенная) первоначально у древних греков (начиная с Пифагора 6 в до н. э.) ≈ Вселенная как стройная организованная система в противоположность хаосу беспорядочному нагромождению материи. От греков термин «К.» перешёл в современную науку как синоним Вселенной К. включает межпланетное, межзвёздное, межгалактическое пространство со всеми находящимися в нём объектами. Из понятия «К.» (космическое пространство) иногда исключают Землю с её атмосферой. В этом смысле термин «К.» (употребляется также термин «ближний К.») получил широкое распространение после запуска (1957) в СССР первого искусственного космического объекта ≈ искусственного спутника Земли и начала исследовании околоземной и межпланетной среды с помощью различного рода космических летательных аппаратов.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Космополиты
  • Космос (ботан.)

Смотреть что такое «Космос (Вселенная)» в других словарях:

  • КОСМОС (Вселенная) — КОСМОС (греч. kosmos), синоним астрономического определения Вселенной; часто выделяют т. н. ближний космос, исследуемый при помощи искусственных спутников Земли, космических аппаратов и межпланетных станций, и дальний космос мир звезд и галактик …   Энциклопедический словарь

  • КОСМОС — (греч. kosmos). Мир, вселенная. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КОСМОС вселенная, мир. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 …   Словарь иностранных слов русского языка

  • Вселенная — Крупномасштабная структура Вселенной как она выглядит в инфракрасных лучах с длиной волны 2,2 мкм  1 600 000 галактик, зарегистри …   Википедия

  • космос — а, только ед., м. Астрономическое определение Вселенной. Полет в космос. Исследование космоса. Синонимы: макроко/смос (спец.), мирозда/ние (книжн.) Родственные слова: космодро/м, космона/вт …   Популярный словарь русского языка

  • космос — сущ., м., употр. сравн. часто Морфология: (нет) чего? космоса, чему? космосу, (вижу) что? космос, чем? космосом, о чём? о космосе Космос это пространство со звёздами и планетами, которое находится за пределами атмосферы Земли. Освоение космоса. | …   Толковый словарь Дмитриева

  • КОСМОС — (от греч. kosmos порядок, строй, мир) термин др. греч. философии для обозначения мира как упорядоченного, организованного и единого целого, возникшего из первородного хаоса. Впервые представления о К. и хаосе встречаются в древних мифах и в более …   Философская энциклопедия

  • Вселенная Marvel — Вселенная Marvel  вымышленная, совместная вселенная, где происходит большинство комиксных историй, издаваемых Marvel Comics. Вселенная Marvel на самом деле существует в мультивселенной, состоящей из тысяч отдельных вселенных, которые все… …   Википедия

  • Вселенная Марвелл — Вселенная Marvel  вымышленная, совместная вселенная, где происходят большинство комиксных историй, издаваемых Marvel Comics. Вселенная Marvel на самом деле существует в мультивселенной, состоящей из тысяч отдельных вселенных, которые все созданы… …   Википедия

  • Космос: персональное путешествие — Cosmos: A Personal Voyage Жанр Документальный сериал Автор(ы) Карл Саган, Энн Друян, Стивен Сотер Повествователь К …   Википедия

  • вселенная — См …   Словарь синонимов


dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *