РАДИОАКТИВНОСТЬ — это… Что такое РАДИОАКТИВНОСТЬ?


РАДИОАКТИВНОСТЬ

самопроизвольное превращение атомов одного элемента в атомы других элементов, сопровождающееся испусканием частиц и жесткого электромагнитного излучения. Историческая справка. Беккерель. Весной 1896 французский физик А.Беккерель сделал ряд сообщений об обнаружении им нового вида излучения (впоследствии названном радиоактивным), которое испускается солями урана. Подобно открытым за несколько месяцев до этого рентгеновским лучам, оно обладало проникающей способностью, засвечивало экранированную черной бумагой фотопластинку и ионизировало окружающий воздух. Гипотеза, которая привела к открытию радиоактивности, возникла у Беккереля под влиянием исследований Рентгена. Поскольку при генерации Х-лучей наблюдалась фосфоресценция стеклянных стенок рентгеновской трубки, Беккерель предположил, что любое фосфоресцентное свечение сопровождается испусканием рентгеновского излучения. Для проверки этого предположения он поместил различные фосфоресцирующие вещества на завернутые в черную бумагу фотопластинки и получил неожиданный результат: засвеченной оказалась единственная пластинка, с которой соприкасался кристалл соли урана. Многочисленные контрольные опыты показали, что причиной засветки явилась не фосфоресценция, а именно уран, в каком бы химическом соединении он ни находился. Свойство радиоактивного излучения вызывать ионизацию воздуха позволило наряду с фотографическим методом регистрации применять более удобный электрический метод, что значительно ускорило процесс исследований.
Кюри. Пользуясь электрическим методом, Г. Шмидт и М. Кюри в 1898 обнаружили радиоактивность элемента тория. В следующем году Дебьерн открыл радиоактивный элемент актиний. Начатый супругами П. и М.Кюри систематический поиск новых радиоактивных веществ и изучение свойств их излучения подтвердили догадку Беккереля о том, что радиоактивность урановых соединений пропорциональна числу содержащихся в них атомов урана. Среди обследованных минералов эту закономерность нарушала лишь урановая смоляная руда (уранинит), которая оказалась в четыре раза активнее, чем соответствующее количество чистого урана.
Кюри сделали вывод о том, что в уранините должен содержаться неизвестный высокоактивный элемент. Проведя тщательное химическое разделение уранинита на составляющие компоненты, они открыли радий, по химическим свойствам сходный с барием, и полоний, который выделялся вместе с висмутом.
Резерфорд. В дальнейших исследованиях радиоактивности ведущая роль принадлежала Э. Резерфорду. Сосредоточив внимание на изучении этого явления, он установил природу радиоактивных превращений и сопутствующего им излучения.
Излучение радиоактивных веществ.
Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение.
Альфа-излучение. В воздухе при атмосферном давлении альфа-излучение преодолевает лишь небольшое расстояние, как правило, от 2,5 до 7,5 см. В условиях вакуума электрическое и магнитное поля заметно отклоняют его от первоначальной траектории. Направление и величина отклонений указывают на то, что альфа-излучение — это поток положительно заряженных частиц, для которых отношение заряда к массе (e/m) в точности соответствует дважды ионизированному атому гелия (He++). Эти данные и результаты спектроскопического исследования собранных альфа-частиц позволили Резерфорду сделать вывод о том, что они являются ядрами атома гелия.
Бета-излучение. Это излучение обладает большей проникающей способностью, чем альфа-излучение. Как и альфа-излучение, оно отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.
Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.

СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.
Теория радиоактивного распада. В процессе эмиссии радиоактивного излучения вещество претерпевает ряд изменений. Так, например, излучение радия сопровождается выделением газообразного радона («эманацией»). В свою очередь радон, распадаясь, оставляет радиоактивные отложения на стенках содержащего его сосуда. Собранная при распаде радия эманация теряет половину исходной активности примерно за 4 сут. Эти и другие не поддававшиеся интерпретации экспериментальные факты удалось объяснить с помощью теории радиоактивного распада атомов, предложенной Резерфордом и Содди в 1903, а также правила смещения, сформулированного в 1913 А.Расселом и независимо от него Фаянсом и Содди. Суть теории Резерфорда и Содди состоит в том, что в результате радиоактивного распада происходит превращение одного химического элемента в другой.
Правило смещения. Правило смещения точно указывает, какие именно превращения претерпевает химический элемент, испуская радиоактивное излучение.
Эмиссия альфа- и бета-частиц. Правило смещения можно пояснить с помощью ядерной модели атома, предложенной Резерфордом в 1911. Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена основная часть массы атома. Вокруг ядра вращаются электроны, заряд которых компенсирует положительный заряд ядра. Каждому атому приписывается свой атомный номер Z, соответствующий его порядковому номеру в периодической таблице Менделеева и численно равный заряду ядра, выраженному в единицах заряда электрона. Альфа-частица имеет Z = 2 и массовое число (округленный атомный вес) A = 4. Если неустойчивое ядро испускает бета-частицу, то его Z увеличивается на единицу, а массовое число не изменяется. Следовательно, радиоактивный атом превращается в следующий по порядку атом таблицы Менделеева. При эмиссии альфа-частицы Z и A вновь образованного ядра уменьшаются на 2 и 4 единицы соответственно, а дочерний атом, испытав соответствующее изотопическое превращение, «смещается» в таблице Менделеева влево от родительского элемента.
Гамма-излучение.
Орбитальные электроны, получив избыток энергии, могут переходить на более высокие энергетические уровни. Возвращаясь в основное (нормальное) состояние, они отдают избыток энергии в виде света или рентгеновского излучения. Ядра атомов, обладающие избыточной энергией, также могут переходить в возбужденное состояние. Подобное возбуждение часто испытывают ядра, образующиеся в процессе радиоактивных превращений. Переходя в основное состояние, они излучают избыток энергии в виде гамма-квантов. Особый интерес представляет вариант распада, когда радиоактивное ядро имеет большое время жизни возбужденного состояния. В этом случае у находящихся в разных энергетических состояниях одинаковых ядер (с одинаковыми значениями Z и A) наблюдаются однотипные радиоактивные распады, но происходят они с разными скоростями, поскольку одни ядра распадаются из возбужденного, а другие из основного состояния. Это явление получило название ядерной изомерии, а возбужденное и нормальное ядра называются изомерами.
Радиоактивные ряды. Правило смещения позволило проследить превращения естественных радиоактивных элементов и выстроить из них три генеалогических дерева, родоначальниками которых являются уран-238, уран-235 и торий-232. Каждое семейство начинается с чрезвычайно долгоживущего радиоактивного элемента. Урановое семейство, например, возглавляет уран с массовым числом 238 и периодом полураспада 4,5*10 9 лет (в табл. 1 в соответствии с первоначальным названием обозначен как уран I).

Таблица 1.
РАДИОАКТИВНОЕ СЕМЕЙСТВО УРАНА


Период полураспада. Важнейшей характеристикой радиоактивного атома является его время жизни. Согласно закону радиоактивного распада, вероятность того, что за данный промежуток времени произойдет распад одного атома, есть величина постоянная. Следовательно, число ежесекундно происходящих распадов пропорционально количеству имеющихся атомов, а закон, описывающий процесс распада, имеет экспоненциальный характер. Если за время Т распадается половина исходного количества радиоактивных атомов, то половина оставшихся атомов распадется в течение следующего промежутка времени той же длительности. Время Т называется периодом полураспада радиоактивного элемента. Для различных элементов период полураспада составляет от десятков миллиардов лет до миллионных долей секунды и менее.
Семейство урана. На элементах семейства урана можно проследить большинство обсуждавшихся выше свойств радиоактивных превращений. Так, например, у третьего члена семейства наблюдается ядерная изомерия. Уран X2, испуская бета-частицы, превращается в уран II (T = 1,14 мин). Это соответствует бета-распаду возбужденного состояния протактиния-234. Однако в 0,12% случаев возбужденный протактиний-234 (уран X2) излучает гамма-квант и переходит в основное состояние (уран Z). Бета-распад урана Z, также приводящий к образованию урана II, происходит за 6,7 ч. Радий С интересен тем, что может распадаться двумя путями: испуская либо альфа-, либо бета-частицу. Эти процессы конкурируют между собой, но в 99,96% случаев происходит бета-распад с образованием радия С». В 0,04% случаев радий С испускает альфа-частицу и превращается в радий С» (RaC»). В свою очередь RaC’ и RaC» путем эмиссии альфа- и бета-частиц соответственно превращаются в радий D. Изотопы. Среди членов уранового семейства встречаются такие, атомы которых имеют одинаковый атомный номер (одинаковый заряд ядер) и разные массовые числа. Они идентичны по химическим свойствам, но различаются по характеру радиоактивности. Например, радий B, радий D и радий G, имеющие одинаковый со свинцом атомный номер 82, подобны свинцу по химическому поведению. Очевидно, что химические свойства не зависят от массового числа; они определяются строением электронных оболочек атома (следовательно, и Z). С другой стороны, массовое число имеет решающее значение для ядерной стабильности радиоактивных свойств атома. Атомы с одинаковым атомным номером и разными массовыми числами называются изотопами. Изотопы радиоактивных элементов были открыты Ф. Содди в 1913, но вскоре Ф.Астон с помощью масс-спектроскопии доказал, что изотопы имеются и у многих стабильных элементов.
Другие естественные радиоактивные элементы. Все элементы, расположенные в периодической таблице за висмутом (т.е. с Z > 83), являются радиоактивными. Подобно урану-238, долгоживущие уран-235 и торий-232 возглавляют соответственно актиниевое и ториевое радиоактивные семейства. В естественных условиях встречаются уран, торий и их дочерние радиоактивные продукты. Это обусловлено тем, что периоды полураспада у родоначальников семейств сравнимы с возрастом Земли, и они пока еще не распались полностью. Химические элементы с атомным номером > 92 получены в лабораториях в результате ядерных реакций и обнаружены среди продуктов термоядерных взрывов, причем все они оказались радиоактивными. Среди более легких элементов лишь немногие обладают естественной радиоактивностью. Периоды полураспада у них столь велики, что они до сих пор существуют на Земле в заметных количествах. Радиоактивный калий-40, испуская бета-частицы, превращается в стабильный кальций-40 (T РАДИОАКТИВНОСТЬ10 9 лет). Однако он может распадаться и путем захвата электрона, превращаясь в аргон-40. Бета-активный рубидий-87, распадаясь (T РАДИОАКТИВНОСТЬ6*10 10 лет), переходит в стабильный стронций-87. Встречающийся в природе самарий-152 — единственный более легкий, чем висмут, радиоактивный элемент, испускающий альфа-частицы. Его период полураспада — 10 12 лет. У элементов с атомными номерами 43, 61, 85 и 87 нет ни стабильных изотопов, ни долгоживущих предшественников, поэтому на Земле они не обнаружены. У самого долгоживущего изотопа технеция (Z = 43) период полураспада — порядка 300 000 лет, что значительно меньше предполагаемого возраста Вселенной. Однако значительное количество технеция обнаружено в составе звезд спектрального класса S. Этот факт интерпретируется как явное доказательство того, что в них сравнительно недавно происходили активные эволюционные процессы.
Искусственная радиоактивность. Бомбардируя альфа-частицами атомы газообразного азота, Э. Резерфорд и Дж. Чедвик в 1919 впервые осуществили ядерную реакцию, вызвав превращение азота в кислород. С появлением ускорителей заряженных частиц фронт работ по изучению ядерных реакций значительно расширился. В 1934 Фредерик и Ирен Жолио-Кюри открыли явление искусственной радиоактивности и позитронный тип распада. Они обнаружили, что облученные альфа-частицами бор, магний и алюминий превращаются в радиоактивные изотопы других элементов, распад которых сопровождается испусканием позитрона (e+). Так, например, при бомбардировке альфа-частицами алюминия образуется радиоактивный фосфор-30, который, распадаясь (T = 2,5 мин), испускает e+ и превращается в стабильный кремний-30. Позитрон, открытый в 1932 К.Андерсоном в создаваемом космическими лучами вторичном излучении, представляет собой частицу, по массе и величине заряда идентичную электрону, но имеющую положительный электрический заряд (античастица электрона). При испускании позитрона ядром радиоактивного атома порядковый номер атома уменьшается на единицу, а массовое число остается без изменений.
Электронный захват. Захват ядром одного из орбитальных электронов эквивалентен испусканию позитрона: массовое число атома при этом не изменяется, а заряд ядра уменьшается на единицу. Электроны K и L оболочек находятся так близко к ядру, что в некоторых случаях захват электрона, как механизм радиоактивного распада, начинает конкурировать с испусканием позитрона. Поскольку для захвата электрона требуется меньше энергии, чем для эквивалентного позитронного распада, то иногда, как, например, в случае бериллия-7 (см. табл. 2), энергетически возможен только электронный захват.

Таблица 2.
СВОЙСТВА НЕКОТОРЫХ ЛЕГКИХ АТОМОВ


Характеристики самых легких стабильных и радиоактивных атомов представлены в табл. 2, где Z — атомный номер, А — массовое число. Приведенная в таблице атомная масса выражена в углеродных единицах. В энергетической шкале она равна 931,162 МэВ. Атомная масса характеризует стабильность атома. Если два атома имеют одинаковые массовые числа и различные атомные номера (изобары), то более тяжелый изобар будет нестабилен относительно радиоактивного распада в более легкий. Так, тритий-3 превращается в гелий-3, углерод-11 — в бор-11.
Применение радиоактивности.
Медицина.
Радий и другие естественные радиоизотопы широко применяются для диагностики и лучевой терапии раковых заболеваний. Использование для этой цели искусственных радиоизотопов значительно повысило эффективность лечения. Например, радиоактивный иод, введенный в организм в виде раствора иодида натрия, селективно накапливается в щитовидной железе и поэтому применяется в в клинической практике для определения нарушений функции щитовидной железы и при лечении базедовой болезни. С помощью меченого по натрию физиологического раствора измеряется скорость кровообращения и определяется проходимость кровеносных сосудов конечностей. Радиоактивный фосфор применяется для измерения объема крови и лечения эритремии.
Научные исследования. Радиоактивные метки, в микроколичествах введенные в физические или химические системы, позволяют следить за всеми происходящими в них изменениями. Например, выращивая растения в атмосфере радиоактивного диоксида углерода, химики смогли понять тонкие детали процесса образования в растениях сложных углеводов из диоксида углерода и воды. В результате непрерывной бомбардировки земной атмосферы космическими лучами с высокой энергией находящийся в ней азот-14, захватывая нейтроны и испуская протоны, превращается в радиоактивный углерод-14. Полагая, что интенсивность бомбардировки и, следовательно, равновесное количество углерода-14 в последние тысячелетия оставались неизменными и учитывая период полураспада C-14 по его остаточной активности, можно определять возраст найденных остатков животных и растений (радиоуглеродный метод). Этим методом удалось с большой достоверностью датировать обнаруженные стоянки доисторического человека, существовавшие более 25 000 лет тому назад.
См. также
АТОМА СТРОЕНИЕ;
КЮРИ Пьер;
РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ.
ЛИТЕРАТУРА
Учение о радиоактивности. История и современность. М., 1973 Ядерные излучения в науке и технике. М., 1984 Фурман В. И. Альфа-распад и родственные ядерные реакции. М., 1985

Энциклопедия Кольера. — Открытое общество. 2000.

Синонимы:
  • КВАНТОВАЯ МЕХАНИКА
  • ОТНОСИТЕЛЬНОСТЬ

Смотреть что такое «РАДИОАКТИВНОСТЬ» в других словарях:

  • радиоактивность — радиоактивность …   Орфографический словарь-справочник

  • РАДИОАКТИВНОСТЬ — (от лат. radio излучаю, radius луч и activus действенный), способность нек рых ат. ядер самопроизвольно (спонтанно) превращаться в др. ядра с испусканием ч ц. К радиоактивным превращениям относятся: альфа распад, все виды бета распада (с… …   Физическая энциклопедия

  • РАДИОАКТИВНОСТЬ — РАДИОАКТИВНОСТЬ, свойство нек рых хим. элементов самопроизвольно превращаться в другие элементы. Это превращение или радиоактивный распад сопровождается выделением энергии в виде различных корпускулярных и лучистых радиации. Явление Р. было… …   Большая медицинская энциклопедия

  • Радиоактивность — (от радио… и латинского activus деятельный), свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав (заряд ядра Z, число нуклонов A) путем испускания элементарных частиц, g квантов или ядерных фрагментов. Некоторые из… …   Иллюстрированный энциклопедический словарь

  • РАДИОАКТИВНОСТЬ — (от лат. radio испускаю лучи и activus действенный) самопроизвольное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц или ? кванта. Известны 4 типа радиоактивности: альфа распад, бета распад,… …   Большой Энциклопедический словарь

  • Радиоактивность — способность некоторых атомных ядер самопроизвольно распадаться с испусканием элементарных частиц и образованием ядра другого элемента. Р. урана была впервые открыта Беккерелем в 1896 г. Несколько позднее М. и П. Кюри и Резерфордом было доказано… …   Геологическая энциклопедия

  • РАДИОАКТИВНОСТЬ — Свойство некотор. тел испускать особого рода невидимые лучи, отличающиеся особыми свойствами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. радиоактивность (радио… + лат. acti vus деятельный) радиоактивный… …   Словарь иностранных слов русского языка

  • радиоактивность — сущ., кол во синонимов: 1 • гамма радиоактивность (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • Радиоактивность — самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотопы обычно другого элемента, сопровождающееся испусканием элементарных частиц или ядер (альфа и бетα излучение), а также гаммα излучением. Бывает естественной и… …   Морской словарь

  • Радиоактивность — свойство нестабильных атомных ядер (радиоактивных изотопов) превращаться в стабильные, сопровождающееся ионизирующим излучением. Различают естественную Р. (природных изотопов) и искусственную наведённую радиоактивность. Понятие Р. связано с… …   Словарь черезвычайных ситуаций

  • РАДИОАКТИВНОСТЬ — РАДИОАКТИВНОСТЬ, процесс распада ядра РАДИОИЗОТОПА, например, урана 238, обычно с выделением АЛЬФА ЧАСТИЦ (ядра гелия) или БЕТА ЧАСТИЦ (ЭЛЕКТРОНЫ), часто сопровождается ГАММА ИЗЛУЧЕНИЕМ. В процессе альфа или бета распада радиоизотоп превращается… …   Научно-технический энциклопедический словарь


dic.academic.ru

Что такое радиация и радиоактивность Различают несколько

Что такое радиация и радиоактивность.

Различают несколько видов радиации. § Альфа-частицы § Бета-частицы § Гамма-излучение § Нейтроны § Рентгеновские лучи

По немногу о каждом из них.

Альфа-частицы u Альфа-частицы, a-частицы, ядра атомов гелия, испускаемые некоторыми радиоактивными элементами ( Альфараспад). А. -ч. являются также продуктами некоторых ядерных реакций, протекающих под действием нейтронов или заряженных частиц, например при бомбардировке азота (14 N) протонами (р) (14 N+p® 11 C+a). А. -ч. состоит из двух протонов и двух нейтронов, прочно связанных между собой. Масса А. -ч. Равна 4, 00273 атомных единиц массы или 6, 644 • 1024 г, а её заряд равен 2 положительным элементарным единицам; спин и магнитный момент равны нулю. Энергия связи А. -ч. 28, 11 Мэв (7, 03 Мэв на нуклон).

Бета-частицы ► (бета лучи), частицы, спонтанно испускаемые некоторыми радиоактивными изотопами в ходе радиоактивного распада, именуемого бета распадом. Бета частицы были открыты в 1876 г. Анри БЕККЕРЕЛЕМ. В настоящее время известно, что они являются электронами

Гамма-излучение n Га мма-излуче ние— вид электромагнитного излучения с чрезвычайно малой длиной волны —

Нейтроны Нейтрон (англ. neutron, от лат. neuter — ни тот, ни другой; символ n), нейтральная (не обладающая электрическим зарядом) элементарная частица со спином 1/2 (в единицах постоянной Планка ) и массой, незначительно превышающей массу протона. Из протонов и Н. построены все ядра атомные. Магнитный момент Н. равен примерно двум ядерным магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. Н. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутренней характеристикой — барионным зарядом, равным, как и у протона (р), + 1. Н. были открыты в 1932 английским физиком Дж. Чедвиком, который установил, что обнаруженное немецкими физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) a-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.

Рентгеновские лучи l l Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 к. В). Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1, 5 раза превышает минимальную длину волны.

Единицы измерения радиоактивности n n Радиоактивность измеряется в Беккерелях (БК), что соответствует одному распаду в секунду. Содержание радиоактивности в веществе также часто оценивают на единицу веса — Бк/кг, или объема — Бк/куб. м. Иногда встречается такая единица как Кюри (Ки). Это огромная величина, равная 37 миллиардам Бк. При распаде вещества источник испускает ионизирующее излучение, мерой которого является экспозиционная доза. Её измеряют в Рентгенах (Р). 1 Рентген величина достаточно большая, поэтому на практике используют миллионную (мк. Р) или тысячную (м. Р) долю Рентгена. Бытовые дозиметры измеряют ионизацию за определенное время, то есть не саму экспозиционную дозу, а её мощность. Единица измерения — микро. Рентген в час. Именно этот показатель наиболее важен для человека, так как позволяет оценить опасность того или иного источника радиации.

Воздействие радиационного фона на организм человека § § Воздействие радиации на организм человека называют облучением. Во время этого процесса энергия радиация передается клеткам, разрушая их. Облучение может вызывать всевозможные заболевания: инфекционные осложнения, нарушения обмена веществ, злокачественные опухоли и лейкоз, бесплодие, катаракту и многое другое. Особенно остро радиация воздействует на делящиеся клетки, поэтому она особенно опасна для детей. Организм реагирует на саму радиацию, а не на её источник. Радиоактивные вещества могут проникать в организм через кишечник (с пищей и водой), через лёгкие (при дыхании) и даже через кожу при медицинской диагностике радиоизотопами. В этом случае имеет место внутреннее облучение. Кроме того, значительное влияние радиации на организм человека оказывает внешнее облучение, т. е. источник радиации находится вне тела. Наиболее опасно, безусловно, внутреннее облучение.

Способы защиты от радиации. ¡ ¡ ¡ ¡ Если вы оказались в зоне радиоактивного загрязнения, первая мысль, которая должна вас посетить – как уехать подальше от источника радиации. Чем меньшим по времени будет контакт вашего организма с радиоактивными веществами, тем лучше для вас и вашего здоровья. Если такой возможности пока нет, принимаем следующие меры: не выходим из помещений, 2 -3 раза в день делаем влажную (именно влажную!) уборку; как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов; чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц; если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно; в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться» . Есть несколько способов очистить радиоактивную воду. Дело в том, что чаще всего вода загрязняется радоном – газом, очень вредным для человека. Причем, такая вода опасна не только для питья, намного вреднее её испарения. Некоторые специалисты советуют пользоваться для очистки угольными фильтрами (в принципе, обычными бытовыми кувшинами). Только срок годности сменной кассеты резко сокращается, поэтому менять её нужно как можно чаще.

Спасибо За внимание!

present5.com

Что такое радиация и радиоактивность — Энциклопедия безопасности

В 1896 г. выдающийся французский физик Анри Беккерель занимался изучением феномена люминесценции (свечение ве­ществ). За год до этого Рентгеном были открыты «Х-лучи», которые впоследствии были названы в его честь. Беккерель знал о свечении стекла рентгеновской трубки, имеющем лю­минесцентный характер, и решил проверить, не сопровож­дается ли всякая люминесценция рентгеновскими лучами. Он взял вещество, которое содержало уран и светилось жел­то-зеленым светом. Предварительно подержал его на солнце и, завернув в черную бумагу, положил в затемненный шкаф на фотопластинку. После проявления пластинки Беккерель увидел на ней изображение «отпечатка» вещества. Но потом случайно была проявлена фотопластинка, на которой лежало содержащее уран вещество, не облученное предварительно солнцем. Беккерель поместил между веществом и пластинкой металлический крестик и получил его контуры на пластинке. Так были открыты новые лучи, которые не являлись рентге­новскими, обладали большой проникающей способностью, не отражались и не преломлялись. Их интенсивность не зависит от изменения температуры окружающей среды, давления и времени.

Проводя однажды публичную лекцию, Беккерель взял про­бирку с радиоактивным препаратом и положил ее в жилетный карман. На следующий день он обнаружил, что кожа на его те­ле покраснела, и пятно в точности повторяет форму и размер пробирки. Беккерель рассказывал об этом своему приятелю, талантливому физику Пьеру Кюри. Тот решил поставить на себе опыт: привязал к предплечью пробирку с радием и но­сил ее в течение десяти часов. Некоторое время спустя на его предплечье появилось покраснение, скоро превратившееся яз­ву тяжелой формы, которую удалось вылечить только через два месяца. Таким образом, впервые опытным путем было от­крыто биологическое воздействие радиоактивности — на жи­вой организм. Впоследствии Пьер Кюри и его супруга Мария Склодовская-Кюри умерли от лучевой болезни, развитие ко­торой спровоцировало пристальное и неосторожное изучение свойств и природы радиоактивного излучения.

Радиоактивность — это способность некоторых химиче­ских элементов (например, урана, радия, калифорния) само­произвольно распадаться и испускать невидимые излучения, то есть радиацию. Все радиоактивные вещества распадаются со строго определенной скоростью, измеряемой временем, в течение которого распадается половина всех атомов. Причем радиоактивный распад не может быть остановлен или ускорен каким-либо способом. Поток радиационного излучения разде­ляется на три вида:

Альфа-излучение (а-излучение) — поток положительно заряженных частиц, представляющих собой ядро гелия. Дви­жется с огромной скорость, которая в десятки раз превышает скорость современных самолетов. Проникающая способность альфа-частицы в животных тканях не велика. Альфа-излуче- ние входит в состав космических лучей у Земли (6%).

Бета-излучение (Р-излучение) — поток отрицательно заря­женных частиц (электронов). Их скорость близка к скорости света. Р-частицы относятся к легким частицам.

Гамма-излучение (у-излучение) — это коротковолновое электромагнитное излучение. Свойства его близки к рентге­новскому, но оно обладает огромной энергией и распространя­ется со скоростью, близкой к скорости света. В спектре элек­тромагнитных волн эти лучи занимают почти крайнее справа место. За ними следуют лишь космические лучи. Гамма-лучи относятся к жестким лучам, чрезвычайно велика их прони­кающая способность. Например, они беспрепятственно про­ходят сквозь тело человека.

Также при некоторых ядерных реакциях возникает другое мощное проникающее излучение, которое не отклоняется под воздействием электрического и магнитного полей. Это излу­чение обладает высокой проникающей способностью и пред­ставляет собой поток нейтрально заряженных частиц, которые называются нейтронами.

survincity.ru

Что такое радиоактивность

Радиоактивность — неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Радиация, или ионизирующее излучение — это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы. Организм человека реагирует на радиацию, а не на ее источник.

Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении. Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела. Ликвидаторы аварии на ЧАЭС в основном были подвергнуты внешнему облучению. Радиацию нельзя вызвать с помощью химических реакций.

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования.

Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности. Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает. Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью.

Тогда некоторая часть такой радиоактивной «грязи» — вместе с обычной грязью — может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача радиоактивной «грязи» приводит к ее быстрому разбавлению до безопасных пределов.

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма.

Человеческие органы чувств не способны обнаружить радиацию и различить, является ли материал радиоактивным или нет. Однако существуют приборы, которые в состоянии обнаружить и измерить радиацию точно и надежно. Ионизирующее излучение измеряется в международных единицах, Грей и Зиверт.

Количество радиации, или «доза облучения», полученная человеком, определяется количеством энергии, поглощенной тканью тела, и выражается в Греях. Однако равная экспозиция различных типов радиации необязательно производит равные биологические эффекты. Один Грей альфа-излучения, например, будет давать больший эффект чем один Грей бета-излучения. Поэтому, когда мы говорим о биологическом воздействий ионизирующего излучения, мы выражаем радиацию в единицах, называемых Зивертами.

Один Зиверт радиации оказывает одинаковый биологический эффект независимо от типа радиации. Меньшие количества выражены в «Милли Зивертах» (одна тысячная часть Зиверта) или «микро Зивертах» (одна миллионная часть Зиверта). Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа — и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества — например, обычная одежда (если, конечно, источник излучения находится снаружи). Следует различать радиоактивность и радиацию.

Источники радиации — радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) — могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе. ЧВ таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 — стабильные. Например, у первого элемента таблицы Менделеева — водорода — существуют следующие изотопы: — водород Н-1 (стабильный), — дейтерий Н-2 (стабильный), — тритий Н-3 (радиоактивный, период полураспада 12 лет). Радиоактивные изотопы обычно называют радионуклидами.

Для измерения активности радионуклидов в радиоактивном источнике используется единица Беккерель (Бк), она соответствует одному распаду в секунду. Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду. Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза. Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т.д., но полностью не исчезнет никогда.

В такой же пропорции будет, уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени. У каждого радионуклида — свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно. Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными.

Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238. Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

Естественная и техногенная радиоактивность
Воздействие на живые организмы
Радиационная генетика
Применение радиации в медицине
Радиационный гормезис
Поведение долгоживущих радионуклидов
Профилактика последствий радиоактивного загрязнения
Экологические аспекты атомной промышленности
Виды естественных источников радиации
Последствия воздействия радиации на организм человека



biofile.ru

Что такое радиация и почему она вредная? Почему после атом. бомбы радиация остается?

http://service.sch339.spb.ru:8001/infoteka/root/biology/room1/Vasiliev/radiat.htm В 1896 году человеческой цивилизации пришло время открыть для себя природное явление — расщепление атомов некоторых химических элементов, сопровождающееся излучением энергии. Это явление впоследствии назвали радиоактивностью http://n-t.ru/nj/nz/1986/0902.htm Что такое радиация и почему она может принести вред человеческому организму? Атомной радиацией, или ионизирующим излучением, называют потоки частиц и электромагнитных квантов, образующиеся при ядерных превращениях, то есть в результате ядерных реакций или радиоактивного распада. Чаще всего встречаются такие разновидности ионизирующих излучений, как рентгеновское и гамма-излучения, потоки альфа-частиц, электронов, нейтронов и протонов. При прохождении этих частиц или квантов через вещество атомы и молекулы, из которых оно состоит, возбуждаются или даже ионизируются. Возбуждение атома – это такое явление, при котором атомные электроны переходят в состояния с повышенной энергией, оставаясь тем не менее «привязанными» к ядру электростатическими – кулоновскими – силами. Возбужденное состояние атома можно – очень грубо, конечно, – уподобить искаженной Солнечной системе, в которой Земля в результате какой-то ужасной встряски вдруг перешла на орбиту Марса. Атомы и молекулы при возбуждении как бы распухают, и если они входят в состав какого-нибудь биологически важного соединения в живом организме, то функции этого соединения могут оказаться нарушенными. Если же проходящая через биологическую ткань ядерная частица или квант вызывают не возбуждение, а ионизацию атомов, то соответствующая живая клетка оказывается дефектной. Ионизация – это такое физическое явление, при котором электроны, входящие в состав атомов или молекул среды, отрываются от них и начинают странствовать по всему веществу. Выбиваемые при ионизации электроны, если они обладают достаточной энергией, тоже могут ионизировать и возбуждать молекулы вещества. Любое изменение в облучаемом объекте, вызванное ионизирующим излучением, называется радиационно-индуцированным эффектом. В принципе радиационно-индуцированные эффекты могут быть как вредными, так и полезными. Крайний пример вредных последствий облучения – это лучевое поражение организма в результате чрезмерных доз ионизирующей радиации. Вместе с тем ионизирующие излучения с успехом применяются для диагностики и лечения некоторых заболеваний. Понятно, что как для целенаправленного использования ионизирующих излучений, так и для выработки защитных мер против их вредного воздействия необходимо знать, как в живом организме возникают радиационно-индуцированные эффекты. Эта задача не из легких, и сейчас над ней работают многие коллективы ученых самых разных специальностей – физики, радиобиологи, генетики, биохимики. В чем трудность изучения радиационного воздействия на живой организм? Дело в том, что проблема взаимодействия ядерных излучений с живым веществом имеет как бы несколько этажей сложности. Во-первых, сама по себе физическая задача прохождения излучения через вещество любой природы, не обязательно живое, уже чрезвычайно сложна и весьма далека от своего окончательного решения. Любопытно, что этой задачей в то или иное время занимались почти все классики современной физики – Нобелевские лауреаты Г. Бете, Н. Бор, Ю. Вигнер, Л.Д. Ландау, Н. Мотт, Э. Резерфорд, И.Е. Тамм, Э. Ферми, Ч. Янг и многие другие замечательные ученые. Задача взаимодействия излучения с веществом как бы дразнила их своей сложностью, она в какой-то степени стала обязательным этапом образования этих выдающихся физиков. Во-вторых, сама структура живой материи, ее атомное и электронное строение необычайно причудливо, и проанализировать или даже промоделировать с достаточной точностью воздействие проникающей радиации на живое вещество удается очень редко. Живая природа сложнее неживой, и это обстоятельство создает как бы сложность более высокого порядка по сравнению с и без того почти «непробив

очень долго идёт распад какой-то байды (50-900 лет) , поэтому так долго и остаётся. Она вредная, потому что бета-лучи убивают еритроциты и у человека потом слазит кожа через определённое время и приходит летальный исход. Лучше в Чернобыль не езди на экскурсию.

радиация это когда мой друг пердит…. так и называется его пердеш — Атомной бомбой!!!! и поверь остается не тока радиация

Атомы обычно частицы стабильные и не разрушаются. Но некоторые из них способны распадаться. При этом выделяются разные частицы, которые принято называть радиацией (α, β и γ-излучение, нейтроны) . Эти частицы обладают очень высокой скоростью (энергией) , поэтому, когда они сталкиваются с какой-нибудь молекулой, то могут её разрушить. При облучении человека радиацией, в клетках разрушаются различные жизненно необходимые молекулы (белки, ферменты, РНК, ДНК) . Это ведёт к разным заболеваниям, мутациям и смерти (в больших дозах) . При взрыве атомной бомбы, уран, из которого она состоит, распадается на другие атомы, причём тоже радиоактивные, т. е. распадающиеся. Эти атомы распадаются и образуют другие радиоактивные атомы и т. д. Так что последствия длительные.

радиация сама по себе не вредна, вред приносит доза, мы живем в мире, который окружает радиация, для нас она безвредна, мы даже жить без нее не можем, но это считается нормой, а когда есть отклонения от нормы, это уже вред. После взрыва атомной бомбы идет долгий процесс расщепления плутониевого топлива, который может продлится от сотни до тысячи лет…. Радиация вредна тем, что нейтроны — не заряженные частицы проникают в ткани организма и разрушают их, ведь их не остановить, без заряда они не могут притянутся протоном или электроном.

В принципе радиационно-индуцированные эффекты могут быть как вредными, так и полезными. Крайний пример вредных последствий облучения – это лучевое поражение организма в результате чрезмерных доз ионизирующей радиации. Вместе с тем ионизирующие излучения с успехом применяются для диагностики и лечения некоторых заболеваний.

touch.otvet.mail.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *