Кометы: их строение и особенности

Кометы — относительно небольшие небесные тела туманного вида, вращающиеся вокруг Солнца (центральной звезды) по растянутым эллиптическим орбитам.

Предполагается, что попадают они во внутреннюю (наиболее близкую к Солнцу) часть Солнечной системы из далёкого Облака Оорта — некой сферической области, являющейся источником долгопериодических комет (их там просто огромное количество) и удалённой от Солнца на световой год. Интересно, что на её существование указывают лишь косвенные признаки, но официально существование Облака до сих пор не подтверждено.Автор фото — Chris Baird, ссылка на оригинал (фото было изменено).

Строение кометы

Ядро — твёрдая часть кометы, и самая главная. Практически вся масса этих объектов заключается именно в ядре. Полагают, что представляет оно собой некий ком пыли, испещрённый порами на 80% его объёма.

Кома — светлая туманная оболочка ядра, состоящая из частиц пыли и газов (льда). Может растягиваться чуть ли не до полутора миллиона километров от ядра, а минимальная её длина составляет около сотни тысяч км.

Образуется она при приближении к звезде. В этот момент, благодаря повышению температуры, происходит сублимация (переход из твёрдого состояния в газообразное). Испарение льда приводит к освобождению пылевых частиц, в результате чего они отлетают от ядра на некоторое расстояние.

Хвост — вытянутый шлейф, образующийся в результате воздействии излучения Солнца на кому, и состоящий из пыли и газа. Увидеть его можно лишь благодаря рассеиванию света на хвосте.
Интересно, что на деле у кометы 2 хвоста: один — газовый, он направлен перпендикулярно Солнцу, светится голубоватым цветом; второй — пылевой, он также тянется за ядром, но, в отличие от газового, искривлён по направлению к орбите.

Изучение комет

На сегодняшний день открыто более 400 короткопериодических комет

(период их обращения вокруг Солнца менее 200 лет). Из них очень многие состоят в семействах (например, в семейство Юпитера входит большая часть наиболее короткопериодических комет, совершающих оборот вокруг центральной звезды за 3-10 лет).

Из всех подобных объектов лишь малую часть можно увидеть невооружённым глазом (остальные не подлетают достаточно близко к Земле). Первой кометой, подвергшейся исследованию, была Галлея. Относится она к семейству Нептуна. Возвращается к Солнцу каждые 75-76 лет (последнее наблюдение состоялось в 1986г).

Зачастую, именно благодаря кометам мы можем наблюдать падающие звёзды. Небольшие частицы откалываются от комет, и устремляются к Земле в виде метеороидов, сгорая в атмосфере и оставляя после себя лишь яркий росчерк.

naturae.ru

КОМЕТЫ • Большая российская энциклопедия

Рис. 1. Комета при сближении с Солнцем. Видны протяжённые хвосты типов I и II.

КОМЕ́ТЫ (от греч. ϰομήτης – во­ло­са­тый, кос­ма­тый), не­боль­шие по раз­ме­ру и мас­се не­бес­ные те­ла Сол­неч­ной сис­те­мы, об­ра­щаю­щие­ся во­круг Солн­ца по силь­но вы­тя­ну­тым ор­би­там и рез­ко по­вы­шаю­щие свою яр­кость при сбли­же­нии с Солн­цем. Вбли­зи Солн­ца К. вы­гля­дят на не­бе как све­тя­щие­ся ша­ры, за ко­то­ры­ми тя­нет­ся длин­ный хвост (рис. 1). К. пред­став­ля­ют со­бой ле­дя­ные не­бес­ные те­ла (ино­гда на­зы­вае­мые кос­мич. айс­бер­га­ми), яр­кое све­че­ние ко­то­рых соз­да­ёт­ся рас­сея­ни­ем сол­неч­но­го све­та и др. фи­зич. эф­фек­та­ми. Пол­ное на­зва­ние К. вклю­ча­ет в се­бя име­на от­кры­ва­те­лей (не бо­лее трёх), год от­кры­тия, про­пис­ную бу­к­ву лат. ал­фа­ви­та и чис­ло, ука­зы­ваю­щие, в ка­кой мо­мент го­да бы­ла от­кры­та К., и пре­фикс, обо­зна­чаю­щий тип К. (Р – ко­рот­ко­пе­риодиче­ская К., С – дол­го­пе­рио­диче­ская К., D – раз­ру­шив­шая­ся К. и пр.). Еже­год­но в лю­би­тель­ский те­ле­скоп мож­но на­блю­дать при­мер­но 10–20 ко­мет.

Ис­то­ри­че­ски по­яв­ле­ние К. на не­бе счи­та­лось дур­ным пред­зна­ме­но­ва­ни­ем, пред­ве­щаю­щим не­сча­стья и ка­та­ст­ро­фы. Спо­ры о при­ро­де К. (ат­мо­сфер­ной или кос­ми­че­ской) про­дол­жа­лись на про­тя­же­нии 2 тыс. лет и за­вер­ши­лись лишь в 18 в. (см. Ко­мет­ная ас­тро­но­мия). Зна­чит. про­гресс в изу­че­нии К. был до­стиг­нут в 20 в. бла­го­да­ря по­лё­там к К. кос­мич. ап­па­ра­тов.

Общие сведения о кометах

К. вме­сте с ас­те­рои­да­ми, ме­тео­рои­да­ми и ме­те­ор­ной пы­лью от­но­сят­ся к ма­лым те­лам Сол­неч­ной сис­те­мы. Об­щее чис­ло К. в Сол­неч­ной сис­те­ме чрез­вы­чай­но ве­ли­ко, оно оце­ни­ва­ет­ся ве­ли­чи­ной не ме­нее 1012. К. под­раз­де­ля­ют­ся на два осн. клас­са: ко­рот­ко­пе­рио­ди­че­ские и дол­го­пе­рио­ди­че­ские с пе­рио­дом об­ра­ще­ния со­от­вет­ст­вен­но ме­нее и бо­лее 200 лет. Об­щее чис­ло К., на­блю­дав­ших­ся в ис­то­рич. вре­мя (в т. ч. на па­ра­бо­ли­че­ских и ги­пер­бо­лич. ор­би­тах), близ­ко к 1000. Из них из­вест­но ок. 100 ко­рот­ко­пе­ри­оди­че­ских К., ре­гу­ляр­но сбли­жаю­щих­ся с Солн­цем. Ор­би­ты этих К. на­дёж­но вы­чис­ле­ны. Та­кие К. на­зы­ва­ют «ста­ры­ми», в от­ли­чие от «но­вых» дол­го­пе­рио­дич. К., ко­то­рые, как пра­ви­ло, на­блю­да­лись во внутр. об­лас­тях Сол­неч­ной сис­те­мы лишь од­на­ж­ды. Боль­шин­ст­во ко­рот­ко­пе­рио­дич. К. вхо­дит в т. н. се­мей­ст­ва пла­нет-ги­ган­тов, на­хо­дясь на близ­ких к ним ор­би­тах. Наи­бо­лее мно­го­чис­лен­ным яв­ля­ет­ся се­мей­ст­во Юпи­те­ра, на­счи­ты­ваю­щее сот­ни К., сре­ди ко­то­рых из­вест­но св. 50 са­мых ко­рот­ко­пе­рио­дич. К. с пе­рио­дом об­ра­ще­ния во­круг Солн­ца от 3 до 10 лет. Мень­ше на­блю­дае­мых К. вклю­ча­ют се­мей­ст­ва Са­тур­на, Ура­на и Неп­ту­на; к по­след­не­му, в ча­ст­но­сти, при­над­ле­жит зна­ме­ни­тая Гал­лея ко­ме­та.

Осн. ре­зер­вуа­ры, со­дер­жа­щие яд­ра К., рас­по­ло­же­ны на пе­ри­фе­рии Сол­неч­ной сис­те­мы. Это Кой­пе­ра по­яс, на­хо­дя­щий­ся вбли­зи плос­ко­сти эк­лип­ти­ки не­по­сред­ст­вен­но за ор­би­той Неп­ту­на, в пре­де­лах 30–100 а. е. от Солн­ца, и сфе­ри­че­ское по фор­ме Оор­та об­ла­ко, рас­по­ло­жен­ное при­мер­но на по­ло­ви­не рас­стоя­ния до бли­жай­ших звёзд (30–60 тыс. а. е.). Об­ла­ко Оор­та пе­рио­ди­че­ски ис­пы­ты­ва­ет гра­ви­тац. воз­му­ще­ния со сто­ро­ны ги­гант­ских меж­звёзд­ных га­зо­во-пы­ле­вых об­ла­ков, га­лак­тич. дис­ка и звёзд (при слу­чай­ных сбли­же­ни­ях) и по­это­му не име­ет чёт­ко вы­ра­жен­ной внеш­ней гра­ни­цы. К. мо­гут по­ки­дать об­ла­ко Оор­та, по­пол­няя меж­звёзд­ную сре­ду, и вновь воз­вра­щать­ся. Тем са­мым К. иг­ра­ют роль свое­об­раз­ных зон­дов бли­жай­ших к Сол­неч­ной сис­те­ме об­лас­тей Га­лак­ти­ки.

Вслед­ст­вие ана­ло­гич­ных воз­му­ще­ний не­ко­то­рые те­ла из об­ла­ка Оор­та по­па­да­ют во внутр. об­лас­ти Сол­неч­ной сис­те­мы, пе­ре­хо­дя на вы­со­ко­эл­лип­тич. ор­би­ты. Эти те­ла при сбли­же­нии с Солн­цем на­блю­да­ют­ся как дол­го­пе­рио­дич. К. Под влия­ни­ем гра­ви­тац. воз­му­ще­ний со сто­ро­ны пла­нет (в пер­вую оче­редь Юпи­те­ра и др. пла­нет-ги­ган­тов) они ли­бо по­пол­ня­ют из­вест­ные се­мей­ст­ва ко­рот­ко­пе­рио­дич. К., ре­гу­ляр­но воз­вра­щаю­щих­ся к Солн­цу, ли­бо пе­ре­хо­дят на па­ра­бо­ли­че­ские и да­же ги­пер­бо­лич. ор­би­ты, на­все­гда по­ки­дая Сол­неч­ную сис­те­му. Осн. ис­точ­ни­ком ко­рот­ко­пе­рио­дич. К. слу­жит по­яс Кой­пе­ра. Вслед­ст­вие гра­ви­тац. воз­му­ще­ний Неп­ту­ном объ­ек­тов поя­са Кой­пе­ра от­но­си­тель­но не­боль­шая до­ля на­се­ляю­щих по­яс ле­дя­ных тел по­сто­ян­но миг­ри­ру­ет во внутр. об­лас­ти Сол­неч­ной сис­те­мы.

Движение комет по орбите

К. дви­жут­ся по ор­би­там с боль­шим экс­цен­три­си­те­том и на­кло­не­ни­ем к плос­ко­сти эк­ли­п­ти­ки. Дви­же­ние про­ис­хо­дит и в пря­мом (как у пла­нет), и в об­рат­ном направ­лении. К. ис­пы­ты­ва­ют силь­ные при­ливные воз­му­ще­ния при про­хо­ж­де­нии вбли­зи пла­нет, что при­во­дит к су­ще­ст­вен­но­му из­ме­не­нию их ор­бит (и, со­от­вет­ст­вен­но, слож­но­стям про­гно­за дви­же­ний К. и точ­но­го оп­ре­де­ле­ния эфе­ме­рид). Вслед­ст­вие этих из­ме­не­ний ор­бит мно­гие К. вы­па­да­ют на Солн­це.

Ре­зуль­та­ты вы­чис­ле­ний эле­мен­тов ор­бит К. пуб­ли­ку­ют­ся в спец. ка­та­ло­гах; напр., ка­та­лог, со­став­лен­ный в 1997, со­дер­жит ор­би­ты 936 К., св. 80% ко­то­рых на­блю­да­лось толь­ко один раз. В за­ви­си­мо­сти от по­ло­же­ния на ор­би­те блеск К. из­ме­ня­ет­ся на неск. по­ряд­ков, дос­ти­гая мак­си­му­ма вско­ре по­сле про­хо­ж­де­ния пе­ри­ге­лия и ми­ни­му­ма в афе­лии. Аб­со­лют­ная звёзд­ная ве­ли­чи­на К. в пер­вом при­бли­же­нии об­рат­но про­пор­цио­наль­на R4, где R – рас­стоя­ние от Солн­ца. Как пра­ви­ло, ко­рот­ко­пе­рио­дич. К. об­ра­ща­ют­ся во­круг Солн­ца не бо­лее не­сколь­ких со­тен раз. По­это­му вре­мя их жиз­ни ог­ра­ни­че­но и обыч­но не пре­вы­ша­ет 100 тыс. лет.

Ак­тив­ная фа­за су­ще­ст­во­ва­ния К. за­кан­чи­ва­ет­ся, ко­гда ис­чер­пы­ва­ет­ся за­пас ле­ту­чих ве­ществ в яд­ре или по­верх­ность яд­ра К. по­кры­ва­ет­ся оп­лав­лен­ной пы­ле­ле­дя­ной кор­кой, воз­ни­каю­щей вслед­ст­вие мно­го­крат­ных сбли­же­ний К. с Солн­цем. По­сле окон­ча­ния ак­тив­ной фа­зы яд­ро К. по сво­им фи­зич. свой­ст­вам ста­но­вит­ся по­доб­ным ас­те­рои­ду, по­это­му рез­кой гра­ни­цы ме­ж­ду ас­те­рои­да­ми и К. нет. Бо­лее то­го, воз­мо­жен и об­рат­ный эф­фект: ас­те­ро­ид мо­жет на­чать про­яв­лять при­зна­ки ко­мет­ной ак­тив­но­сти при рас­трес­ки­ва­нии его по­верх­но­ст­ной кор­ки по тем или иным при­чи­нам.

Рис. 2. Выпадение на Юпитер фрагментов кометы Шумейкеров – Леви 9 (1994).

Не­ре­гу­ляр­ность ор­бит К. при­во­дит к пло­хо про­гно­зи­руе­мой ве­ро­ят­но­сти их столк­но­ве­ний с пла­не­та­ми, что до­пол­ни­тель­но ус­лож­ня­ет про­бле­му ас­те­ро­ид­но-ко­мет­ной опас­но­сти. Столк­но­ве­ни­ем Зем­ли с ос­кол­ком яд­ра К., воз­мож­но, бы­ло вы­зва­но тун­гус­ское со­бы­тие 1908 (см. Тун­гус­ский ме­тео­рит). В 1994 на­блю­да­лось вы­па­де­ние на Юпи­тер (рис. 2) бо­лее 20 фраг­мен­тов К. Шу­мей­ке­ров – Ле­ви 9 (ра­зо­рван­ной в бли­жай­шей ок­ре­ст­но­сти пла­не­ты при­лив­ны­ми си­ла­ми), что при­ве­ло к ка­та­ст­ро­фич. яв­ле­ни­ям в ат­мо­сфе­ре Юпи­те­ра.

Строение и состав комет

К. со­сто­ят из яд­ра, ат­мо­сфе­ры (ко­мы) и хво­ста. Яд­ра не­ре­гу­ляр­ной фор­мы име­ют не­боль­шие раз­ме­ры – от еди­ниц до де­сят­ков ки­ло­мет­ров и, со­от­вет­ст­вен­но, очень ма­лую мас­су, не ока­зы­ваю­щую за­мет­но­го гра­ви­тац. влия­ния на пла­не­ты и др. не­бес­ные те­ла. Яд­ра К. вра­ща­ют­ся от­но­си­тель­но оси, поч­ти пер­пен­ди­ку­ляр­ной плос­ко­сти их ор­би­ты, с пе­рио­дом от не­сколь­ких еди­ниц до не­сколь­ких де­сят­ков ча­сов. Для ядер К. ха­рак­тер­на низ­кая от­ра­жа­тель­ная спо­соб­ность (аль­бе­до 0,03–0,04), по­это­му вда­ли от Солн­ца К. не вид­ны. Ис­клю­че­ние со­став­ля­ет ко­ме­та Эн­ке: пе­ри­од об­ра­ще­ния этой К. все­го 3,31 го­да, она от­но­си­тель­но ма­ло уда­ля­ет­ся от Солн­ца и её мож­но на­блю­дать на всём про­тя­же­нии ор­би­ты.

Ос­таль­ные эле­мен­ты ко­мет­ной струк­ту­ры об­ра­зу­ют­ся при сбли­же­нии К. с Солн­цем. Вбли­зи пе­ри­ге­лия ор­би­ты за счёт суб­ли­ма­ции ве­ще­ст­ва яд­ра и вы­но­са пы­ли с его по­верх­но­сти воз­ни­ка­ет ко­ма. Раз­мер пы­ли­нок в ко­ме со­став­ляет в осн. 10–7–10–6 м, но при­сут­ст­ву­ют и бо­лее круп­ные час­ти­цы. Ко­ма пред­став­ля­ет со­бой яр­ко све­тя­щую­ся ту­ман­ную обо­лоч­ку по­пе­реч­ни­ком св. 100 тыс. км. Внут­ри ко­мы в ок­ре­ст­но­сти яд­ра вы­деля­ют наи­бо­лее яр­кий сгу­сток – го­ло­ву К., а за пре­де­ла­ми ко­мы – во­до­род­ную ко­ро­ну (галó). Из ко­мы вы­тя­ги­ва­ет­ся хвост про­тя­жён­но­стью в де­сят­ки млн. км: срав­ни­тель­но сла­бо­све­тя­щая­ся по­ло­са, не имею­щая, как пра­ви­ло, чёт­ких очер­та­ний и на­прав­лен­ная пре­им. в сто­ро­ну, про­ти­во­по­лож­ную Солн­цу. Ин­тен­сив­ная суб­ли­ма­ция и вы­нос пы­ли соз­да­ют ре­ак­тив­ную си­лу; этот не­гра­ви­та­ци­он­ный эф­фект так­же ока­зы­ва­ет влия­ние на не­ре­гу­ляр­ность ко­мет­ных ор­бит.

Рис. 3. Ядро кометы Темпель 1. Изображение передано космическим аппаратом«Deep Impact».

Яд­ра К. об­ла­да­ют очень низ­кой сред­ней плот­но­стью, обыч­но не пре­вы­шаю­щей со­тен кг/м3. Это сви­де­тель­ст­ву­ет о по­рис­той струк­ту­ре ядер (рис. 3), со­стоя­щих в осн. из во­дя­но­го льда и не­кото­рых низ­ко­тем­пе­ра­тур­ных кон­ден­са­тов (уг­ле­кис­лый, ам­ми­ач­ный, ме­та­но­вый льды) с при­ме­сью си­ли­ка­тов, гра­фи­та, ме­тал­лов, уг­ле­во­до­ро­дов и др. ор­га­нич. со­еди­не­ний. Зна­чит. до­лю яд­ра со­став­ля­ют пыль и бо­лее круп­ные ка­ме­ни­стые фраг­мен­ты. Оби­лие во­дя­но­го льда в со­ста­ве К. объ­яс­ня­ет­ся тем, что мо­ле­ку­ла во­ды яв­ля­ет­ся са­мой рас­про­стра­нён­ной в Сол­неч­ной сис­те­ме.

Из­ме­ре­ния, про­ве­дён­ные при сбли­же­нии с К. кос­мич. ап­па­ра­тов, в це­лом под­твер­ди­ли ги­по­те­зу о том, что яд­ро пред­став­ля­ет со­бой «гряз­ный снеж­ный ком». По­доб­ная мо­дель яд­ра К. бы­ла пред­ложе­на в сер. 20 в. амер. ас­тро­но­мом Ф. Уип­п­лом. Ко­ма со­сто­ит в осн. из ней­траль­ных мо­ле­кул во­ды, во­до­ро­да, уг­ле­ро­да (С2, С3), ря­да ра­ди­ка­лов (OH, СN, CH, NH и др.) и све­тит­ся бла­го­да­ря про­цес­сам лю­ми­нес­цен­ции. Она час­тич­но ио­ни­зо­ва­на ко­рот­ко­вол­но­вым сол­неч­ным из­лу­че­ни­ем, соз­даю­щим ио­ны OH+, СО+, CH+ и др. При взаи­мо­дей­ст­вии этих ио­нов с плаз­мой сол­неч­но­го вет­ра воз­ни­ка­ет на­блю­дае­мое из­лу­че­ние в УФ- и рент­ге­нов­ской об­лас­тях спек­тра.

При суб­ли­ма­ции льдов в ат­мо­сфе­ру од­но­вре­мен­но ин­тен­сив­но вы­но­сит­ся пыль, за счёт ко­то­рой в осн. соз­да­ёт­ся хвост К. Со­глас­но клас­си­фи­ка­ции, пред­ло­жен­ной ещё во 2-й пол. 19 в. Ф. А. Бре­ди­хи­ным, раз­ли­ча­ют три ти­па ко­мет­ных хво­стов: I – пря­мые и уз­кие, на­прав­лен­ные в про­ти­во­по­лож­ную от Солн­ца сто­ро­ну; II – ши­ро­кие, изо­гну­тые и не­сколь­ко от­кло­нён­ные от­но­си­тель­но на­прав­ле­ния от Солн­ца; III – пря­мые, ко­рот­кие и силь­но от­кло­нён­ные от на­прав­ле­ния от Солн­ца. В 20 в. С. В. Ор­лов раз­ра­бо­тал фи­зич. ос­но­ву дан­ной клас­си­фи­ка­ции в со­от­вет­ст­вии с ме­ха­низ­мом об­ра­зо­ва­ния хво­ста. Хвост ти­па I соз­да­ёт­ся плаз­мой, взаи­мо­дей­ст­вую­щей с сол­неч­ным вет­ром, хвост ти­па II – час­ти­ца­ми пы­ли суб­мик­рон­ных раз­ме­ров, под­вер­жен­ны­ми воз­дей­ст­вию све­то­во­го дав­ле­ния, хвост ти­па III – со­во­куп­но­стью мел­ких и бо­лее круп­ных час­тиц, ис­пы­ты­ваю­щих разл. ус­ко­ре­ние под дей­ст­ви­ем гра­ви­тац. сил и све­то­во­го дав­ле­ния. Вслед­ст­вие та­ко­го ме­ха­низ­ма об­ра­зо­ва­ния по­ло­же­ние в про­стран­ст­ве хво­стов ти­па III ме­нее чёт­кое, оно не сов­па­да­ет с ан­ти­сол­неч­ным на­прав­ле­ни­ем и от­кло­не­но на­зад от­но­си­тель­но ор­би­таль­но­го дви­же­ния. Ино­гда в струк­ту­ре хво­ста на­блю­да­ют­ся изо­гну­тые ли­нии – т. н. син­ди­на­мы, или да­же ве­ер син­ди­нам, соз­дан­ных пы­лин­ка­ми раз­ных раз­ме­ров.

Из­ме­не­ния, про­ис­хо­дя­щие с К. в раз­ных точ­ках её ор­би­ты и в те­че­ние жиз­ни, в зна­чит. сте­пе­ни оп­ре­де­ля­ют­ся не­ста­цио­нар­ны­ми про­цес­са­ми те­п­ло­мас­со­пе­ре­но­са в по­рис­том яд­ре и фор­ми­ро­ва­ни­ем не­од­но­род­ной струк­ту­ры по­верх­но­сти, с ко­то­рой про­ис­хо­дит суб­ли­ма­ция. Ки­не­тич. мо­де­ли­ро­ва­ние этих про­цес­сов по­зво­ли­ло по­лу­чить пред­став­ле­ние о со­стоя­нии га­за в ко­ме. Вбли­зи ядер ак­тив­ных К. те­че­ние га­за в по­лу­сфе­ре, об­ра­щён­ной к Солн­цу, близ­ко к рав­но­вес­но­му, плот­ность га­за бы­ст­ро па­да­ет по ме­ре уда­ле­ния от по­верх­но­сти яд­ра. Из-за адиа­ба­тич. рас­ши­ре­ния га­за в меж­пла­нет­ный ва­ку­ум темп-ра со­став­ля­ет неск. кель­ви­нов на расстоянии от яд­ра ок. 100 км. В ок­ре­ст­но­сти оси сим­мет­рии об­ра­зу­ет­ся хо­ро­шо вы­ра­жен­ная струя (джет), обу­слов­лен­ная ин­тен­сив­ным вы­но­сом га­за и пы­ли. (На изо­бра­же­нии яд­ра ко­ме­ты Гал­лея, по­лу­чен­ном при про­лё­те вбли­зи не­го КА «Джот­то», вид­ны неск. дже­тов.) Та­кую не­рав­но­мер­ность суб­ли­ма­ции с по­верх­но­сти яд­ра мож­но объ­яс­нить те­п­ло­вы­ми де­фор­ма­ция­ми, вы­зы­ваю­щи­ми раз­ло­мы и тре­щи­ны в по­верх­но­ст­ной кор­ке ко­ме­ты.

В ре­зуль­та­те ин­тен­сив­но­го вы­де­ле­ния пы­ли ко­рот­ко­пе­рио­дич. К. вдоль её ор­би­ты об­ра­зу­ют­ся пы­ле­вые то­ры. Эти то­ры пе­рио­ди­че­ски пе­ре­се­ка­ет Зем­ля в сво­ём дви­же­нии по ор­би­те, что вы­зы­ва­ет ме­те­ор­ные по­то­ки.

Значение комет для космогонии

Про­ис­хо­ж­де­ние К., ве­ро­ят­но, свя­за­но с гра­ви­тац. вы­бро­сом ле­дя­ных тел из об­ласти об­ра­зо­ва­ния пла­нет-ги­ган­тов (см. в ст. Кос­мо­го­ния). По­это­му ис­сле­до­ва­ния К. спо­соб­ст­ву­ют ре­ше­нию фун­дам. про­бле­мы про­ис­хо­ж­де­ния и эво­лю­ции Сол­нечной сис­те­мы. К. пред­став­ля­ют боль­шой на­уч. ин­те­рес пре­ж­де все­го с точ­ки зре­ния кос­мо­хи­мии, по­сколь­ку со­дер­жат пер­вич­ное ве­ще­ст­во, из ко­то­ро­го об­ра­зо­ва­лась Сол­неч­ная сис­те­ма. Счи­та­ет­ся, что К. и наи­бо­лее при­ми­тив­ный класс ас­те­рои­дов (уг­ли­стые хон­д­ри­ты) со­хра­ни­ли в сво­ём со­ста­ве час­ти­цы про­то­планет­но­го об­ла­ка и га­зо­пы­ле­во­го ак­кре­ци­он­но­го дис­ка. В ка­че­ст­ве ре­лик­тов фор­ми­ро­ва­ния пла­нет (пла­не­те­зи­ма­лей) К. пре­тер­пе­ли наи­мень­шие из­ме­не­ния в про­цес­се эво­лю­ции. По­это­му ин­фор­ма­ция о со­ста­ве К. по­зво­ля­ет на­ло­жить дос­та­точ­но стро­гие ог­ра­ни­че­ния на диа­па­зон па­ра­мет­ров, ис­поль­зуе­мых при раз­ра­бот­ке кос­мо­го­нич. мо­де­лей.

В то же вре­мя, по совр. пред­став­ле­ни­ям, са­ми К. мог­ли сыг­рать важ­ную роль в эво­лю­ции Зем­ли и др. пла­нет зем­ной груп­пы в ка­че­ст­ве ис­точ­ни­ка ле­ту­чих эле­мен­тов и их со­еди­не­ний (в пер­вую оче­редь во­ды). Как по­ка­за­ли ре­зуль­таты ма­те­ма­тич. мо­де­ли­ро­ва­ния, за счёт это­го ис­точ­ни­ка Зем­ля мог­ла по­лучить ко­ли­че­ст­во во­ды, со­пос­та­ви­мое с объ­ё­мом её гид­ро­сфе­ры. При­мер­но та­кие же ко­ли­че­ст­ва во­ды мог­ли по­лу­чить Ве­не­ра и Марс, что го­во­рит в поль­зу ги­по­те­зы о су­ще­ст­во­ва­нии на них древ­них океа­нов, по­те­рян­ных в хо­де по­сле­дую­щей эво­лю­ции. К. рас­смат­ри­ва­ют­ся так­же как воз­мож­ные но­си­те­ли пер­вич­ных форм жиз­ни. Про­бле­ма воз­ник­но­ве­ния жиз­ни на пла­не­тах свя­зы­ва­ет­ся, в ча­стно­сти, с транс­пор­том ве­ще­ст­ва внут­ри и вне пре­де­лов Сол­неч­ной сис­те­мы и ми­гра­ци­он­но-столк­но­ви­тель­ны­ми про­цес­са­ми, клю­че­вую роль в ко­то­рых иг­ра­ют ко­меты.

bigenc.ru

Кометы: строение, описание, характеристики | Космические объекты

Кометой называют не очень большое небесное тело, которое перемещается в межгалактическом пространстве, а при сближении с Солнцем, выделяет за собой характерные сгустки газа. По сути, кометы – это переходная ступень к межзвездному веществу, так сказать, остатки формирования Солнечной системы. Сухое испарение льда (сублимации), плазменные процессы и другие разнообразные физические явления, неразрывно связаны с кометами. В отличие от остальных многочисленных небесных тел солнечной системы, о кометах узнали задолго до появления специальных оптических приборов для наблюдения за звездным небом. Об этом свидетельствуют записи древних китайцев, в которых говорится о наблюдениях за кометой Галлея в 240 году до нашей эры.

Даже в наши дни любой астроном-любитель в состоянии наблюдать и даже открыть новую комету. Ведь они могут быть настолько яркими, что привлекут всеобщее внимание. А ведь еще несколько веков назад, появление особенно ярких комет, вызывало у обычных людей панику и страх, а у художников вдохновение.

Так чем же, все-таки кометы, так сильно отличаются от множества других небесных тел? Конечно же, своим характерным светящимся следом (хвостом), который остается за кометой. Он образуется по мере приближения кометы к Солнцу. В основной состав и строение комет входят пыль и замороженный лед с газом, который по мере приближения к Солнцу, начитает нагреваться и испаряться с ее поверхности, в результате чего и остается светящийся след.

Наблюдение за кометой, это не только красивое зрелище, которое завораживает своей красотой, но очень познавательное, с точки зрения науки. Дело в том, что поверхность и ядро кометы, состоит из вещества, которое по неизвестным причинам, не смогло на ранних стадиях развития солнечной системы, вовремя сформироваться в полноценную планету. Поэтому, благодаря изучению комет, ученые могут заглянуть в далекое прошлое и подробно понять механизм формирования планет.

Кометы, как и планеты, подчиняются известным законам тяготения, но движутся, по очень своеобразным траекториям. Если планеты вращаются в одном направлении по круговым орбитам, то кометы – как в прямом, так и в обратном направлении по очень эксцентричным (вытянутым) орбитам, которые наклонены к оси эклиптике. Их разделят на короткопериодические кометы (орбитальный период менее 200 лет) и долгопериодические кометы (более 200 лет). Большинство открытых комет имеют период намного больше 200 лет, и появляются они в нашей солнечной системе очень и очень редко, пропадая потом на многие тысячи или даже миллионы лет. Естественно, что такие кометы существую гораздо дольше комет, которые часто пролетают возле Солнца, а следовательно, постепенно испаряются. Не исключено и пересечение траектории полета кометы с  орбитой одной из планет солнечной системы, что неизбежно приводит к столкновениям. В результате таких столкновений и появляются кратеры на Меркурии, Марсе, Луне и других планетах.

 Комета Галлея

Самая знаменитая комета, известная на земле – комета Галлея. Ее появление, наблюдалось уже более 30 раз, начиная с 239 до нашей эры. Естественно, что своим названием, она обязана Э.Галлею, который после ее очередного появления в 1682 рассчитав ее орбиту, предсказал возвращение кометы в 1758. Орбитальный период кометы Галлея составляет 76 лет; последний раз ее можно было наблюдать в 1986, следовательно она появится в 2061.

При ее последнем появлении несколько японских, советских и европейских спутников изучали с близкого расстояния. В результате этого выяснилось, что ядро кометы Галлея имеет овальную форму длиной около 15 км и шириной около 8 км, а ее поверхность, возможно, покрыта слоем органических соединений и по цвету чернее угля.

kosmos-gid.ru

Строение, состав кометы — Все о космосе

Строение, состав кометы

Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро — первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газо-пылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

 

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы — газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро — самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы — твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра — конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, — так называемых «молодых» комет — поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы — это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая — как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла.

Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (до 1011 — 1012 тонн).

Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:

1.      наиболее близкая, прилегающая к ядру область — внутренняя, молекулярная, химическая и фотохимическая кома,

2.      видимая кома, или кома радикалов,

3.      ультрафиолетовая, или атомная кома.

Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.

Л. М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны:

1.      пристеночный слой (область испарения и конденсации частиц на ледяной поверхности),

2.      околоядерную область (область газодинамического движения вещества),

3.      переходную область,

4.      область свободно-молекулярного разлёта кометных частиц в межпланетное пространство.

Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей. По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.

Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

С. В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:

Тип E — наблюдается  у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.

Тип C — наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.

Тип N — наблюдается у комет, у которых отсутствует и кома и оболочки.

Тип Q — наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.

Тип h — наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца — галосы с центром в ядре.

Наиболее впечатляющая часть кометы — её хвост. Хвосты почти всегда направлены в противоположную от Солнца сторону. Хвосты состоят из пыли, газа и ионизированных частиц. Поэтому в зависимости от состава частицы хвостов отталкиваются в противоположную от Солнца сторону силами, исходящими из Солнца.

Ф. Бессель, исследуя форму хвоста кометы Галлея, впервые объяснил её действием отталкивающих сил, исходящих из Солнца. Впоследствии Ф. А. Бредихин разработал более совершенную механическую теорию кометных хвостов и предложил разбить их на три обособленные группы, в зависимости от величины отталкивающего ускорения.

Анализ спектра головы и хвоста показал наличие следующих атомов, молекул и пылевых частиц:

Органические C, CH, CN, CO, CS, HCN, CH.

Неорганические H, NH, NH, O, OH, H.

Металлы — Na, Ca, Cr, Co, Mn, Fe, Ni, Cu, V, Si.

Ионы — CO, OH, H.

Пыль — силикаты (в инфракрасной области).

Механизм свечения кометных молекул был расшифрован в 1911 году К. Шварцшильдом и Е. Кроном, которые пришли к выводу, что это механизм флуоресценции, то есть переизлучения солнечного света.

Иногда в кометах наблюдаются достаточно необычные структуры: лучи, выходящие под различными углами из ядра и образующие в совокупности лучистый хвост; галосы — системы расширяющихся концентрических колец; сжимающиеся оболочки — появление нескольких оболочек, постоянно двигающихся к ядру; облачные образования; омегообразные изгибы хвостов, появляющиеся при неоднородностях солнечного ветра.

Также существуют и нестационарные процессы в головах комет: вспышки яркости, связанные с усилением коротковолновой радиации и корпускулярных потоков; разделение ядер на вторичные фрагменты.

Владимир Манько

astroera.net

Строение, состав кометы/Вселенная

Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро — первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром. Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы — газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро — самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы — твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра — конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, — так называемых «молодых» комет — поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых». Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы — это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая — как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла.

Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (от 10 до 10 — 10 тонн).

Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:
1) наиболее близкая, прилегающая к ядру область — внутренняя, молекулярная, химическая и фотохимическая кома,
2) видимая кома, или кома радикалов,
3) ультрафиолетовая, или атомная кома.

На расстоянии в 1 а. е. от Солнца средний диаметр внутренней комы D = 10 км, видимой D = 10 — 10 км и ультрафиолетовой D = 10 км.

Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.

Л. М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны:
1) пристеночный слой (область испарения и конденсации частиц на ледяной поверхности),
2) околоядерную область (область газодинамического движения вещества),
3) переходную область,
4) область свободно-молекулярного разлёта кометных частиц в межпланетное пространство.

Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей.

По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.

Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

С. В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:
1. Тип E; — наблюдается у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.
2. Тип C; — наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.
3. Тип N; — наблюдается у комет, у которых отсутствует и кома и оболочки.
4. Тип Q; — наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.
5. Тип h; — наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца — галосы с центром в ядре.

Наиболее впечатляющая часть кометы — её хвост. Хвосты почти всегда направлены в противоположную от Солнца сторону. Хвосты состоят из пыли, газа и ионизированных частиц. Поэтому в зависимости от состава частицы хвостов отталкиваются в противоположную от Солнца сторону силами, исходящими из Солнца.

Ф. Бессель, исследуя форму хвоста кометы Галлея, впервые объяснил её действием отталкивающих сил, исходящих из Солнца. Впоследствии Ф. А. Бредихин разработал более совершенную механическую теорию кометных хвостов и предложил разбить их на три обособленные группы, в зависимости от величины отталкивающего ускорения.

Механизм свечения кометных молекул был расшифрован в 1911 году К. Шварцшильдом и Е. Кроном, которые пришли к выводу, что это механизм флуоресценции, то есть переизлучения солнечного света.

Иногда в кометах наблюдаются достаточно необычные структуры: лучи, выходящие под различными углами из ядра и образующие в совокупности лучистый хвост; галосы — системы расширяющихся концентрических колец; сжимающиеся оболочки — появление нескольких оболочек, постоянно двигающихся к ядру; облачные образования; омегообразные изгибы хвостов, появляющиеся при неоднородностях солнечного ветра.

www.inomir.ru

Строение, состав кометы

 Маленькое ядро кометы является единственной её твёрдой частью, в нём сосредоточена почти вся её масса. Поэтому ядро — первопричина всего остального комплекса кометных явлений. Ядра комет до сих пор всё ещё недоступны телескопическим наблюдениям, так как они вуалируются окружающей их светящейся материей, непрерывно истекающей из ядер. Применяя большие увеличения, можно заглянуть в более глубокие слои светящейся газопылевой оболочки, но и то, что останется, будет по своим размерам всё ещё значительно превышать истинные размеры ядра. Центральное сгущение, видимое в атмосфере кометы визуально и на фотографиях, называется фотометрическим ядром.

Считается, что в центре его находится собственно ядро кометы, то есть располагается центр масс. Однако, как показал советский астроном Д. О. Мохнач, центр масс может не совпадать с наиболее яркой областью фотометрического ядра. Это явление носит название эффекта Мохнача.

Туманная атмосфера, окружающая фотометрическое ядро, называется комой. Кома вместе с ядром составляют голову кометы — газовую оболочку, которая образуется в результате прогревания ядра при приближении к Солнцу. Вдали от Солнца голова выглядит симметричной, но с приближением к нему она постепенно становится овальной, затем удлиняется ещё сильнее и в противоположной от Солнца стороне из неё развивается хвост, состоящий из газа и пыли, входящих в состав головы.

Ядро — самая главная часть кометы. Однако до сих пор нет единодушного мнения, что оно представляет собой на самом деле. Ещё во времена Лапласа существовало мнение, что ядро кометы — твёрдое тело, состоящее из легко испаряющихся веществ типа льда или снега, быстро превращающихся в газ под воздействием солнечного тепла. Эта классическая ледяная модель кометного ядра была существенно дополнена в последнее время. Наибольшим признанием пользуется разработанная Уиплом модель ядра — конгломерата из тугоплавких каменистых частиц и замороженной летучей компоненты (метана, углекислого газа, воды и др.). В таком ядре ледяные слои из замороженных газов чередуются с пылевыми слоями. По мере прогревания газы, испаряясь, увлекают за собой облака пыли. Это позволяет объяснить образование газовых и пылевых хвостов у комет, а также способность небольших ядер к газовыделению.

Согласно Уиплу механизм истечения вещества из ядра объясняется следующим образом. У комет, совершивших небольшое число прохождений через перигелий, — так называемых «молодых» комет — поверхностная защитная корка ещё не успела образоваться, и поверхность ядра покрыта льдами, поэтому газовыделение протекает интенсивно путём прямого испарения. В спектре такой кометы преобладает отражённый солнечный свет, что позволяет спектрально отличать «старые» кометы от «молодых».

Обычно «молодыми» называются кометы, имеющие большие полуоси орбит, так как предполагается, что они впервые проникают во внутренние области Солнечной системы. «Старые» кометы — это кометы с коротким периодом обращения вокруг Солнца, многократно проходившие свой перигелий. У «старых» комет на поверхности образуется тугоплавкий экран, так как при повторных возвращениях к Солнцу поверхностный лед, подтаивая, «загрязняется». Этот экран хорошо защищает находящийся под ним лёд от воздействия солнечного света.

Модель Уипла объясняет многие кометные явления: обильное газовыделение из маленьких ядер, причину негравитационных сил, отклоняющих комету от расчётного пути. Потоки, истекающие из ядра, создают реактивные силы, которые и приводят к вековым ускорениям или замедлениям в движении короткопериодических комет.

Существуют также другие модели, отрицающие наличие монолитного ядра: одна представляет ядро как рой снежинок, другая — как скопление каменно-ледяных глыб, третья говорит о том, что ядро периодически конденсируется из частиц метеорного роя под действием гравитации планет. Всё же наиболее правдоподобной считается модель Уипла.

Массы ядер комет в настоящее время определяются крайне неуверенно, поэтому можно говорить о вероятном диапазоне масс: от нескольких тонн (микрокометы) до нескольких сотен, а возможно, и тысяч миллиардов тонн (от 10 до 10 — 10 тонн).

Кома кометы окружает ядро в виде туманной атмосферы. У большинства комет кома состоит из трёх основных частей, заметно отличающихся своими физическими параметрами:
1) наиболее близкая, прилегающая к ядру область — внутренняя, молекулярная, химическая и фотохимическая кома,
2) видимая кома, или кома радикалов,
3) ультрафиолетовая, или атомная кома.

На расстоянии в 1 а. е. от Солнца средний диаметр внутренней комы D = 10 км, видимой D = 10 — 10 км и ультрафиолетовой D = 10 км.

Во внутренней коме происходят наиболее интенсивные физико-химические процессы: химические реакции, диссоциация и ионизация нейтральных молекул. В видимой коме, состоящей в основном из радикалов (химически активных молекул) (CN, OH, NH и др.), процесс диссоциации и возбуждения этих молекул под действием солнечной радиации продолжается, но уже менее интенсивно, чем во внутренней коме.

Л. М. Шульман на основании динамических свойств вещества предложил делить кометную атмосферу на следующие зоны:
1) пристеночный слой (область испарения и конденсации частиц на ледяной поверхности),
2) околоядерную область (область газодинамического движения вещества),
3) переходную область,
4) область свободно-молекулярного разлёта кометных частиц в межпланетное пространство.

Но не для всякой кометы должно быть обязательным наличие всех перечисленных атмосферных областей.

По мере приближения кометы к Солнцу диаметр видимой головы день ото дня растёт, после прохождения перигелия её орбиты голова снова увеличивается и достигает максимальных размеров между орбитами Земли и Марса. В целом для всей совокупности комет диаметры голов заключены в широких пределах: от 6000 км до 1 млн. км.

Головы комет при движении кометы по орбите принимают разнообразные формы. Вдали от Солнца они круглые, но по мере приближения к Солнцу, под воздействием солнечного давления, голова принимает вид параболы или цепной линии.

С. В. Орлов предложил следующую классификацию кометных голов, учитывающую их форму и внутреннюю структуру:
1. Тип E; — наблюдается у комет с яркими комами, обрамлёнными со стороны Солнца светящимися параболическими оболочками, фокус которых лежит в ядре кометы.
2. Тип C; — наблюдается у комет, головы которых в четыре раза слабее голов типа E и по внешнему виду напоминают луковицу.
3. Тип N; — наблюдается у комет, у которых отсутствует и кома и оболочки.
4. Тип Q; — наблюдается у комет, имеющих слабый выступ в сторону Солнца, то есть аномальный хвост.
5. Тип h; — наблюдается у комет, в голове которых генерируются равномерно расширяющиеся кольца — галосы с центром в ядре.

Наиболее впечатляющая часть кометы — её хвост. Хвосты почти всегда направлены в противоположную от Солнца сторону. Хвосты состоят из пыли, газа и ионизированных частиц. Поэтому в зависимости от состава частицы хвостов отталкиваются в противоположную от Солнца сторону силами, исходящими из Солнца.

Ф. Бессель, исследуя форму хвоста кометы Галлея, впервые объяснил её действием отталкивающих сил, исходящих из Солнца. Впоследствии Ф. А. Бредихин разработал более совершенную механическую теорию кометных хвостов и предложил разбить их на три обособленные группы, в зависимости от величины отталкивающего ускорения.

Механизм свечения кометных молекул был расшифрован в 1911 году К. Шварцшильдом и Е. Кроном, которые пришли к выводу, что это механизм флуоресценции, то есть переизлучения солнечного света.

Иногда в кометах наблюдаются достаточно необычные структуры: лучи, выходящие под различными углами из ядра и образующие в совокупности лучистый хвост; галосы — системы расширяющихся концентрических колец; сжимающиеся оболочки — появление нескольких оболочек, постоянно двигающихся к ядру; облачные образования; омегообразные изгибы хвостов, появляющиеся при неоднородностях солнечного ветра.

Другие статьи:

nlo-mir.ru

Строение и открытие комет

 

Кроме больших и малых планет, вокруг Солнца движутся кометы. Яркие кометы (хвостатые звезды) своим необычным видом издавна привлекали внимание людей, внушая многим из них суеверный ужас. От других тел Солнечной системы кометы резко отличаются не только своим видом, но и формой орбит, большими размерами, а также сравнительно быстрым, иногда бурным развитием. Вид комет меняется по мере приближения к Солнцу. Вдали от Солнца комета видна как слабое туманное пятнышко, которое перемещается на фоне звездного неба. Постепенно у кометы развивается хвост, почти всегда направленный от Солнца.

 

Ежегодно обнаруживают в среднем 6-8 комет. Некоторые из них – это периодические кометы, которые в очередной раз возвратились к Солнцу. Только самые яркие кометы можно наблюдать невооруженным глазом. Часто кометы открывают любители астрономии, регулярно обозревающие звездное небо в небольшие телескопы.

 

Основные части кометы: голова, ядро (центральное сгущение) и хвост. Ядра комет по размерам близки небольшим астероидам. Диаметр головы кометы иногда достигает сотен тысяч километров, а хвосты простираются на десятки и сотни миллионов километров. После прохождения перигелия комета начинает постепенно “угасать” и перестает быть видимой даже в самые большие телескопы.

 

Орбиты комет

 

Чтобы рассчитать по формулам небесной механики орбиту кометы, достаточно определить из наблюдений ее экваториальные координаты по крайней мере для трех моментов времени. Первоначально вычисленную орбиту, по которой комета приближается к Солнцу, в дальнейшем уточняют на основе новых наблюдений, так как притяжение планет изменяет орбиту. В настоящее время для вычисления орбит комет применяют быстродействующие ЭВМ.

 

Орбиты большинства комет – сильно вытянутые эллипсы, плоскости которых под разными углами наклонены к плоскости эклиптики. Двигаясь по таким орбитам, кометы в перигелии близко подходят к Солнцу (и к Земле), а в афелии удаляются от него на сотни тысяч астрономических единиц, уходя далеко за пределы орбиты Плутона — последней из известных пока планет.

 

Кометы, эксцентриситеты орбит которых не очень велики, имеют сравнительно небольшие периоды обращения вокруг Солнца. Самый короткий период – у кометы Энке (3,3 года), наблюдающейся уже на протяжении полутора веков. Неоднократно приближалась к Солнцу и комета Галлея, период обращения которой около 76 лет. Последнее прохождение этой кометы через перигелий (на расстоянии менее 0,6 а. е. от Солнца) было 9 февраля 1986 г. Комету Галлея удалось хорошо исследовать не только с Земли, но и с помощью нескольких специально запущенных космических аппаратов. На снимках, переданных с борта АМС “Вега-1”, хорошо видно ядро кометы. Оно имеет неправильную форму (с размерами осей 14 и 7 км). От шарообразных небесных тел отличаются и другие малые тела Солнечной системы (некоторые спутники планет-гигантов, небольшие астероиды).

 

Смотрите также:

 
Астеройды

В самом начале XIX в. итальянский астроном Пиацци (1746-1826) случайно открыл первую малую планету (астероид). Она была названа Церерой. В дальнейшем было открыто много других малых планет, образующих пояс астероидов между орбитами Марса и Юпитера.На фотографиях звездного неба, снятых с большими экспозициями, астероиды получаются в виде светлых черточек…

 
 
Природа комет

Массу кометы можно оценить, наблюдая за возмущениями, которые появляются в ее движении при сближении с планетами. Например, при сближении кометы с Юпитером период ее обращения может резко измениться, а период обращения Юпитера практически остается прежним. Значит, масса кометы во много раз меньше массы Юпитера…

 
 
Кометы

Одними из самых удивительных небесных тел, безусловно, являются кометы. Наши предки их появление на небе считали знамением и ожидали скорого наступления войны или мора. Сегодня кометы перестали пугать людей, наоборот, астрономы, как профессионалы, так и любители, превратились в «охотников за кометами». Ясно, что многие из них просто хотят прославиться…

 

space-my.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *