Содержание

Прозрачная броня — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 ноября 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 ноября 2018; проверки требует 1 правка. Испытания стеклоблока толщиной 55,6 мм, массой 1 м² защиты 116 кг, по требованиям стандарта НАТО STANAG 4569 Уровень 2. Три поражения пулей БЗ патрона 7,62х39 мм без пробития. Результат: полная потеря прозрачности. Слово «Броня» имеет и другие значения.

Прозрачная броня (или бронестекло) — броня, получаемая соединением слоёв силикатного стекла (закалённого, отпущенного, упрочнённого химическим травлением) со слоями полиуретанов, метилметакрилатов и поликарбонатов. Назначением прозрачной брони является защита людей, вооружения и военной техники от воздействия поражающих средств — пуль и осколков боеприпасов. В России для бронестёкол действует межгосударственный стандарт ГОСТ 30826-2014 «Стёкла защитные многослойные пулестойкие».

Требование оптической прозрачности и стремление обеспечить повышенное сопротивление внедрению высокоскоростного ударника обусловливают использование при изготовлении прозрачной брони упрочнённого силикатного стекла или иных высокотвёрдых прозрачных материалов (например, сапфира[1]), обладающих повышенной прочностью на сжатие[2].

При этом уменьшение склонности к хрупкому разрушению таких материалов достигается, отчасти, конструктивным путём — составлением стеклоблока из ряда слоёв материала, соединяемых в монолит прозрачной полимерной клеящей плёнкой.

ru.wikipedia.org

Проблемы создания прозрачной брони | Армейский вестник

Прозрачная броня для военной и гражданской автобронетехники, а также забрал для бронешлемов, смотровых окон для бронещитов и защитных визоров для минёров широко применяется как в России, так и за рубежом. Кроме противопульной и противоосколочной стойкости, прозрачная броня должна обладать необходимым уровнем прозрачности (оптических свойств) и при этом быть как можно легче.

Кроме того, прозрачная броня должна обладать определённой живучестью (например, выдерживать не менее 2-х попаданий в 1 дм2 своей площади). О проблемах создания высокоэффективной прозрачной брони на страницах ИА «Оружие России» рассказывают сотрудники Открытого акционерного общества «Научно-исследовательский институт стали».

В качестве материалов для изготовления прозрачной брони, в основном, применяют прозрачные полимерные пластики:
— полиметилметакрилат (оргстекло)
— поликарбонат

— полиуретан
— силикатное стекло.

Характеристики используемых прозрачных материалов приведены в таблице 1.

Для изготовления прозрачной брони высокого класса защиты, как правило, используют упрочнённые силикатные стекла. Упрочнение стекла осуществляют сжатием поверхностных слоёв при химико-термической обработке и поверхностной закалке или растворением поверхностного дефектного слоя.

Такими способами прочность стекла повышается в 2-4 раза. Однако следует отметить, что закалка эффективна только для листов с толщиной, большей 2,5 мм.

Шлем «Рысь» с кварцевым стеклом по 2 классу ГОСТ Р 50744-95. Испытан обстрелом пулей Пст к пистолету ТТ.

Тем не менее, при высокоскоростном баллистическом ударе, сопровождающемся внедрением ударника в стеклянную пластину, одним поверхностным упрочнением не обойтись. Поскольку стекло является упруго-хрупким материалом, то закономерности его пробивания такие же, как у керамики.

После начальной стадии взаимодействия ударника со стеклянной пластиной впереди проникающего тела образуется волна разрушения, генерирующая сетку трещин, что приводит, в итоге, к тыльному отколу даже при отсутствии проникновения ударника за тыльную поверхность пластины.

В связи с вышеизложенным, высокопрочные стёкла могут быть использованы только в прозрачных многослойных преградах с защитными тыльными плёнками, задерживающими осколки. В качестве тыльного слоя также предлагается использовать поликарбонат, сочетающий высокие прочность и жёсткость с высокой стойкостью к ударным воздействиям.

Испытание стекла на стойкость к удару

Одной из важнейших проблем является соединение слоёв прозрачных бронепреград с обеспечением прочной адгезивной связи между ними и сохранением прозрачности и оптических свойств. Для соединения слоёв разработаны различные вязкие эластичные прозрачные связующие: поливинилбутералевые, акриловые, полиуретановые и другие клеи и плёнки, после полимеризации выполняющие также функцию барьера для распространяющихся трещин.

В настоящее время различными предприятиями в России выпускаются пуленепробиваемые прозрачные преграды со следующими характеристиками (таблица 2).

На основании данных, приведённых в таблице 2, можно сделать вывод, что массовые характеристики таких преград весьма велики, что делает нереальным применение прозрачной защиты высоких классов в большой части изделий автобронетехники и бронешлемах.

ОАО «НИИ стали» проводятся интенсивные работы по изучению материалов и разработке структур для прозрачной брони, имеющие целью снижение массы преграды. Так, например, хороший результат в данном направлении достигается при применении в прозрачных бронеструктурах кварцевого стекла (таблица 3).

Снижение массы прозрачной защиты может быть также осуществлено при использовании в качестве лицевого слоя сапфира (лейкосапфира) на основе монокристаллического оксида алюминия с твёрдостью по шкале Мооса=9 и ромбоэдрической кристаллической структурой.

Учитывая большой интерес к разработке слоистой прозрачной брони с применением искусственного лейкосапфира за рубежом (США, Израиль, Украина, Чехия), ОАО «НИИ стали» проведена работа по оценке эффективности применения лейкосапфиров, производимых в России, в качестве лицевого слоя в прозрачных преградах (таблица 4).

Как показали проведённые испытания, перспективным вариантом при создании прозрачных бронепреград высоких классов защиты может быть использование пластин монокристалла лейкосапфира толщиной 4-8 мм в качестве лицевого слоя с формированием средних слоёв из силикатного (в т.ч. кварцевого) стекла и тыльного слоя из поликарбоната.

Результат воздействия по стеклу молота

Указанная многослойная структура позволяет минимум в 1,5 раза уменьшить толщину и массу преграды для защиты от обстрела пулями ЛПС из винтовки СВД. Следует заметить, что противопульная стойкость такой многослойной прозрачной брони зависит от технологии получения лейкосапфира, соотношения слоёв и их методов соединения.

Бронестекло автомобиля «Мерседес» 3 класса после обстрела из АКМ.

Испытания различных опытных слоистых структур с лицевым слоем из лейкосапфира показали экономию по массе и толщине в сравнении с существующими прозрачными преградами не менее 30%. Исходя из характеристик лейкосапфира, он является наиболее перспективным материалом для прозрачной брони, но его стоимость очень высока из-за высокотемпературной технологии производства и необходимости механической обработки и полировки.

Кроме того, имеются ограничения в возможности получения лейкосапфиров больших размеров, что связано с необходимостью применения крупных индукционных печей и дорогостоящей оснастки, поэтому применение этого материала для прозрачной брони является проблематичным.

Сравнение характеристики обычного силикатного броневого стекла и структуры на основе прозрачной керамики  ALON.

Одним из конкурентных решений в создании высокоэффективной прозрачной брони является разработка прозрачных поликристаллических материалов. Одним из лидирующих материалов такого рода является ALON (оксинитрид алюминия Al23O27N5), запатентованный армией США.

Его разработку провела компания Raytheon, а производит сейчас Surmet Corporation (обе фирмы из США). Введение азота в оксид алюминия стабилизирует его матрицу и обеспечивает кубическую кристаллическую изотропную структуру. В результате получается прозрачный поликристаллический материал. В таблице 5 приведены некоторые свойства материала ALON в сравнении с другими прозрачными материалами.

Как видно из таблицы 5, ALON по свойствам приближается к лейкосапфиру и может служить ему альтернативой. Подходящим материалом для прозрачной брони может быть также шпинель (MgAl2O4), обладающая кубической кристаллической структурой. Прозрачная шпинель производится следующим методом: спекание/горячее изостатическое прессование (ГИП).

Применение ГИП позволяет повысить оптические и физические свойства шпинели за счёт повышения её плотности и уменьшения пористости, что, в свою очередь, происходит из-за уменьшения количества связующего. Промышленное производство шпинели освоено двумя американскими фирмами – Technology Assessment and Transfer и Surmet Corporation.

Прозрачная броня фирмы IBD на выставке «Евросатори-2012». Видно, что прозрачная керамика почти в 4 раза легче стандартного броневого стекла.

Задача создания в России прозрачной керамической брони является чрезвычайно актуальной, так как её применение позволит значительно повысить защищённость бойцов и уменьшить вес той техники, где применяется остекление.

Хотя за последние годы в производстве керамик, в том числе и прозрачных, достигнуты значительные успехи, несколько важных проблем остаётся. Среди них – доступность производства, возможность изготавливать изделия необходимой формы и размеров, а также высокая стоимость.

/Петрова Э.Н., Чусов С.Ю., Щербаков А.В. и Яньков В.П., arms-expo.ru/

army-news.ru

Прозрачная броня — это… Что такое Прозрачная броня?

Испытания стеклоблока толщиной 55,6 мм, массой 1 кв. м защиты 116 кг, пулей БЗ патрона 7,62х39 мм согласно требованиям STANAG 4569 Уровень 2. Полная потеря прозрачности.

Прозрачная броня (или бронестекло) — броня, получаемая соединением слоёв силикатного стекла (закалённого, отпущенного, упрочнённого химическим травлением) со слоями полиуретанов, метилметакрилатов и поликарбонатов. Назначением прозрачной брони является защита людей, вооружения и военной техники, от воздействия поражающих средств — пуль и осколков боеприпасов. В настоящее время существует в толщинах от 12 (по I классу согласно ГОСТу Р50136-98) до 200 мм.

Требование оптической прозрачности и стремление обеспечить повышенное сопротивление внедрению высокоскоростного ударника обуславливают использование при изготовлении прозрачной брони упрочнённого силикатного стекла или иных высокотвёрдых прозрачных материалов (например, сапфира[1]), обладающих повышенной прочностью на сжатие[2].

При этом уменьшение склонности к хрупкому разрушению таких материалов достигается, отчасти, конструктивным путём — составлением стеклоблока из ряда слоёв материала, соединяемых в монолит прозрачной полимерной клеящей плёнкой.

История создания

Применение прозрачной брони началось в конце 1930-х годов, и было вызвано развитием военной авиации. Вслед за появлением прозрачного фонаря кабины пилота из безосколочного органического стекла появляется необходимость защиты лётчика от пулемётного огня самолётов противника. Ввиду жёстких массовых и габаритных ограничений, присущих авиации, защита лётчика могла быть обеспечена лишь от самого малого (и наиболее массового) калибра пулемётно-пушечного вооружения того периода 7,62-7,92 мм. Это в полной мере относится как к прозрачной, так и к непрозрачной (металлической) броне, последняя по массе, выделенной на защиту самолёта, заметно превосходила прозрачную броню. В период Второй мировой войны прозрачная броня устанавливалась практически на всех типах боевых самолётов воюющих государств — истребителях, истребителях-бомбардировщиках, штурмовиках и бомбардировщиках.

Отечественная прозрачная «таблетированная» броня марки К-4 установливалась на штурмовике Ил-2. Представляла собой слоистую композицию с внешним слоем из закалённого стекла (сталинита) толщиной 34 мм — набранного из плиток 100х150 мм, и внутренним слоем или «подушкой» из органического стекла 30 мм[3]. Выпускалась в виде плоских плит, слои соединялись тонкой плёнкой поливинилбутираля. При толщине 64 мм и массе 120 кг/ кв. м броня не пробивалась 7,62 мм бронебойной пулей при стрельбе практически в упор (Д=30 м). В том или ином виде «таблетированная» броня применялась на всех типах советских самолётов — истребителях Яковлева Як-7 и Як-9, Лавочкина Ла-5 и Ла-7 и др. Полигонные испытания отечественной прозрачной брони обстрелом проводились бронебойной пулей Б-30 по нормали к поверхности брони, дистанция стрельбы составляла 30 м. К 1943 году создана улучшенная броня марки К-5 со сплошными слоями силикатного стекла, установлена на штурмовике Ил-10. В СССР работы по созданию прозрачной брони на основе органического стекла проводились Всесоюзным институтом авиационных материалов ВИАМ. Один из создателей брони инженер М.В. Думнов. Руководители этой работы Б. В. Ерофеев и М. М. Гудимов были удостоены «Сталинской премии»[4].

На немецких самолётах широко применялась «триплексированное» бронестекло — пакет из закалённых стеклопластин, склеенных в монолит прозрачным клеем. На самолётах Fw-190 серий А4-А8 устанавливалось четырёхслойное (6+17+18+6 мм) лобовое бронестекло толщиной 50 мм под углом 25 градусов к продольной оси машины. Масса стеклоблока 14,6 кг или 120 кг/ кв. м [5]. Испытания брони на стойкость проводилось на образцах размером 400х330 мм одиночным обстрелом бронебойной пулей SmK 7,9 мм из пулемета MG 17 с дистанции 50 м. В годы войны Институт баллистики Технической академии ВВС Германии Technische Akademie der Luftwaffe под руководством Г. Шардина изучал процессы последовательного разрушения слоев стекла при пробитии прозрачной брони пулями с помощью высокочастотной искровой камеры[6].

В целом, противопульная прозрачная броня, при равной со стальной бронёй стойкости, имела приблизительно одинаковую с ней массу квадратного метра защиты и в четыре раза большую толщину, последнее является, своего рода, платой за прозрачность. Аналогично стальной (металлической) броне, с увеличением угла обстрела прозрачной брони от нормали, её стойкость увеличивается (дистанция непробития брони уменьшается). Иными словами стойкость брони положительно реагирует на изменение косинуса угла соударения. Серийная прозрачная броня периода Второй мировой войны в толщинах 50-60 мм обеспечивала защиту от 7,62-7,92 мм бронебойных пуль с нулевой дальности. При этом стеклоблок толщиной 60 мм выдерживал бронебойную пулю по нормали, а блок толщиной 50 мм — под углом, с учётом конструктивного угла установки прозрачной брони. Использованная на истребителях «Спитфайр Mk.VB» и Р-39 «Аэрокобра» 38-мм лобовая броня фонаря кабины обеспечивала только частичную защиту от бронебойных пуль винтовочного калибра. Прозрачная броня толщиной 76 мм защищала от 12,7-мм бронебойных пуль[7]. Лобовое бронестекло толщиной 75 мм, установленное на германском самолёте-штурмовике Hs-129, рассчитано на защиту лётчика с передней полусферы от 12,7-мм бронебойных пуль зенитного пулемета «ДШК» с дальностей 200—300 м. Среди конструкторов бронезащиты известен некий парадокс, согласно которому броня поражается совсем не теми средствами, на защиту от которых рассчитана. В действительности имеются свидетельства очевидцев времен войны о защите (спасении) лётчика при прямых попаданиях 20-мм разрывного снаряда в лобовое бронестекло кабины Ил-2.

На заключительном этапе войны происходит резкое увеличение толщин прозрачной брони, установленной на немецких реактивных истребителях Ме 163, Ме 262, He 162, Не 280 и др. Указанное было связано с тактикой их боевого применения по бомбардировщикам союзников (США и Великобритании), оборонительное вооружение которых было широко представлено крупнокалиберными 12,7-мм пулемётами «Кольт-Браунинг». В этом случае действие 12,7-мм пуль по броне самолёта-перехватчика происходило, в том числе, на встречных курсах, то есть при сложении векторов скоростей, при собственной скорости реактивного самолёта V=200 м/c. С учётом этого обстоятельства, на новых реактивных истребителях устанавливалось усиленное бронирование лётчика и некоторых уязвимых агрегатов только со стороны передней полусферы с обеспечением полной защиты от указанного калибра. Прозрачная броня фонаря кабины рассчитывалась на действие 12,7-мм бронебойных пуль и имела толщину 90-100 мм, толщины поперечной стальной брони, перекрывающей сечение фюзеляжа, достигали рекордных для авиации значений 15 и 20 мм[8][9][10].

В СССР вплоть до окончания войны требования по защите летчика (экипажа) прозрачной броней ограничивались исключительно калибром 7,62-7,92 мм. После окончания войны, во второй половине 1940-х годов возникла необходимость защиты и от огня 12,7 мм пулеметов A/N M2 «Кольт-Браунинг», являвшихся стандартным вооружением самолетов-истребителей ВВС США. В начале 1950-х годов в СССР, не без влияния немецкой практики защиты реактивных истребителей, была создана авиационная прозрачная броня для защиты от бронебойных снарядов 20-мм пушки Испано-Сюиза HS.404. Пушка HS.404 обладала наибольшей среди авиапушек этого калибра дульной энергией. Такая броня толщиной 124 мм была создана ВИАМом при участии М.В. Думнова, руководитель работ Б.В. Перов, и установлена, в частности, на штурмовике Ил-40 (см. Ссылки), истребителе-бомбардировщике Су-7 и некоторых других летательных аппаратах. Однако столь тяжёлая пассивная защита, её масса составляла порядка 280 кг/м2 масса стеклоблока 43 кг), с связи с бурным развитием в этот период сверхзвуковой авиации и ракетного вооружения самолётов, скоро стала анахронизмом, и при переходе к следующему поколению самолётов 1970-х годов от неё отказались. В этот же период, в связи со сменой военной доктрины СССР, отказались и от самих самолётов-штурмовиков. В США в 1950-е годы был принят на вооружение ВМС палубный штурмовик А-4 «Скайхок», прослуживший в строевых частях более 25 лет и широко применявшийся практически во всех вооруженных конфликтах 1960-х, 1970-х и 80-х годов.

Современное применение прозрачной брони

Лобовое бронестекло истребителя-бомбардировщика Панавиа «Торнадо» Прозрачная броня кабины вертолета Ми-24

По современным представлениям прозрачная броня, наряду с непрозрачной броней кабины пилота, является одним из элементов обеспечения боевой живучести летательных аппаратов (ЛА).

На самолётах-истребителях США третьего и четвёртого поколений (1970—1980 годов) прозрачная броня кабины практически отсутствует. В случаях установки прозрачной брони, например, на многоцелевом истребителе F-4E Phantom или палубном истребителе F-14 Tomcat, её толщины минимальны, и составляют 32 мм, а сама броня имеет скорее символическое значение. На палубном истребителе-бомбардировщике F/A-18 прозрачная броня отсутствует. Сказанное связано с рядом обстоятельств. В том числе, с принципиальным изменением средств поражения этого класса ЛА, вызванного заменой стрелково-пушечного вооружения истребителей на управляемое ракетное оружие с боевыми частями осколочного типа, укомплектованными неконтактными взрывателями. В этих условиях расположение точек подрыва боевой части ракеты относительно ЛА и кабины пилота (то есть направлений подхода поражающих элементов) приобретает равновероятный характер, при этом исчезает само представление о предпочтительных направлениях действия поражающего средства.

Вместе с тем, прозрачная броня используется для защиты экипажей боевых вертолётов, действующих в зонах досягаемости огня автоматического пехотного оружия. В 1971 году в СССР на вооружение принят транспортно-боевой вертолёт Ми-24[11]. Фонари кабин Ми-24 состоят из боковых панелей двойной кривизны из оргстекла и плоских лобовых пулестойких стеклоблоков. Широкие лобовые бронеблоки обеих, расположенных тандемом, кабин экипажа вместе со стальной бронёй кабины толщиной 4-5 мм надёжно защищают переднюю проекцию штурмана-оператора и пилота вертолёта от 7,62 мм пуль пехотного оружия. Прозрачная броня применяется для защиты кабины современных ударных вертолётов Ми-28 и Ка-50, передние и боковые окна которых выполнены из броневых стеклоблоков. По данным разработчиков, обеспечивается защита от пуль калибра 12,7 мм и 20-мм снарядов. Кабина бронированного штурмовика Су-25 с передних направлений обстрела также защищена прозрачным бронеблоком ТСК-137 толщиной 65 мм.

Требования к прозрачной броне

Прозрачная броня, применяемая на военных летательных аппаратах, должна обладать двумя обязательными качествами:

  • При пробитии поражающим средством давать минимум вторичных осколков;
  • При взаимодействии с этими средствами обеспечивать сохранение прозрачности на максимально возможной площади.

Первое требование, относящееся также к остеклению фонаря кабины, направлено на устранение возможности поражения или ранения экипажа вторичными осколками, образующимися при пробитии хрупких преград. Потеря прозрачности бронестекол, в частности на одноместных самолетах, практически эквивалентна их выводу из строя.

Прозрачная броня в наземной технике

Требования к прозрачной броне боевых бронированных машин лёгкой весовой категории определяются действующим в НАТО стандатом STANAG 4569. Стандартом предусматриваются несколько уровней защиты, переход от первого к следующим уровням, соответстует увеличению степени защищенности. Представления о применяемых толщинах и массах прозрачной брони дают нижеприведенные таблицы.

Типовая прозрачная броня военного назначения компании GKN Aerospace (Великобритания)[12]
Толщина
брони, мм
Национальный
стандарт
Оружие/
боеприпас
КалибрСредство испытания,
тип пули
Масса
пули, г
Ударная
скорость,
м/с
Кол-во зачётных
попаданий*
Масса
брони,
кг/м2
Условия
испытаний
40STANAG
4569
Уровень 1
Винтовка
и
осколочный
имитатор
FSP
5,56мм
5,56мм
7,62мм

20мм

5,56х45 ss109
M193 простая
7,62 х 51 простая
и
20мм FSP
4,00
3,56
9,65

53,8

900
937
833

550

3 попадания в
вершинах треуг-ка 120мм

FSP — 1 попадание

90При t окр. среды
48112t -19° и +49°С
58STANAG
4569
Уровень 2
Винтовка
и
осколочный
имитатор
FSP
7,62мм

20мм

7,62 х 39мм,
пуля «БЗ»
и
20мм FSP
7,77

53,8

695

630

3 попадания в
вершинах треуг-ка 120мм

FSP — 1 попадание

132При t окр. среды
64151«БЗ» при +75°С
FSP при t окр. среды
71161«БЗ» при +75°
FSP при -31°С
96STANAG
4569
Уровень 3
Винтовка
и
осколочный
имитатор FSP
7,62мм

20мм

7,62 х 54мм Б-32
и
20мм FSP
10,04

53,8

854

770

3 попадания в
вершинах треуг-ка 120мм

FSP — 1 попадание

224Б-32 при +65°

FSP при -40°С

102Винтовка
и
осколочный
имитатор FSP
7,62мм
7,62мм

20мм

7,62х54мм Б-32
7,62 х 51 AP FFV
и
20мм FSP
10,04
8,4

53,8

854
930

770

3 попадания в
вершинах треуг-ка 120мм

FSP — 1 попадание

239FFV при t окр. среды

FSP при -40°С

Примечания к таблице:
— FSP — (англ.) fragment simulating projectile — стандартный (в НАТО) осколочный имитатор. Цилиндрический боёк с площадкой притупления и высотой, приблизительно равной диаметру. В калибре 20 мм имитирует типовой осколок 155 мм осколочно-фугасного снаряда. Согласно требованию стандарта, при переходе от Уровня 1 к Уровню 3 наблюдается увеличение ударной скорости FSP с 550 до 770 м/с, чему соответствует уменьшение дистанции подрыва снаряда со 100 до 60 м.
— Патрон 7,62 х 51 мм НАТО с бронебойной пулей Bofors FFV (WC) содержит сердечник из карбида вольфрама. Характеризуется повышеным бронепробивным действием.
— * Количество зачетных попаданий (требуемое) — определяет живучесть стеклоблока при обстреле.


В последнее десятилетие рядом стран проводятся НИОКР по разработке более эффективной прозрачной брони, обладающей, при сохранении достигнутого уровня противопульной стойкости, меньшей массой и толщиной, и базирующейся на принципе построения комбинированной брони с высокотвердым лицевым керамическим слоем. Одним из перспективных материалов прозрачной керамики для брони является искусственный монокристаллический сапфир[13]. Ниже представлены сравнительные характеристики прозрачной брони компании Saint-Gobain (США) на основе монокристаллического сапфира EFG.


Сравнительные характеристики прозрачной брони с монослоем сапфира и традиционной прозрачной брони на основе силикатов[14]

Средство испытания,
тип пули
Кол-во зачетных
попаданий
Толщина
бронестекла, мм
Толщина ПБ
с сапфиром, мм
Выигрыш по толщине
сапфировой брони
Масса
бронестекла,
кг/ м2
Масса ПБ
с сапфиром,
кг/ м2
Выигрыш по массе
сапфировой брони
7,62 х 39мм, БЗ35820,864%1335658%
7,62 х 54мм Б-32310433,568%2488665%
7,62 х 54мм Б-3215524,855%11567,541%
20 мм FSP Vуд630 м/с1554420%13211414%
20 мм FSP Vуд770 м/с1705226%16012522%


Как отмечалось выше, в годы Второй мировой войны и после нее толщины авиационной прозрачной брони для защиты от 7,62 мм бронебойной пули типа Б-32, при стрельбе с дистанции порядка 30 м, составляли около 60 мм. Живучесть брони – 1 попадание в стеклоблок.

Данные, представленные в таблицах, показывают, что в настоящее время условие обеспечения живучести брони при обстреле, т.е сохранения ее противопульной стойкости при заданном расстоянии между отдельными поражениями (120 мм), приводит к практически двукратному (с 55 до 96-104 мм) увеличению толщины и массы (соответственно со 132 до 224-248 кг/ м2) брони. Одновременно требование по живучести прозрачной брони боевых машин сухопутных войск дополнено условием, выдерживать более сильные средства поражения, представленные, в первую очередь, 20 мм осколочным имитатором FSP или 7,62 мм пулей FFV с металлокерамическим (WC) сердечником.

См. также

Ссылки

  1. Jones, Christopher Transparent Ceramic Composite Armor – US Patent 7584689
  2. E. Strassburger. Ballistic testing of transparent armour ceramics. Journal of the European Ceramic Society. Volume 29, Issue 2, January 2009, Pages 267-273
  3. Шавров В. Б. История конструкций самолётов в СССР.-М.: Машиностроение, 1978, ч. 2, с. 417—429
  4. Развитие авиационной науки и техники в СССР (Историко-технические очерки).- М.: Наука, 1980, с. 328
  5. Grinsell R. Focke-Wulf Fw-190. London/Sydney: Jane’s Publ. Co. 1980
  6. Der Bruchvorgang beim Beschuss von Panzerglas. Bericht der TAL 14/43 Bearbeiter: Struth und Heitzmann
  7. Horas Alter. Aircraft Armor. — Army Ordnance, 1941, XXI, N 125, 497—498
  8. Jane’s All the Worlds Aircraft 1945—1946, pp. 123
  9. Лей В. Ракеты и полёты в космос.-М.: Военное издательство Министерства обороны, 1961, с. 409
  10. Jeffrey L. Ethell. The German Jets in Combat. Jane’s Publishing Co., London. 1980, pp. 56-57
  11. Ми-24 Hind — Описание
  12. Military Transparent Armor A4 GKN Data
  13. NATO Funds New Transparent Armour
  14. ADVANCES IN BALLISTIC PERFORMANCE OF COMMERCIALLY AVAILABLE SAINT-GOBAIN SAPPHIRE TRANSPARENT ARMOR COMPOSITES

Примечания

  • Штурмовик Ил-40  (рус.). avia-il.ru. — страница Штурмовик Ил-40 на сайте Самолеты ОКБ им. Ильюшина. Архивировано из первоисточника 25 марта 2012. Проверено 25 января 2009.

dic.academic.ru

Прозрачная броня Википедия

Испытания стеклоблока толщиной 55,6 мм, массой 1 м² защиты 116 кг, по требованиям стандарта НАТО STANAG 4569 Уровень 2. Три поражения пулей БЗ патрона 7,62х39 мм без пробития. Результат: полная потеря прозрачности. Слово «Броня» имеет и другие значения.

Прозрачная броня (или бронестекло) — броня, получаемая соединением слоёв силикатного стекла (закалённого, отпущенного, упрочнённого химическим травлением) со слоями полиуретанов, метилметакрилатов и поликарбонатов. Назначением прозрачной брони является защита людей, вооружения и военной техники от воздействия поражающих средств — пуль и осколков боеприпасов. В России для бронестёкол действует межгосударственный стандарт ГОСТ 30826-2014 «Стёкла защитные многослойные пулестойкие».

Требование оптической прозрачности и стремление обеспечить повышенное сопротивление внедрению высокоскоростного ударника обусловливают использование при изготовлении прозрачной брони упрочнённого силикатного стекла или иных высокотвёрдых прозрачных материалов (например, сапфира[1]), обладающих повышенной прочностью на сжатие[2].

При этом уменьшение склонности к хрупкому разрушению таких материалов достигается, отчасти, конструктивным путём — составлением стеклоблока из ряда слоёв материала, соединяемых в монолит прозрачной полимерной клеящей плёнкой.

История создания

Применение прозрачной брони началось в конце 1930-х годов и было вызвано развитием военной авиации. Вслед за появлением прозрачного фонаря кабины пилота из безосколочного органического стекла появляется необходимость защиты лётчика от пулемётного огня самолётов противника. Ввиду жёстких массовых и габаритных ограничений, присущих авиации, защита лётчика могла быть обеспечена лишь от самого малого (и наиболее массового) калибра пулемётно-пушечного вооружения того периода 7,62—7,92 мм. Это в полной мере относится как к прозрачной, так и к непрозрачной (металлической) броне, последняя по массе, выделенной на защиту самолёта, заметно превосходила прозрачную броню. В период Второй мировой войны прозрачная броня устанавливалась практически на всех типах боевых самолётов воюющих государств — истребителях, истребителях-бомбардировщиках, штурмовиках и бомбардировщиках.

На советском штурмовике Ил-2 устанавливалась «таблетированная» прозрачная броня марки К-4. Представляла собой слоистую композицию с внешним слоем из закалённого стекла (сталинита) толщиной 34 мм, набранного из плиток 100×150 мм, и внутренним слоем или «подушкой» из органического стекла 30 мм[3]. Выпускалась в виде плоских плит, слои соединялись тонкой плёнкой поливинилбутираля. При толщине 64 мм и массе 120 кг/м² броня К-4 не пробивалась 7,62 мм бронебойной пулей при стрельбе практически в упор (Д=30 м). В том или ином виде «таблетированная» броня применялась на всех типах советских самолётов — истребителях Яковлева Як-7 и Як-9, Лавочкина Ла-5 и Ла-7 и др. Полигонные испытания советской прозрачной брони обстрелом проводились бронебойной пулей Б-30 по нормали к поверхности брони, дистанция стрельбы составляла 30 м[4]. К 1943 году создана улучшенная броня марки К-5 со сплошными слоями силикатного стекла, установлена на штурмовике Ил-10.

В СССР работы по созданию прозрачной брони на основе органического стекла проводились Всесоюзным институтом авиационных материалов ВИАМ. Один из создателей брони инженер М. В. Думнов. Руководители этой работы Б. В. Ерофеев и М. М. Гудимов были удостоены Сталинской премии[5].

На немецких самолётах широко применялась «триплексированное» бронестекло — пакет из закалённых стеклопластин, склеенных в монолит прозрачным клеем. На самолётах Fw-190 серий А4—А8 устанавливалось четырёхслойное (6+17+18+6 мм) лобовое бронестекло толщиной 50 мм под углом 25 градусов к продольной оси машины. Масса стеклоблока 14,6 кг или 120 кг/м² [6]. Испытания брони на стойкость проводилось на образцах размером 400×330 мм одиночным обстрелом бронебойной пулей SmK 7,9 мм из пулемёта MG 17 с дистанции 50 м. В годы войны Институт баллистики Технической академии ВВС Германии Technische Akademie der Luftwaffe под руководством Г. Шардина изучал процессы последовательного разрушения слоёв стекла при пробитии прозрачной брони пулями с помощью высокочастотной искровой камеры[7].

В целом, противопульная прозрачная броня, при равной со стальной бронёй стойкости, имела приблизительно одинаковую с ней массу квадратного метра защиты, но в четыре раза большую толщину, последнее является, своего рода, платой за прозрачность. Аналогично стальной (металлической) броне, с увеличением угла обстрела прозрачной брони от нормали, её стойкость увеличивается (дистанция непробития брони уменьшается). Иными словами, стойкость брони положительно реагирует на изменение косинуса угла соударения. Серийная прозрачная броня периода Второй мировой войны в толщинах 50—60 мм обеспечивала защиту от 7,62—7,92-мм бронебойных пуль с нулевой дальности. При этом стеклоблок толщиной 60 мм выдерживал бронебойную пулю по нормали, а блок толщиной 50 мм — под углом, с учётом конструктивного угла установки прозрачной брони.

Использованная на истребителях «Спитфайр Mk.VB» и Р-39 «Аэрокобра» 38-мм лобовая броня фонаря кабины обеспечивала только частичную защиту от бронебойных пуль винтовочного калибра. Прозрачная броня толщиной 76 мм защищала от 12,7-мм бронебойных пуль[8]. Лобовое бронестекло толщиной 75 мм, установленное на германском самолёте-штурмовике Hs-129, рассчитано на защиту лётчика с передней полусферы от 12,7-мм бронебойных пуль зенитного пулемёта «ДШК» с дальностей 200—300 м. Среди конструкторов бронезащиты известен парадокс, согласно которому броня поражается совсем не теми средствами (заданными ТТТ), на защиту от которых рассчитана. В действительности имеются свидетельства очевидцев времён войны о защите (спасении) лётчика при прямых попаданиях 20-мм разрывного снаряда в лобовое бронестекло кабины Ил-2.

Поскольку заданная тактико-техническими требованиями (ТТТ) боевая живучесть Ил-2 была реализована применительно к действию бронебойных пуль нормального калибра (7,62—7,92 мм), нет ничего странного в итоговой оценке результатов боевого применения Ил-2: «Лобовые бронестекла кабины летчика не выдерживали поражений и разрушались от попадания пуль крупного калибра, малокалиберных снарядов и зенитных осколков, давая при этом многочисленные осколки стекла, приводящие к ранениям летчика»[9]. Сразу после войны эти недостатки были учтены. Тактико-техническими требованиями 1945 года (ТТТ-45) ставилось требование обеспечения броневой защиты экипажа штурмовиков от боеприпасов пушки HS-404 калибра 20 мм с дистанции стрельбы 50 м[9].

На заключительном этапе войны происходит резкое увеличение толщин прозрачной брони, установленной на немецких реактивных истребителях Ме 163, Ме 262, He 162, Не 280 и др. Указанное было связано с тактикой их боевого применения по бомбардировщикам союзников (США и Великобритании), оборонительное вооружение которых было широко представлено крупнокалиберными 12,7-мм пулемётами «Кольт-Браунинг». В этом случае действие 12,7-мм пуль по броне самолёта-перехватчика происходило, в том числе, на встречных курсах, то есть при сложении векторов скоростей, при собственной скорости реактивного самолёта V=200 м/c. С учётом этого обстоятельства, на новых реактивных истребителях устанавливалось усиленное бронирование лётчика и некоторых уязвимых агрегатов только со стороны передней полусферы с обеспечением полной защиты от указанного калибра. Прозрачная броня фонаря кабины рассчитывалась на действие 12,7-мм бронебойных пуль и имела толщину 90—100 мм, толщины поперечной стальной брони, перекрывающей сечение фюзеляжа, также достигали рекордных для авиации значений 15 и 20 мм[10][11][12].

Послевоенное развитие прозрачной брони

Жаклин Кокран в кабине F-86 Sabre (основного истребителя США времён Корейской войны) и Чарльз Йегер. Лобовое бронестекло козырька имело скорее символическое значение, и по толщине значительно уступало аналогичному советского МиГ-15. Приоритет лучшей обзорности кабины F-86 («владение обстановкой»), а не живучести/защищённости. Высвободившаяся масса — в пользу более совершенного БРЭО, в том числе радиолокационного прицела. 20-мм бронебойно-трассирующий снаряд пушки Испано-Сюиза.

В СССР вплоть до окончания войны требования по защите лётчика (экипажа) прозрачной бронёй ограничивались исключительно калибром 7,62—7,92 мм. После окончания войны, в конце 1940-х годов возникла необходимость защиты кабины и от огня 12,7-мм пулемётов A/N M2 «Кольт-Браунинг», являвшихся стандартным вооружением реактивных самолётов-истребителей ВВС США, в том числе по опыту войны в Корее. Специалистами ВИАМ было установлено положительное влияние металлической обоймы на стойкость прозрачной брони. И на реактивных самолётах истребителях и истребителях-бомбардировщиках выпуска 1950-х и 1960-х и 1970-х годов прозрачная броня кабины имела стандартное металлическое обрамление.

В начале 1950-х годов в СССР, не без влияния немецкой практики защиты реактивных истребителей, была создана авиационная прозрачная броня для защиты от бронебойно-трассирующего (AP-T) снаряда М75 20-мм авиапушки Испано-Сюиза HS-404, масса снаряда 165 г, см. рисунок. Пушка HS-404 обладала наибольшей среди авиапушек этого калибра дульной энергией. Такая броня толщиной 124 мм была создана ВИАМом при участии М.В. Думнова, руководитель работ Б.В. Перов, и установлена, в частности, на штурмовике Ил-40 (см. Ссылки), истребителе-бомбардировщике Су-7 и некоторых других летательных аппаратах. Однако столь тяжёлая пассивная защита, её масса составляла порядка 280 кг/м2 масса стеклоблока 43 кг, с связи с бурным развитием в этот период сверхзвуковой авиации и ракетного вооружения самолётов, вскоре стала анахронизмом, и при переходе к следующему поколению самолётов 1970-х годов от неё отказались. В этот же период, в связи со сменой военной доктрины СССР, отказались и от самих самолётов-штурмовиков. В США в 1950-е годы был принят на вооружение ВМС лёгкий палубный штурмовик А-4 «Скайхок», прослуживший в строевых частях более 25 лет и широко применявшийся практически во всех локальных конфликтах 1960-х, 1970-х и 80-х годов.

Современное применение прозрачной брони

Лобовое бронестекло истребителя-бомбардировщика Панавиа «Торнадо» Лобовое бронестекло кабины вертолёта Ми-24. Внизу 4-ствольный пулемёт ЯкБ-12,7. Модернизированный A-10C Thunderbolt II с новым фонарём кабины, лобовое бронестекло козырька.

По современным представлениям прозрачная броня, наряду с непрозрачной бронёй кабины пилота, является одним из элементов обеспечения боевой живучести летательных аппаратов (ЛА).

На самолётах-истребителях США третьего и четвёртого поколений (1970—1980 годов) прозрачная броня кабины практически отсутствует. В случаях установки прозрачной брони, например, на многоцелевом истребителе F-4E Phantom или палубном истребителе F-14 Tomcat, её толщины минимальны, и составляют 32 мм, а сама броня имеет скорее символическое значение. На палубном истребителе-бомбардировщике F/A-18 прозрачная броня отсутствует. Сказанное связано с рядом обстоятельств. В том числе, с принципиальным изменением средств поражения этого класса ЛА, вызванного заменой стрелково-пушечного вооружения истребителей на управляемое ракетное оружие с боевыми частями осколочного типа, укомплектованными неконтактными взрывателями. В этих условиях расположение точек подрыва боевой части ракеты относительно ЛА и кабины пилота (то есть направлений подхода поражающих элементов к броне) приобретает равновероятный характер, и, как следствие, исчезает само представление о предпочтительных направлениях действия поражающего средства.

Вместе с тем, прозрачная броня используется для защиты экипажей боевых вертолётов, действующих в зонах досягаемости огня автоматического пехотного оружия. В 1971 году в СССР на вооружение принят транспортно-боевой вертолёт Ми-24[13]. Фонари кабин Ми-24 состоят из боковых панелей двойной кривизны из оргстекла и плоских лобовых пулестойких стеклоблоков. Широкие лобовые бронеблоки обеих, расположенных тандемом, кабин экипажа вместе со стальной бронёй кабины толщиной 4—5 мм защищают переднюю проекцию штурмана-оператора и пилота вертолёта от 7,62-мм пуль пехотного оружия. Прозрачная броня применяется для защиты кабины современных ударных вертолётов Ми-28 и Ка-50, передние и боковые окна которых выполнены из броневых стеклоблоков. По данным разработчиков, обеспечивается защита указанных машин от бронебойных пуль калибра 12,7 мм и 20-мм снарядов. Кабина бронированного штурмовика Су-25 с передних направлений обстрела также защищена прозрачным бронеблоком ТСК-137 толщиной 65 мм.

Требования к прозрачной броне

Прозрачная броня, применяемая на военных летательных аппаратах, должна обладать двумя обязательными качествами:

  • При пробитии поражающим средством давать минимум вторичных осколков;
  • При взаимодействии с этими средствами обеспечивать сохранение прозрачности на максимально возможной площади.

Первое требование, относящееся также к остеклению фонаря кабины, направлено на устранение возможности поражения или ранения экипажа вторичными осколками, образующимися при пробитии хрупких преград. Потеря прозрачности бронестёкол, в частности на одноместных самолётах, практически эквивалентна их выводу из строя.

Прозрачная броня в наземной технике

Требования к прозрачной броне боевых бронированных машин лёгкой весовой категории определяются действующим в НАТО стандартом STANAG 4569. Стандартом предусматриваются несколько уровней защиты, переход от первого к следующим уровням, соответствует увеличению степени защищённости. Представления о применяемых толщинах и массах прозрачной брони дают нижеприведённые таблицы.

Типовая прозрачная броня военного назначения компании GKN Aerospace (Великобритания)[14]
Толщина
брони, мм
Национальный
стандарт
Оружие/
боеприпас
КалибрСредство испытания,
тип пули
Масса
пули, г
Ударная
скорость,
м/с
Кол-во зачётных
попаданий*
Масса
брони,
кг/м2
Условия
испытаний
40STANAG
4569
Уровень 1
Винтовка
и
осколочный
имитатор
FSP
5,56 мм
5,56 мм
7,62 мм

20 мм

5,56×45 ss109
M193 простая
7,62×51 простая
и
20 мм FSP
4,00
3,56
9,65

53,8

900
937
833

550

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

90При t окр. среды
48112t −19° и +49°С
58STANAG
4569
Уровень 2
Винтовка
и
осколочный
имитатор
FSP
7,62 мм

20 мм

7,62×39 мм,
пуля «БЗ»
и
20 мм FSP
7,77

53,8

695

630

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

132При t окр. среды
64151«БЗ» при +75°С
FSP при t окр. среды
71161«БЗ» при +75°
FSP при −31°С
96STANAG
4569
Уровень 3
Винтовка
и
осколочный
имитатор FSP
7,62 мм

20 мм

7,62×54 мм Б-32
и
20 мм FSP
10,04

53,8

854

770

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

224Б-32 при +65°

FSP при −40°С

102Винтовка
и
осколочный
имитатор FSP
7,62 мм
7,62 мм

20 мм

7,62×54 мм Б-32
7,62×51 AP FFV
и
20 мм FSP
10,04
8,4

53,8

854
930

770

3 попадания
в вершинах треуг-ка 120 мм

FSP 1 попадание

239FFV при t окр. среды

FSP при −40°С

Примечания к таблице:
FSP — (англ.) fragment simulating projectile — стандартный (в НАТО) осколочный имитатор. Цилиндрический боёк с площадкой притупления и высотой, приблизительно равной диаметру. В калибре 20 мм имитирует типовой осколок 155 мм осколочно-фугасного снаряда. Согласно требованию стандарта, при переходе от уровня 1 к уровню 3 наблюдается увеличение ударной скорости FSP с 550 до 770 м/с, чему соответствует уменьшение дистанции подрыва снаряда со 100 до 60 м.
Патрон 7,62×51 мм НАТО с бронебойной пулей Bofors FFV (WC) содержит сердечник из карбида вольфрама. Характеризуется повышеным бронепробивным действием.
* Количество зачётных попаданий (требуемое) — определяет живучесть стеклоблока при обстреле.

В последнее десятилетие рядом стран проводятся НИОКР по разработке более эффективной прозрачной брони, обладающей, при сохранении достигнутого уровня противопульной стойкости, меньшей массой и толщиной, и базирующейся на принципе построения комбинированной брони с высокотвёрдым лицевым керамическим слоем. Одним из перспективных материалов прозрачной керамики для брони является искусственный монокристаллический сапфир[15]. Ниже представлены сравнительные характеристики прозрачной брони компании Saint-Gobain (США) на основе монокристаллического сапфира, выращенного по технологии EFG™ (Edge-defined Film-fed Growth)[16].

Сравнительные характеристики прозрачной брони с монослоем сапфира и традиционной прозрачной брони на основе силикатов[17]

Средство испытания,
тип пули
Кол-во зачётных
попаданий
Толщина
бронестекла, мм
Толщина ПБ
с сапфиром, мм
Выигрыш по толщине
сапфировой брони
Масса
бронестекла,
кг/м2
Масса ПБ
с сапфиром,
кг/м2
Выигрыш по массе
сапфировой брони
7,62×39 мм, БЗ35820,864%1335658%
7,62×54 мм Б-32310433,568%2488665%
7,62×54 мм Б-3215524,855%11567,541%
20 мм FSP Vуд630 м/с1554420%13211414%
20 мм FSP Vуд770 м/с1705226%16012522%

Как отмечалось выше, в годы Второй мировой войны и после неё толщины авиационной прозрачной брони для защиты от 7,62-мм бронебойной пули типа Б-32, при стрельбе с дистанции порядка 30 м, составляли около 60 мм. Живучесть брони — 1 попадание в стеклоблок.

Данные, представленные в таблицах, наглядно показывают, что предъявляемое в настоящее время требование обеспечения живучести брони при обстреле, т.е. сохранения её противопульной стойкости при заданном (ограниченном) расстоянии между поражениями (120 мм), приводит к практически двукратному (с 55 до 96—104 мм) увеличению толщины и массы (соответственно со 132 до 224—248 кг/м2) брони. Одновременно требование по живучести прозрачной брони боевых машин сухопутных войск дополнено условием, выдерживать более сильные средства поражения, представленные, в первую очередь, 20 мм осколочным имитатором FSP или 7,62-мм пулей FFV с металлокерамическим (WC) сердечником.

См. также

Ссылки

  1. ↑ Jones, Christopher Transparent Ceramic Composite Armor – US Patent 7584689
  2. ↑ E. Strassburger. Ballistic testing of transparent armour ceramics. Journal of the European Ceramic Society. Volume 29, Issue 2, January 2009, Pages 267‒273
  3. ↑ Шавров В. Б. История конструкций самолётов в СССР. — М.: Машиностроение, 1978, ч. 2, с. 417—429
  4. ↑ Опытным путём было установлено, что оптимальная стойкость для калибра 7,62 мм обеспечивается при соотношениях масс силикатного и органического стекла приблизительно 50:50.
  5. ↑ Развитие авиационной науки и техники в СССР (Историко-технические очерки). — М.: Наука, 1980, с. 328
  6. ↑ Grinsell R. Focke-Wulf Fw-190. London/Sydney: Jane’s Publ. Co. 1980
  7. ↑ Der Bruchvorgang beim Beschuss von Panzerglas. Bericht der TAL 14/43 Bearbeiter: Struth und Heitzmann
  8. ↑ Horas Alter. Aircraft Armor. — Army Ordnance, 1941, XXI, N 125, 497—498
  9. 1 2 О.В. Растренин «Летающие танки» Ильюшина. Наследники Ил-2. Наследники Ил-2. — «Яуза», 2018 — (Война и мы. Авиаколлекция). ISBN 978-5-04-089216-7, с. 12, 31.
  10. ↑ Jane’s All the Worlds Aircraft 1945—1946, pp. 123
  11. ↑ Лей В. Ракеты и полёты в космос. — М.: Военное издательство Министерства обороны, 1961, с. 409
  12. ↑ Jeffrey L. Ethell. The German Jets in Combat. Jane’s Publishing Co., London. 1980, pp. 56‒57
  13. ↑ Ми-24 Hind — Описание
  14. ↑ Military Transparent Armor A4 GKN Data
  15. ↑ NATO Funds New Transparent Armour
  16. ↑ C.D. Jones, J.B. Rioux, J.W. Locher, Large-Area Saphire for Transparent Armor, Proceedings of the 32nd International Conference on Advanced Ceramics and Composites. The American Ceramic Society, pp. 113‒124, Jan. 2008.
  17. ↑ Advances in Ballistic of Commercially Available Saint-Gobain Sapphire Transparent Armor Composites

Примечания

  • Штурмовик Ил-40 (рус.). avia-il.ru. — страница Штурмовик Ил-40 на сайте Самолёты ОКБ им. Ильюшина. Проверено 25 января 2009. Архивировано 25 марта 2012 года.

wikiredia.ru

Прозрачная броня | Армейский вестник

Бронестекло из Гусь-Хрустального является непреодолимой преградой для всех видов автоматического стрелкового оружия. Рост террористической активности, заказные убийства бизнесменов и коммерсантов, нападения на инкассаторов, локальные войны и вооруженные конфликты, протестные акции радикальных группировок и антиглобалистов – вот реалии современного мира, которые в равной степени затрагивают все без исключения государства.
Последние события наглядно иллюстрируют данный вывод. Чудом предотвращенный теракт в Нью-Йорке, где в центре города был обнаружен заминированный автомобиль, террористические вылазки на Северном Кавказе, а также массовые беспорядки в греческой столице Афинах, когда разбушевавшаяся толпа закидывала камнями и бутылками с зажигательной смесью административные здания и банковские офисы – все это события одного порядка. Не случайно, что вопросы безопасности в ее самом широком аспекте сегодня выходят на первый план.

• Планируя те или иные противоправные акции, злоумышленники ищут «окна уязвимости», чтобы взять потенциальную цель в перекрестье прицела. И здесь непреодолимой преградой на их пути может стать бронестекло, которое производит компания «Магистраль», расположенная в традиционном для России центре стеклопроизводства – городе Гусь-Хрустальном Владимирской области.

• На протяжении 18 лет деятельности компания постоянно совершенствует технологию производственного процесса и улучшает качество выпускаемой продукции, внедряя новые технологии. Сегодня компания «Магистраль» – крупнейший завод в России по производству транспортного бронестекла. За последние 5 лет здесь было произведено более 10 000 комплектов автомобильных бронестекол. С каждым выпущенным комплектом растёт опыт, совершенствуется технологический потенциал.
• Это позволяет компании уверенно занимать лидирующие позиции на рынке, не просто опережая менее опытных поставщиков сходной продукции, а значительно превосходя их благодаря безупречному качеству оптики, высоким геометрическим показателям и параметрам пулестойкости, созданных с применением новейших высоких технологий.

• Компанией «Магистраль» разработаны уникальные технологии, позволяющие, например, реализовать беспроволочный обогрев бронестекол. Раньше обогрев бронестекол, предотвращающий их обледенение и запотевание, обычно производился путем «вживления» тонких электрических проводов между слоями стеклоблока. Эта технология имеет ряд недостатков:
— заметно ухудшается видимость через такие бронестекла;
— при движении транспорта (особенно в темное время суток) провода бликуют в свете, например, прожекторов или встречных фар, отвлекая внимание водителей и бойцов и быстро утомляя их;
— ухудшается зрение экипажа;
— при нагреве стекла таким проволочным обогревом из-за разности температур изображение за стеклом заметно «плывет», дезориентируя смотрящего.

В условиях ведения боевых действий такие недостатки могут играть решающую роль, а бронестекло, созданное чтобы защищать личный состав, может, наоборот, стать причиной гибели людей. Разработанная компанией «Магистраль» технология беспроволочного обогрева бронестекол позволяет без применения проводов на поверхности стекла равномерно ее нагревать. В результате достигается лучшая видимость, не «плывет» изображение, тем самым исключается неблагоприятное воздействие на зрение бойцов и водителей, что имеет решающее значение в экстремальных условиях, в том числе при ведении боевых действий.

• Другой важной разработкой компании «Магистраль» является встроенная в бронестекло бронебойница с увеличенным углом обстрела по сравнению с обычными бойницами такого типа. Это позволяет экипажу максимально эффективно вести огонь по противнику, в том числе и прицельный.

Весь спектр выпускаемых бронестекол сертифицирован на соответствие стандарту РФ ГОСТ Р 51136-2008, стандарту Республики Беларусь ГОСТ 30826-2001, стандарту Европейского Союза DIN EN 1063. В настоящее время компания «Магистраль ЛТД» проводит исследовательские работы с целью уменьшения толщины бронестекла и сертификации продукции по стандартам NIJ 0108.0 1, Stanag 4569.
• Компания «Магистраль» имеет лицензии Федерального агентства по промышленности на разработку и производство специальных стекол для авиационной и военной техники.
• Вся продукция оборонного назначения проходит приёмку военными представителями Министерства обороны России.

• При производстве продукции применяются только специально подобранные для изготовления защитного остекления материалы и комплектующие лучших российских и мировых производителей, проходящие к тому же дополнительный межоперационный контроль. Всё это позволяет достигать минимальной толщины и массы бронестекла в каждом из классов защиты.

Бронестёкла адаптированы к сложным природным и климатическим условиям и успешно применяются как в северных районах, где столбик термометра опускается ниже -45°С, так и на юге при температуре до +60°С.

• В 2010 году по требованию Министерства обороны России были проведены испытания по ужесточенным требованиям: после двухчасовой выдержки при температуре -45°С бронестекло было подвергнуто обстрелу из винтовки Мосина пулей ЛПС калибра 7,62 мм. При таких условиях ударная нагрузка на бронестекло значительно превышает требования ГОСТ и, тем не менее, оно безупречно выдержало все испытания.

• В настоящее время серийно производятся сложные моллированные (гнутые) изделия для автомобилей всех известных марок и моделей, а также высокотехнологичные электрообогревные бронестекла для автомобильного, водного и железнодорожного транспорта, бронированные стеклопакеты, пулестойкие забрала из современных поликарбонатных материалов для защитных противопульных шлемов.
Пулестойкость стекол контролируют на полигонах и в специальных лабораториях Главного управления НПО «Спецтехника и связь» МВД РФ, НИИ Стали, 38 НИИИ МО РФ, лаборатории Beschussamt в городе Ульм, Германия. Полевые испытания в полной мере подтверждают соответствие стекла требованиям НТД.

Испытания проводят на трёх образцах размером не менее 500×500 мм, ранее прошедших климатические испытания. Каждый образец подвергают трём выстрелам по вершинам равностороннего треугольника со сторонами 125±10 мм. Скорость полёта пули при каждом выстреле должна быть измерена и зафиксирована. Характер поражения контролируют после каждого выстрела по состоянию тыльной стороны объекта и контрольного экрана. Прострелом считается сквозное пробитие образца пулей или поражение контрольного экрана осколками стекла.

• Ставка на высокое качество, инновационные разработки, совершенствование технологий и техническое перевооружение производства позволяют компании «Магистраль» в современных условиях разрабатывать новые продукты, применять свой опыт и высокий потенциал там, где это необходимо для национальной безопасности и обороны.

/Ольга Шилова «Национальная оборона»/

army-news.ru

Прозрачная броня — Википедия

Испытания стеклоблока толщиной 55,6 мм, массой 1 м² защиты 116 кг, по требованиям стандарта НАТО STANAG 4569 Уровень 2. Три поражения пулей БЗ патрона 7,62х39 мм без пробития. Результат: полная потеря прозрачности. Слово «Броня» имеет и другие значения.

Прозрачная броня (или бронестекло) — броня, получаемая соединением слоёв силикатного стекла (закалённого, отпущенного, упрочнённого химическим травлением) со слоями полиуретанов, метилметакрилатов и поликарбонатов. Назначением прозрачной брони является защита людей, вооружения и военной техники от воздействия поражающих средств — пуль и осколков боеприпасов. В России для бронестёкол действует межгосударственный стандарт ГОСТ 30826-2014 «Стёкла защитные многослойные пулестойкие».

Требование оптической прозрачности и стремление обеспечить повышенное сопротивление внедрению высокоскоростного ударника обусловливают использование при изготовлении прозрачной брони упрочнённого силикатного стекла или иных высокотвёрдых прозрачных материалов (например, сапфира[1]), обладающих повышенной прочностью на сжатие[2].

При этом уменьшение склонности к хрупкому разрушению таких материалов достигается, отчасти, конструктивным путём — составлением стеклоблока из ряда слоёв материала, соединяемых в монолит прозрачной полимерной клеящей плёнкой.

История создания

Применение прозрачной брони началось в конце 1930-х годов и было вызвано развитием военной авиации. Вслед за появлением прозрачного фонаря кабины пилота из безосколочного органического стекла появляется необходимость защиты лётчика от пулемётного огня самолётов противника. Ввиду жёстких массовых и габаритных ограничений, присущих авиации, защита лётчика могла быть обеспечена лишь от самого малого (и наиболее массового) калибра пулемётно-пушечного вооружения того периода 7,62—7,92 мм. Это в полной мере относится как к прозрачной, так и к непрозрачной (металлической) броне, последняя по массе, выделенной на защиту самолёта, заметно превосходила прозрачную броню. В период Второй мировой войны прозрачная броня устанавливалась практически на всех типах боевых самолётов воюющих государств — истребителях, истребителях-бомбардировщиках, штурмовиках и бомбардировщиках.

На советском штурмовике Ил-2 устанавливалась «таблетированная» прозрачная броня марки К-4. Представляла собой слоистую композицию с внешним слоем из закалённого стекла (сталинита) толщиной 34 мм, набранного из плиток 100×150 мм, и внутренним слоем или «подушкой» из органического стекла 30 мм[3]. Выпускалась в виде плоских плит, слои соединялись тонкой плёнкой поливинилбутираля. При толщине 64 мм и массе 120 кг/м² броня К-4 не пробивалась 7,62 мм бронебойной пулей при стрельбе практически в упор (Д=30 м). В том или ином виде «таблетированная» броня применялась на всех типах советских самолётов — истребителях Яковлева Як-7 и Як-9, Лавочкина Ла-5 и Ла-7 и др. Полигонные испытания советской прозрачной брони обстрелом проводились бронебойной пулей Б-30 по нормали к поверхности брони, дистанция стрельбы составляла 30 м[4]. К 1943 году создана улучшенная броня марки К-5 со сплошными слоями силикатного стекла, установлена на штурмовике Ил-10.

В СССР работы по созданию прозрачной брони на основе органического стекла проводились Всесоюзным институтом авиационных материалов ВИАМ. Один из создателей брони инженер М. В. Думнов. Руководители этой работы Б. В. Ерофеев и М. М. Гудимов были удостоены Сталинской премии[5].

На немецких самолётах широко применялась «триплексированное» бронестекло — пакет из закалённых стеклопластин, склеенных в монолит прозрачным клеем. На самолётах Fw-190 серий А4—А8 устанавливалось четырёхслойное (6+17+18+6 мм) лобовое бронестекло толщиной 50 мм под углом 25 градусов к продольной оси машины. Масса стеклоблока 14,6 кг или 120 кг/м² [6]. Испытания брони на стойкость проводилось на образцах размером 400×330 мм одиночным обстрелом бронебойной пулей SmK 7,9 мм из пулемёта MG 17 с дистанции 50 м. В годы войны Институт баллистики Технической академии ВВС Германии Technische Akademie der Luftwaffe под руководством Г. Шардина изучал процессы последовательного разрушения слоёв стекла при пробитии прозрачной брони пулями с помощью высокочастотной искровой камеры[7].

В целом, противопульная прозрачная броня, при равной со стальной бронёй стойкости, имела приблизительно одинаковую с ней массу квадратного метра защиты, но в четыре раза большую толщину, последнее является, своего рода, платой за прозрачность. Аналогично стальной (металлической) броне, с увеличением угла обстрела прозрачной брони от нормали, её стойкость увеличивается (дистанция непробития брони уменьшается). Иными словами, стойкость брони положительно реагирует на изменение косинуса угла соударения. Серийная прозрачная броня периода Второй мировой войны в толщинах 50—60 мм обеспечивала защиту от 7,62—7,92-мм бронебойных пуль с нулевой дальности. При этом стеклоблок толщиной 60 мм выдерживал бронебойную пулю по нормали, а блок толщиной 50 мм — под углом, с учётом конструктивного угла установки прозрачной брони.

Использованная на истребителях «Спитфайр Mk.VB» и Р-39 «Аэрокобра» 38-мм лобовая броня фонаря кабины обеспечивала только частичную защиту от бронебойных пуль винтовочного калибра. Прозрачная броня толщиной 76 мм защищала от 12,7-мм бронебойных пуль[8]. Лобовое бронестекло толщиной 75 мм, установленное на германском самолёте-штурмовике Hs-129, рассчитано на защиту лётчика с передней полусферы от 12,7-мм бронебойных пуль зенитного пулемёта «ДШК» с дальностей 200—300 м. Среди конструкторов бронезащиты известен парадокс, согласно которому броня поражается совсем не теми средствами (заданными ТТТ), на защиту от которых рассчитана. В действительности имеются свидетельства очевидцев времён войны о защите (спасении) лётчика при прямых попаданиях 20-мм разрывного снаряда в лобовое бронестекло кабины Ил-2.

Поскольку заданная тактико-техническими требованиями (ТТТ) боевая живучесть Ил-2 была реализована применительно к действию бронебойных пуль нормального калибра (7,62—7,92 мм), нет ничего странного в итоговой оценке результатов боевого применения Ил-2: «Лобовые бронестекла кабины летчика не выдерживали поражений и разрушались от попадания пуль крупного калибра, малокалиберных снарядов и зенитных осколков, давая при этом многочисленные осколки стекла, приводящие к ранениям летчика»[9]. Сразу после войны эти недостатки были учтены. Тактико-техническими требованиями 1945 года (ТТТ-45) ставилось требование обеспечения броневой защиты экипажа штурмовиков от боеприпасов пушки HS-404 калибра 20 мм с дистанции стрельбы 50 м[9].

На заключительном этапе войны происходит резкое увеличение толщин прозрачной брони, установленной на немецких реактивных истребителях Ме 163, Ме 262, He 162, Не 280 и др. Указанное было связано с тактикой их боевого применения по бомбардировщикам союзников (США и Великобритании), оборонительное вооружение которых было широко представлено крупнокалиберными 12,7-мм пулемётами «Кольт-Браунинг». В этом случае действие 12,7-мм пуль по броне самолёта-перехватчика происходило, в том числе, на встречных курсах, то есть при сложении векторов скоростей, при собственной скорости реактивного самолёта V=200 м/c. С учётом этого обстоятельства, на новых реактивных истребителях устанавливалось усиленное бронирование лётчика и некоторых уязвимых агрегатов только со стороны передней полусферы с обеспечением полной защиты от указанного калибра. Прозрачная броня фонаря кабины рассчитывалась на действие 12,7-мм бронебойных пуль и имела толщину 90—100 мм, толщины поперечной стальной брони, перекрывающей сечение фюзеляжа, также достигали рекордных для авиации значений 15 и 20 мм[10][11][12].

Послевоенное развитие прозрачной брони

Жаклин Кокран в кабине F-86 Sabre (основного истребителя США времён Корейской войны) и Чарльз Йегер. Лобовое бронестекло козырька имело скорее символическое значение, и по толщине значительно уступало аналогичному советского МиГ-15. Приоритет лучшей обзорности кабины F-86 («владение обстановкой»), а не живучести/защищённости. Высвободившаяся масса — в пользу более совершенного БРЭО, в том числе радиолокационного прицела. 20-мм бронебойно-трассирующий снаряд пушки Испано-Сюиза.

В СССР вплоть до окончания войны требования по защите лётчика (экипажа) прозрачной бронёй ограничивались исключительно калибром 7,62—7,92 мм. После окончания войны, в конце 1940-х годов возникла необходимость защиты кабины и от огня 12,7-мм пулемётов A/N M2 «Кольт-Браунинг», являвшихся стандартным вооружением реактивных самолётов-истребителей ВВС США, в том числе по опыту войны в Корее. Специалистами ВИАМ было установлено положительное влияние металлической обоймы на стойкость прозрачной брони. И на реактивных самолётах истребителях и истребителях-бомбардировщиках выпуска 1950-х и 1960-х и 1970-х годов прозрачная броня кабины имела стандартное металлическое обрамление.

В начале 1950-х годов в СССР, не без влияния немецкой практики защиты реактивных истребителей, была создана авиационная прозрачная броня для защиты от бронебойно-трассирующего (AP-T) снаряда М75 20-мм авиапушки Испано-Сюиза HS-404, масса снаряда 165 г, см. рисунок. Пушка HS-404 обладала наибольшей среди авиапушек этого калибра дульной энергией. Такая броня толщиной 124 мм была создана ВИАМом при участии М.В. Думнова, руководитель работ Б.В. Перов, и установлена, в частности, на штурмовике Ил-40 (см. Ссылки), истребителе-бомбардировщике Су-7 и некоторых других летательных аппаратах. Однако столь тяжёлая пассивная защита, её масса составляла порядка 280 кг/м2 масса стеклоблока 43 кг, с связи с бурным развитием в этот период сверхзвуковой авиации и ракетного вооружения самолётов, вскоре стала анахронизмом, и при переходе к следующему поколению самолётов 1970-х годов от неё отказались. В этот же период, в связи со сменой военной доктрины СССР, отказались и от самих самолётов-штурмовиков. В США в 1950-е годы был принят на вооружение ВМС лёгкий палубный штурмовик А-4 «Скайхок», прослуживший в строевых частях более 25 лет и широко применявшийся практически во всех локальных конфликтах 1960-х, 1970-х и 80-х годов.

Видео по теме

Современное применение прозрачной брони

Лобовое бронестекло истребителя-бомбардировщика Панавиа «Торнадо» Лобовое бронестекло кабины вертолёта Ми-24. Внизу 4-ствольный пулемёт ЯкБ-12,7. Модернизированный A-10C Thunderbolt II с новым фонарём кабины, лобовое бронестекло козырька.

По современным представлениям прозрачная броня, наряду с непрозрачной бронёй кабины пилота, является одним из элементов обеспечения боевой живучести летательных аппаратов (ЛА).

На самолётах-истребителях США третьего и четвёртого поколений (1970—1980 годов) прозрачная броня кабины практически отсутствует. В случаях установки прозрачной брони, например, на многоцелевом истребителе F-4E Phantom или палубном истребителе F-14 Tomcat, её толщины минимальны, и составляют 32 мм, а сама броня имеет скорее символическое значение. На палубном истребителе-бомбардировщике F/A-18 прозрачная броня отсутствует. Сказанное связано с рядом обстоятельств. В том числе, с принципиальным изменением средств поражения этого класса ЛА, вызванного заменой стрелково-пушечного вооружения истребителей на управляемое ракетное оружие с боевыми частями осколочного типа, укомплектованными неконтактными взрывателями. В этих условиях расположение точек подрыва боевой части ракеты относительно ЛА и кабины пилота (то есть направлений подхода поражающих элементов к броне) приобретает равновероятный характер, и, как следствие, исчезает само представление о предпочтительных направлениях действия поражающего средства.

Вместе с тем, прозрачная броня используется для защиты экипажей боевых вертолётов, действующих в зонах досягаемости огня автоматического пехотного оружия. В 1971 году в СССР на вооружение принят транспортно-боевой вертолёт Ми-24[13]. Фонари кабин Ми-24 состоят из боковых панелей двойной кривизны из оргстекла и плоских лобовых пулестойких стеклоблоков. Широкие лобовые бронеблоки обеих, расположенных тандемом, кабин экипажа вместе со стальной бронёй кабины толщиной 4—5 мм защищают переднюю проекцию штурмана-оператора и пилота вертолёта от 7,62-мм пуль пехотного оружия. Прозрачная броня применяется для защиты кабины современных ударных вертолётов Ми-28 и Ка-50, передние и боковые окна которых выполнены из броневых стеклоблоков. По данным разработчиков, обеспечивается защита указанных машин от бронебойных пуль калибра 12,7 мм и 20-мм снарядов. Кабина бронированного штурмовика Су-25 с передних направлений обстрела также защищена прозрачным бронеблоком ТСК-137 толщиной 65 мм.

Требования к прозрачной броне

Прозрачная броня, применяемая на военных летательных аппаратах, должна обладать двумя обязательными качествами:

  • При пробитии поражающим средством давать минимум вторичных осколков;
  • При взаимодействии с этими средствами обеспечивать сохранение прозрачности на максимально возможной площади.

Первое требование, относящееся также к остеклению фонаря кабины, направлено на устранение возможности поражения или ранения экипажа вторичными осколками, образующимися при пробитии хрупких преград. Потеря прозрачности бронестёкол, в частности на одноместных самолётах, практически эквивалентна их выводу из строя.

Прозрачная броня в наземной технике

Требования к прозрачной броне боевых бронированных машин лёгкой весовой категории определяются действующим в НАТО стандартом STANAG 4569. Стандартом предусматриваются несколько уровней защиты, переход от первого к следующим уровням, соответствует увеличению степени защищённости. Представления о применяемых толщинах и массах прозрачной брони дают нижеприведённые таблицы.

Типовая прозрачная броня военного назначения компании GKN Aerospace (Великобритания)[14]
Толщина
брони, мм
Национальный
стандарт
Оружие/
боеприпас
КалибрСредство испытания,
тип пули
Масса
пули, г
Ударная
скорость,
м/с
Кол-во зачётных
попаданий*
Масса
брони,
кг/м2
Условия
испытаний
40STANAG
4569
Уровень 1
Винтовка
и
осколочный
имитатор
FSP
5,56 мм
5,56 мм
7,62 мм

20 мм

5,56×45 ss109
M193 простая
7,62×51 простая
и
20 мм FSP
4,00
3,56
9,65

53,8

900
937
833

550

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

90При t окр. среды
48112t −19° и +49°С
58STANAG
4569
Уровень 2
Винтовка
и
осколочный
имитатор
FSP
7,62 мм

20 мм

7,62×39 мм,
пуля «БЗ»
и
20 мм FSP
7,77

53,8

695

630

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

132При t окр. среды
64151«БЗ» при +75°С
FSP при t окр. среды
71161«БЗ» при +75°
FSP при −31°С
96STANAG
4569
Уровень 3
Винтовка
и
осколочный
имитатор FSP
7,62 мм

20 мм

7,62×54 мм Б-32
и
20 мм FSP
10,04

53,8

854

770

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

224Б-32 при +65°

FSP при −40°С

102Винтовка
и
осколочный
имитатор FSP
7,62 мм
7,62 мм

20 мм

7,62×54 мм Б-32
7,62×51 AP FFV
и
20 мм FSP
10,04
8,4

53,8

854
930

770

3 попадания
в вершинах треуг-ка 120 мм

FSP 1 попадание

239FFV при t окр. среды

FSP при −40°С

Примечания к таблице:
FSP — (англ.) fragment simulating projectile — стандартный (в НАТО) осколочный имитатор. Цилиндрический боёк с площадкой притупления и высотой, приблизительно равной диаметру. В калибре 20 мм имитирует типовой осколок 155 мм осколочно-фугасного снаряда. Согласно требованию стандарта, при переходе от уровня 1 к уровню 3 наблюдается увеличение ударной скорости FSP с 550 до 770 м/с, чему соответствует уменьшение дистанции подрыва снаряда со 100 до 60 м.
Патрон 7,62×51 мм НАТО с бронебойной пулей Bofors FFV (WC) содержит сердечник из карбида вольфрама. Характеризуется повышеным бронепробивным действием.
* Количество зачётных попаданий (требуемое) — определяет живучесть стеклоблока при обстреле.

В последнее десятилетие рядом стран проводятся НИОКР по разработке более эффективной прозрачной брони, обладающей, при сохранении достигнутого уровня противопульной стойкости, меньшей массой и толщиной, и базирующейся на принципе построения комбинированной брони с высокотвёрдым лицевым керамическим слоем. Одним из перспективных материалов прозрачной керамики для брони является искусственный монокристаллический сапфир[15]. Ниже представлены сравнительные характеристики прозрачной брони компании Saint-Gobain (США) на основе монокристаллического сапфира, выращенного по технологии EFG™ (Edge-defined Film-fed Growth)[16].

Сравнительные характеристики прозрачной брони с монослоем сапфира и традиционной прозрачной брони на основе силикатов[17]

Средство испытания,
тип пули
Кол-во зачётных
попаданий
Толщина
бронестекла, мм
Толщина ПБ
с сапфиром, мм
Выигрыш по толщине
сапфировой брони
Масса
бронестекла,
кг/м2
Масса ПБ
с сапфиром,
кг/м2
Выигрыш по массе
сапфировой брони
7,62×39 мм, БЗ35820,864%1335658%
7,62×54 мм Б-32310433,568%2488665%
7,62×54 мм Б-3215524,855%11567,541%
20 мм FSP Vуд630 м/с1554420%13211414%
20 мм FSP Vуд770 м/с1705226%16012522%

Как отмечалось выше, в годы Второй мировой войны и после неё толщины авиационной прозрачной брони для защиты от 7,62-мм бронебойной пули типа Б-32, при стрельбе с дистанции порядка 30 м, составляли около 60 мм. Живучесть брони — 1 попадание в стеклоблок.

Данные, представленные в таблицах, наглядно показывают, что предъявляемое в настоящее время требование обеспечения живучести брони при обстреле, т.е. сохранения её противопульной стойкости при заданном (ограниченном) расстоянии между поражениями (120 мм), приводит к практически двукратному (с 55 до 96—104 мм) увеличению толщины и массы (соответственно со 132 до 224—248 кг/м2) брони. Одновременно требование по живучести прозрачной брони боевых машин сухопутных войск дополнено условием, выдерживать более сильные средства поражения, представленные, в первую очередь, 20 мм осколочным имитатором FSP или 7,62-мм пулей FFV с металлокерамическим (WC) сердечником.

См. также

Ссылки

  1. ↑ Jones, Christopher Transparent Ceramic Composite Armor – US Patent 7584689
  2. ↑ E. Strassburger. Ballistic testing of transparent armour ceramics. Journal of the European Ceramic Society. Volume 29, Issue 2, January 2009, Pages 267‒273
  3. ↑ Шавров В. Б. История конструкций самолётов в СССР. — М.: Машиностроение, 1978, ч. 2, с. 417—429
  4. ↑ Опытным путём было установлено, что оптимальная стойкость для калибра 7,62 мм обеспечивается при соотношениях масс силикатного и органического стекла приблизительно 50:50.
  5. ↑ Развитие авиационной науки и техники в СССР (Историко-технические очерки). — М.: Наука, 1980, с. 328
  6. ↑ Grinsell R. Focke-Wulf Fw-190. London/Sydney: Jane’s Publ. Co. 1980
  7. ↑ Der Bruchvorgang beim Beschuss von Panzerglas. Bericht der TAL 14/43 Bearbeiter: Struth und Heitzmann
  8. ↑ Horas Alter. Aircraft Armor. — Army Ordnance, 1941, XXI, N 125, 497—498
  9. 1 2 О.В. Растренин «Летающие танки» Ильюшина. Наследники Ил-2. Наследники Ил-2. — «Яуза», 2018 — (Война и мы. Авиаколлекция). ISBN 978-5-04-089216-7, с. 12, 31.
  10. ↑ Jane’s All the Worlds Aircraft 1945—1946, pp. 123
  11. ↑ Лей В. Ракеты и полёты в космос. — М.: Военное издательство Министерства обороны, 1961, с. 409
  12. ↑ Jeffrey L. Ethell. The German Jets in Combat. Jane’s Publishing Co., London. 1980, pp. 56‒57
  13. ↑ Ми-24 Hind — Описание
  14. ↑ Military Transparent Armor A4 GKN Data
  15. ↑ NATO Funds New Transparent Armour
  16. ↑ C.D. Jones, J.B. Rioux, J.W. Locher, Large-Area Saphire for Transparent Armor, Proceedings of the 32nd International Conference on Advanced Ceramics and Composites. The American Ceramic Society, pp. 113‒124, Jan. 2008.
  17. ↑ Advances in Ballistic of Commercially Available Saint-Gobain Sapphire Transparent Armor Composites

Примечания

  • Штурмовик Ил-40 (рус.). avia-il.ru. — страница Штурмовик Ил-40 на сайте Самолёты ОКБ им. Ильюшина. Проверено 25 января 2009. Архивировано 25 марта 2012 года.

wikipedia.green

Прозрачная броня — Википедия. Что такое Прозрачная броня

Испытания стеклоблока толщиной 55,6 мм, массой 1 м² защиты 116 кг, по требованиям стандарта НАТО STANAG 4569 Уровень 2. Три поражения пулей БЗ патрона 7,62х39 мм без пробития. Результат: полная потеря прозрачности. Слово «Броня» имеет и другие значения.

Прозрачная броня (или бронестекло) — броня, получаемая соединением слоёв силикатного стекла (закалённого, отпущенного, упрочнённого химическим травлением) со слоями полиуретанов, метилметакрилатов и поликарбонатов. Назначением прозрачной брони является защита людей, вооружения и военной техники от воздействия поражающих средств — пуль и осколков боеприпасов. В России для бронестёкол действует межгосударственный стандарт ГОСТ 30826-2014 «Стёкла защитные многослойные пулестойкие».

Требование оптической прозрачности и стремление обеспечить повышенное сопротивление внедрению высокоскоростного ударника обусловливают использование при изготовлении прозрачной брони упрочнённого силикатного стекла или иных высокотвёрдых прозрачных материалов (например, сапфира[1]), обладающих повышенной прочностью на сжатие[2].

При этом уменьшение склонности к хрупкому разрушению таких материалов достигается, отчасти, конструктивным путём — составлением стеклоблока из ряда слоёв материала, соединяемых в монолит прозрачной полимерной клеящей плёнкой.

История создания

Применение прозрачной брони началось в конце 1930-х годов и было вызвано развитием военной авиации. Вслед за появлением прозрачного фонаря кабины пилота из безосколочного органического стекла появляется необходимость защиты лётчика от пулемётного огня самолётов противника. Ввиду жёстких массовых и габаритных ограничений, присущих авиации, защита лётчика могла быть обеспечена лишь от самого малого (и наиболее массового) калибра пулемётно-пушечного вооружения того периода 7,62—7,92 мм. Это в полной мере относится как к прозрачной, так и к непрозрачной (металлической) броне, последняя по массе, выделенной на защиту самолёта, заметно превосходила прозрачную броню. В период Второй мировой войны прозрачная броня устанавливалась практически на всех типах боевых самолётов воюющих государств — истребителях, истребителях-бомбардировщиках, штурмовиках и бомбардировщиках.

На советском штурмовике Ил-2 устанавливалась «таблетированная» прозрачная броня марки К-4. Представляла собой слоистую композицию с внешним слоем из закалённого стекла (сталинита) толщиной 34 мм, набранного из плиток 100×150 мм, и внутренним слоем или «подушкой» из органического стекла 30 мм[3]. Выпускалась в виде плоских плит, слои соединялись тонкой плёнкой поливинилбутираля. При толщине 64 мм и массе 120 кг/м² броня К-4 не пробивалась 7,62 мм бронебойной пулей при стрельбе практически в упор (Д=30 м). В том или ином виде «таблетированная» броня применялась на всех типах советских самолётов — истребителях Яковлева Як-7 и Як-9, Лавочкина Ла-5 и Ла-7 и др. Полигонные испытания советской прозрачной брони обстрелом проводились бронебойной пулей Б-30 по нормали к поверхности брони, дистанция стрельбы составляла 30 м[4]. К 1943 году создана улучшенная броня марки К-5 со сплошными слоями силикатного стекла, установлена на штурмовике Ил-10.

В СССР работы по созданию прозрачной брони на основе органического стекла проводились Всесоюзным институтом авиационных материалов ВИАМ. Один из создателей брони инженер М. В. Думнов. Руководители этой работы Б. В. Ерофеев и М. М. Гудимов были удостоены Сталинской премии[5].

На немецких самолётах широко применялась «триплексированное» бронестекло — пакет из закалённых стеклопластин, склеенных в монолит прозрачным клеем. На самолётах Fw-190 серий А4—А8 устанавливалось четырёхслойное (6+17+18+6 мм) лобовое бронестекло толщиной 50 мм под углом 25 градусов к продольной оси машины. Масса стеклоблока 14,6 кг или 120 кг/м² [6]. Испытания брони на стойкость проводилось на образцах размером 400×330 мм одиночным обстрелом бронебойной пулей SmK 7,9 мм из пулемёта MG 17 с дистанции 50 м. В годы войны Институт баллистики Технической академии ВВС Германии Technische Akademie der Luftwaffe под руководством Г. Шардина изучал процессы последовательного разрушения слоёв стекла при пробитии прозрачной брони пулями с помощью высокочастотной искровой камеры[7].

В целом, противопульная прозрачная броня, при равной со стальной бронёй стойкости, имела приблизительно одинаковую с ней массу квадратного метра защиты, но в четыре раза большую толщину, последнее является, своего рода, платой за прозрачность. Аналогично стальной (металлической) броне, с увеличением угла обстрела прозрачной брони от нормали, её стойкость увеличивается (дистанция непробития брони уменьшается). Иными словами, стойкость брони положительно реагирует на изменение косинуса угла соударения. Серийная прозрачная броня периода Второй мировой войны в толщинах 50—60 мм обеспечивала защиту от 7,62—7,92-мм бронебойных пуль с нулевой дальности. При этом стеклоблок толщиной 60 мм выдерживал бронебойную пулю по нормали, а блок толщиной 50 мм — под углом, с учётом конструктивного угла установки прозрачной брони.

Использованная на истребителях «Спитфайр Mk.VB» и Р-39 «Аэрокобра» 38-мм лобовая броня фонаря кабины обеспечивала только частичную защиту от бронебойных пуль винтовочного калибра. Прозрачная броня толщиной 76 мм защищала от 12,7-мм бронебойных пуль[8]. Лобовое бронестекло толщиной 75 мм, установленное на германском самолёте-штурмовике Hs-129, рассчитано на защиту лётчика с передней полусферы от 12,7-мм бронебойных пуль зенитного пулемёта «ДШК» с дальностей 200—300 м. Среди конструкторов бронезащиты известен парадокс, согласно которому броня поражается совсем не теми средствами (заданными ТТТ), на защиту от которых рассчитана. В действительности имеются свидетельства очевидцев времён войны о защите (спасении) лётчика при прямых попаданиях 20-мм разрывного снаряда в лобовое бронестекло кабины Ил-2.

Поскольку заданная тактико-техническими требованиями (ТТТ) боевая живучесть Ил-2 была реализована применительно к действию бронебойных пуль нормального калибра (7,62—7,92 мм), нет ничего странного в итоговой оценке результатов боевого применения Ил-2: «Лобовые бронестекла кабины летчика не выдерживали поражений и разрушались от попадания пуль крупного калибра, малокалиберных снарядов и зенитных осколков, давая при этом многочисленные осколки стекла, приводящие к ранениям летчика»[9]. Сразу после войны эти недостатки были учтены. Тактико-техническими требованиями 1945 года (ТТТ-45) ставилось требование обеспечения броневой защиты экипажа штурмовиков от боеприпасов пушки HS-404 калибра 20 мм с дистанции стрельбы 50 м[9].

На заключительном этапе войны происходит резкое увеличение толщин прозрачной брони, установленной на немецких реактивных истребителях Ме 163, Ме 262, He 162, Не 280 и др. Указанное было связано с тактикой их боевого применения по бомбардировщикам союзников (США и Великобритании), оборонительное вооружение которых было широко представлено крупнокалиберными 12,7-мм пулемётами «Кольт-Браунинг». В этом случае действие 12,7-мм пуль по броне самолёта-перехватчика происходило, в том числе, на встречных курсах, то есть при сложении векторов скоростей, при собственной скорости реактивного самолёта V=200 м/c. С учётом этого обстоятельства, на новых реактивных истребителях устанавливалось усиленное бронирование лётчика и некоторых уязвимых агрегатов только со стороны передней полусферы с обеспечением полной защиты от указанного калибра. Прозрачная броня фонаря кабины рассчитывалась на действие 12,7-мм бронебойных пуль и имела толщину 90—100 мм, толщины поперечной стальной брони, перекрывающей сечение фюзеляжа, также достигали рекордных для авиации значений 15 и 20 мм[10][11][12].

Послевоенное развитие прозрачной брони

Жаклин Кокран в кабине F-86 Sabre (основного истребителя США времён Корейской войны) и Чарльз Йегер. Лобовое бронестекло козырька имело скорее символическое значение, и по толщине значительно уступало аналогичному советского МиГ-15. Приоритет лучшей обзорности кабины F-86 («владение обстановкой»), а не живучести/защищённости. Высвободившаяся масса — в пользу более совершенного БРЭО, в том числе радиолокационного прицела. 20-мм бронебойно-трассирующий снаряд пушки Испано-Сюиза.

В СССР вплоть до окончания войны требования по защите лётчика (экипажа) прозрачной бронёй ограничивались исключительно калибром 7,62—7,92 мм. После окончания войны, в конце 1940-х годов возникла необходимость защиты кабины и от огня 12,7-мм пулемётов A/N M2 «Кольт-Браунинг», являвшихся стандартным вооружением реактивных самолётов-истребителей ВВС США, в том числе по опыту войны в Корее. Специалистами ВИАМ было установлено положительное влияние металлической обоймы на стойкость прозрачной брони. И на реактивных самолётах истребителях и истребителях-бомбардировщиках выпуска 1950-х и 1960-х и 1970-х годов прозрачная броня кабины имела стандартное металлическое обрамление.

В начале 1950-х годов в СССР, не без влияния немецкой практики защиты реактивных истребителей, была создана авиационная прозрачная броня для защиты от бронебойно-трассирующего (AP-T) снаряда М75 20-мм авиапушки Испано-Сюиза HS-404, масса снаряда 165 г, см. рисунок. Пушка HS-404 обладала наибольшей среди авиапушек этого калибра дульной энергией. Такая броня толщиной 124 мм была создана ВИАМом при участии М.В. Думнова, руководитель работ Б.В. Перов, и установлена, в частности, на штурмовике Ил-40 (см. Ссылки), истребителе-бомбардировщике Су-7 и некоторых других летательных аппаратах. Однако столь тяжёлая пассивная защита, её масса составляла порядка 280 кг/м2 масса стеклоблока 43 кг, с связи с бурным развитием в этот период сверхзвуковой авиации и ракетного вооружения самолётов, вскоре стала анахронизмом, и при переходе к следующему поколению самолётов 1970-х годов от неё отказались. В этот же период, в связи со сменой военной доктрины СССР, отказались и от самих самолётов-штурмовиков. В США в 1950-е годы был принят на вооружение ВМС лёгкий палубный штурмовик А-4 «Скайхок», прослуживший в строевых частях более 25 лет и широко применявшийся практически во всех локальных конфликтах 1960-х, 1970-х и 80-х годов.

Современное применение прозрачной брони

Лобовое бронестекло истребителя-бомбардировщика Панавиа «Торнадо» Лобовое бронестекло кабины вертолёта Ми-24. Внизу 4-ствольный пулемёт ЯкБ-12,7. Модернизированный A-10C Thunderbolt II с новым фонарём кабины, лобовое бронестекло козырька.

По современным представлениям прозрачная броня, наряду с непрозрачной бронёй кабины пилота, является одним из элементов обеспечения боевой живучести летательных аппаратов (ЛА).

На самолётах-истребителях США третьего и четвёртого поколений (1970—1980 годов) прозрачная броня кабины практически отсутствует. В случаях установки прозрачной брони, например, на многоцелевом истребителе F-4E Phantom или палубном истребителе F-14 Tomcat, её толщины минимальны, и составляют 32 мм, а сама броня имеет скорее символическое значение. На палубном истребителе-бомбардировщике F/A-18 прозрачная броня отсутствует. Сказанное связано с рядом обстоятельств. В том числе, с принципиальным изменением средств поражения этого класса ЛА, вызванного заменой стрелково-пушечного вооружения истребителей на управляемое ракетное оружие с боевыми частями осколочного типа, укомплектованными неконтактными взрывателями. В этих условиях расположение точек подрыва боевой части ракеты относительно ЛА и кабины пилота (то есть направлений подхода поражающих элементов к броне) приобретает равновероятный характер, и, как следствие, исчезает само представление о предпочтительных направлениях действия поражающего средства.

Вместе с тем, прозрачная броня используется для защиты экипажей боевых вертолётов, действующих в зонах досягаемости огня автоматического пехотного оружия. В 1971 году в СССР на вооружение принят транспортно-боевой вертолёт Ми-24[13]. Фонари кабин Ми-24 состоят из боковых панелей двойной кривизны из оргстекла и плоских лобовых пулестойких стеклоблоков. Широкие лобовые бронеблоки обеих, расположенных тандемом, кабин экипажа вместе со стальной бронёй кабины толщиной 4—5 мм защищают переднюю проекцию штурмана-оператора и пилота вертолёта от 7,62-мм пуль пехотного оружия. Прозрачная броня применяется для защиты кабины современных ударных вертолётов Ми-28 и Ка-50, передние и боковые окна которых выполнены из броневых стеклоблоков. По данным разработчиков, обеспечивается защита указанных машин от бронебойных пуль калибра 12,7 мм и 20-мм снарядов. Кабина бронированного штурмовика Су-25 с передних направлений обстрела также защищена прозрачным бронеблоком ТСК-137 толщиной 65 мм.

Требования к прозрачной броне

Прозрачная броня, применяемая на военных летательных аппаратах, должна обладать двумя обязательными качествами:

  • При пробитии поражающим средством давать минимум вторичных осколков;
  • При взаимодействии с этими средствами обеспечивать сохранение прозрачности на максимально возможной площади.

Первое требование, относящееся также к остеклению фонаря кабины, направлено на устранение возможности поражения или ранения экипажа вторичными осколками, образующимися при пробитии хрупких преград. Потеря прозрачности бронестёкол, в частности на одноместных самолётах, практически эквивалентна их выводу из строя.

Прозрачная броня в наземной технике

Требования к прозрачной броне боевых бронированных машин лёгкой весовой категории определяются действующим в НАТО стандартом STANAG 4569. Стандартом предусматриваются несколько уровней защиты, переход от первого к следующим уровням, соответствует увеличению степени защищённости. Представления о применяемых толщинах и массах прозрачной брони дают нижеприведённые таблицы.

Типовая прозрачная броня военного назначения компании GKN Aerospace (Великобритания)[14]
Толщина
брони, мм
Национальный
стандарт
Оружие/
боеприпас
КалибрСредство испытания,
тип пули
Масса
пули, г
Ударная
скорость,
м/с
Кол-во зачётных
попаданий*
Масса
брони,
кг/м2
Условия
испытаний
40STANAG
4569
Уровень 1
Винтовка
и
осколочный
имитатор
FSP
5,56 мм
5,56 мм
7,62 мм

20 мм

5,56×45 ss109
M193 простая
7,62×51 простая
и
20 мм FSP
4,00
3,56
9,65

53,8

900
937
833

550

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

90При t окр. среды
48112t −19° и +49°С
58STANAG
4569
Уровень 2
Винтовка
и
осколочный
имитатор
FSP
7,62 мм

20 мм

7,62×39 мм,
пуля «БЗ»
и
20 мм FSP
7,77

53,8

695

630

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

132При t окр. среды
64151«БЗ» при +75°С
FSP при t окр. среды
71161«БЗ» при +75°
FSP при −31°С
96STANAG
4569
Уровень 3
Винтовка
и
осколочный
имитатор FSP
7,62 мм

20 мм

7,62×54 мм Б-32
и
20 мм FSP
10,04

53,8

854

770

3 попадания
в вершинах треуг-ка 120 мм

FSP — 1 попадание

224Б-32 при +65°

FSP при −40°С

102Винтовка
и
осколочный
имитатор FSP
7,62 мм
7,62 мм

20 мм

7,62×54 мм Б-32
7,62×51 AP FFV
и
20 мм FSP
10,04
8,4

53,8

854
930

770

3 попадания
в вершинах треуг-ка 120 мм

FSP 1 попадание

239FFV при t окр. среды

FSP при −40°С

Примечания к таблице:
FSP — (англ.) fragment simulating projectile — стандартный (в НАТО) осколочный имитатор. Цилиндрический боёк с площадкой притупления и высотой, приблизительно равной диаметру. В калибре 20 мм имитирует типовой осколок 155 мм осколочно-фугасного снаряда. Согласно требованию стандарта, при переходе от уровня 1 к уровню 3 наблюдается увеличение ударной скорости FSP с 550 до 770 м/с, чему соответствует уменьшение дистанции подрыва снаряда со 100 до 60 м.
Патрон 7,62×51 мм НАТО с бронебойной пулей Bofors FFV (WC) содержит сердечник из карбида вольфрама. Характеризуется повышеным бронепробивным действием.
* Количество зачётных попаданий (требуемое) — определяет живучесть стеклоблока при обстреле.

В последнее десятилетие рядом стран проводятся НИОКР по разработке более эффективной прозрачной брони, обладающей, при сохранении достигнутого уровня противопульной стойкости, меньшей массой и толщиной, и базирующейся на принципе построения комбинированной брони с высокотвёрдым лицевым керамическим слоем. Одним из перспективных материалов прозрачной керамики для брони является искусственный монокристаллический сапфир[15]. Ниже представлены сравнительные характеристики прозрачной брони компании Saint-Gobain (США) на основе монокристаллического сапфира, выращенного по технологии EFG™ (Edge-defined Film-fed Growth)[16].

Сравнительные характеристики прозрачной брони с монослоем сапфира и традиционной прозрачной брони на основе силикатов[17]

Средство испытания,
тип пули
Кол-во зачётных
попаданий
Толщина
бронестекла, мм
Толщина ПБ
с сапфиром, мм
Выигрыш по толщине
сапфировой брони
Масса
бронестекла,
кг/м2
Масса ПБ
с сапфиром,
кг/м2
Выигрыш по массе
сапфировой брони
7,62×39 мм, БЗ35820,864%1335658%
7,62×54 мм Б-32310433,568%2488665%
7,62×54 мм Б-3215524,855%11567,541%
20 мм FSP Vуд630 м/с1554420%13211414%
20 мм FSP Vуд770 м/с1705226%16012522%

Как отмечалось выше, в годы Второй мировой войны и после неё толщины авиационной прозрачной брони для защиты от 7,62-мм бронебойной пули типа Б-32, при стрельбе с дистанции порядка 30 м, составляли около 60 мм. Живучесть брони — 1 попадание в стеклоблок.

Данные, представленные в таблицах, наглядно показывают, что предъявляемое в настоящее время требование обеспечения живучести брони при обстреле, т.е. сохранения её противопульной стойкости при заданном (ограниченном) расстоянии между поражениями (120 мм), приводит к практически двукратному (с 55 до 96—104 мм) увеличению толщины и массы (соответственно со 132 до 224—248 кг/м2) брони. Одновременно требование по живучести прозрачной брони боевых машин сухопутных войск дополнено условием, выдерживать более сильные средства поражения, представленные, в первую очередь, 20 мм осколочным имитатором FSP или 7,62-мм пулей FFV с металлокерамическим (WC) сердечником.

См. также

Ссылки

  1. ↑ Jones, Christopher Transparent Ceramic Composite Armor – US Patent 7584689
  2. ↑ E. Strassburger. Ballistic testing of transparent armour ceramics. Journal of the European Ceramic Society. Volume 29, Issue 2, January 2009, Pages 267‒273
  3. ↑ Шавров В. Б. История конструкций самолётов в СССР. — М.: Машиностроение, 1978, ч. 2, с. 417—429
  4. ↑ Опытным путём было установлено, что оптимальная стойкость для калибра 7,62 мм обеспечивается при соотношениях масс силикатного и органического стекла приблизительно 50:50.
  5. ↑ Развитие авиационной науки и техники в СССР (Историко-технические очерки). — М.: Наука, 1980, с. 328
  6. ↑ Grinsell R. Focke-Wulf Fw-190. London/Sydney: Jane’s Publ. Co. 1980
  7. ↑ Der Bruchvorgang beim Beschuss von Panzerglas. Bericht der TAL 14/43 Bearbeiter: Struth und Heitzmann
  8. ↑ Horas Alter. Aircraft Armor. — Army Ordnance, 1941, XXI, N 125, 497—498
  9. 1 2 О.В. Растренин «Летающие танки» Ильюшина. Наследники Ил-2. Наследники Ил-2. — «Яуза», 2018 — (Война и мы. Авиаколлекция). ISBN 978-5-04-089216-7, с. 12, 31.
  10. ↑ Jane’s All the Worlds Aircraft 1945—1946, pp. 123
  11. ↑ Лей В. Ракеты и полёты в космос. — М.: Военное издательство Министерства обороны, 1961, с. 409
  12. ↑ Jeffrey L. Ethell. The German Jets in Combat. Jane’s Publishing Co., London. 1980, pp. 56‒57
  13. ↑ Ми-24 Hind — Описание
  14. ↑ Military Transparent Armor A4 GKN Data
  15. ↑ NATO Funds New Transparent Armour
  16. ↑ C.D. Jones, J.B. Rioux, J.W. Locher, Large-Area Saphire for Transparent Armor, Proceedings of the 32nd International Conference on Advanced Ceramics and Composites. The American Ceramic Society, pp. 113‒124, Jan. 2008.
  17. ↑ Advances in Ballistic of Commercially Available Saint-Gobain Sapphire Transparent Armor Composites

Примечания

  • Штурмовик Ил-40 (рус.). avia-il.ru. — страница Штурмовик Ил-40 на сайте Самолёты ОКБ им. Ильюшина. Проверено 25 января 2009. Архивировано 25 марта 2012 года.

wiki.sc

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *