ВЗРЫВЧАТЫЕ ВЕЩЕСТВА | Энциклопедия Кругосвет
ВЗРЫВЧАТЫЕ ВЕЩЕСТВА – это вещества или их смеси, способные под влиянием внешнего воздействия (нагревание, удар, трение, взрыв другого вещества) очень быстро разлагаться с выделением газов и большого количества теплоты.
Взрывчатые смеси существовали задолго до появления на Земле человека. Небольшой (1–2 см в длину) оранжево-синий жук-бомбардир Branchynus explodans защищается от нападений весьма остроумным способом. В небольшом мешке в его теле накапливается концентрированный раствор пероксида водорода. В нужный момент этот раствор быстро смешивается с ферментом каталазой. Протекающую при этом реакцию наблюдал каждый, кто обрабатывал порезанный палец аптечным 3%-ным раствором перекиси: раствор буквально вскипает, выделяя пузырьки кислорода. Одновременно смесь нагревается (тепловой эффект реакции 2Н2О2 ® 2Н2О + О2 составляет 190 кДж/моль). У жука одновременно с этой идет еще одна реакция, катализируемая ферментом пероксидазой: окисление гидрохинона пероксидом водорода до бензохинона (тепловой эффект этой реакции – более 200 кДж/моль). Выделяющегося тепла достаточно, чтобы нагреть раствор до 100° С и даже частично испарить его. Реакция у жука идет настолько быстро, что едкая смесь, разогретая до высокой температуры, выстреливается с громким звуком во врага. Если струя, масса которой всего полграмма, попадет на кожу человека, она вызовет небольшой ожог.
«Изобретенный» жуком принцип типичен для взрывчатых веществ химической природы, в которых энергия выделяется за счет образования прочных химических связей. В ядерном оружии энергия выделяется за счет деления или слияния атомных ядер. Взрыв – это очень быстрое выделение энергии в ограниченном объеме. В этом случае происходит мгновенный нагрев и расширение воздуха, начинает распространяться ударная волна, приводящая к большим разрушениям. Если взорвать динамит (без стальной оболочки) на Луне, где нет воздуха, разрушительные последствия будут неизмеримо меньше, чем на Земле. О необходимости же для взрыва очень быстрого выделения энергии свидетельствует такой факт. Хорошо известно, что смесь водорода с хлором взрывается, если ее выставить на прямой солнечный свет или если поднести к колбе горящий магний – об этом написано даже в школьных учебниках, но если свет будет не таким ярким, реакция пройдет совершенно спокойно, в ней выделится та же энергия, но не за сотую долю секунды, а за несколько часов и в результате теплота просто рассеется в окружающем воздухе.
При протекании любой экзотермической реакции выделяющаяся тепловая энергия нагревает не только окружающую среду, но и сами реагенты. Это приводит к увеличению скорости реакции, что, в свою очередь, ускоряет выделение тепла и это еще больше повышает температуру. Если отвод теплоты в окружающее пространство не будет успевать за ее выделением, то в результате реакция может, как говорят химики, «пойти вразнос» – смесь вскипит и выплеснется из реакционного сосуда или даже взорвется, если выделяющиеся газы и пары не найдут быстрого выхода из сосуда. Это – так называемый тепловой взрыв. Поэтому при проведении экзотермических реакций химики тщательно следят за температурой, понижая ее в случае необходимости добавлением в колбу кусочков льда или помещая сосуд в охлаждающую смесь. Особенно важно уметь рассчитывать скорость тепловыделения и теплоотвода для промышленных реакторов.
Очень быстро выделяется энергии в случае детонации. Это слово (оно происходит от латинского detonare – прогреметь) означает химическое превращение взрывчатого вещества, которое сопровождается выделением энергии и распространением волны по веществу со сверхзвуковой скоростью. Химическая реакция возбуждается интенсивной ударной волной, образующей передний фронт детонационной волны. Давление во фронте ударной волны составляет десятки тысяч мегапаскалей (сотни тысяч атмосфер), чем и объясняется огромное разрушающее действие подобных процессов. Энергия, выделяемая в зоне химической реакции, непрерывно поддерживает высокое давление в ударной волне. Детонация возникает во многих соединениях и их смесях. Например, тетранитрометан C(NO 2)4 – тяжелая бесцветная жидкость с резким запахом – перегоняется без взрыва, однако смеси его со многими органическими соединениями детонируют с огромной силой. Так, во время лекции в одном из Германских вузов в 1919 году погибло много студентов из-за взрыва горелки, с помощью которой демонстрировалось горение смеси тетранитрометана с толуолом. Оказалось, что лаборант, готовя смесь, перепутал массовые и объемные доли компонентов и при плотностях реагентов 1,64 и 0,87 г/см3 это вызвало почти двукратное изменение состава смеси, что и привело к трагедии.
Какие же вещества способны взрываться? Прежде всего это так называемые эндотермические соединения, то есть соединения, образование которых из простых веществ сопровождается не выделением, а поглощением энергии. К таким веществам относятся, в частности, ацетилен, озон, оксиды хлора, пероксиды
Со взрывом разлагаются ацетилениды тяжелых металлов – серебра, меди. Очень опасен по той же причине и чистый озон, при распаде 1 моль которого выделяется 142 кДж энергии. Однако многие потенциально нестабильные соединения на практике могут оказаться довольно устойчивыми. Пример – этилен, причина стабильности которого – очень малая скорость разложения на простые вещества.
Исторически первым взрывчатым веществом, изобретенным людьми, был черный (он же дымный) порох – смесь тонко растертых серы, древесного угля и нитрата калия – калийной селитры (натриевая не годится, так как она гигроскопична, то есть отсыревает на воздухе). Это изобретение за прошедшие века унесло миллионы человеческих жизней. Однако изобрели порох, оказывается, для других целей: древние китайцы более двух тысячелетий назад с помощью пороха устраивали фейерверки. Состав китайского пороха позволял ему гореть, но не взрываться.
Древние греки и римляне не имели селитры, поэтому и пороха у них быть не могло. Приблизительно в 5 в. селитра попала из Индии и Китая в Византию – столицу греческой империи. В Византии открыли, что смесь селитря с горючими веществами горит очень интенсивно и потушить ее невозможно. Почему так происходит, стало известно намного позже – таким смесям не нужен для горения воздух: селитра сама является источником кислорода). Содержащие селитру горючие смеси под названием «греческий огонь» стали использоваться в военном деле. С их помощью в 670 и 718 были сожжены корабли арабского флота, осаждавшего Константинополь. В 10 в. Византия отразила с помощью греческого огня нашествие болгар.
Прошли столетия, и в средневековой Европе порох изобрели заново. Произошло это в 13 в. И кто был изобретателем, неизвестно. По одной из легенд, монах из Фрайбурга Бертольд Шварц растирал в тяжелой металлической ступке смесь серы, древесного угля и селитры. Случайно в ступку упал железный шар. Раздался ужасный грохот, из ступки повалил едкий дым, а в потолке образовалась дыра – ее пробил шар, вылетевший с огромной скоростью из ступки. Стало понятным, какая огромная сила таится в черном порошке (само слово «порох» произошло от древнерусского «прах» – пыль, порошок). В 1242 порох описал английский философ и естествоиспытатель Роджер Бэкон. Порох стали использовать в военном деле. В 1300 была отлита первая пушка, вскоре появились и первые ружья. Первый пороховой завод в Европе был построен в Баварии в 1340. В 14 в. огнестрельное оружие начали применять и на Руси: с его помощью москвичи в 1382 обороняли свой город от войск татарского хана Тохтамыша.
Изобретение пороха оказало огромное влияние на мировую историю. С помощью огнестрельного оружия были завоеваны моря и континенты, разрушены цивилизации, уничтожены или покорены целые народы. Но были у открытия пороха и положительные моменты. Облегчилась охота на диких зверей. В 1627 в Банска-Штьявице на территории современной Словакии порох впервые использовали в горном деле – для разрушения породы в шахте. Благодаря пороху появилась специальная наука о расчете движения ядер – баллистика. Стали совершенствоваться методы литья металлов для пушек, изобретались и испытывались новые прочные сплавы. Разрабатывались также новые способы получения пороха – и прежде всего селитры
Во всем мире росло число пороховых заводов. На них изготовляли многие сорта черного пороха – для мин, пушек, ружей, в том числе и охотничьих. Исследования показали, что порох обладает способностью очень быстро сгорать. Горение наиболее распространенного порохового состава приблизительно описывается уравнением 2KNO
В любом случае при горении пороха выделяется большое количество газов. Если порох насыпать на землю и поджечь, он не взорвется, а просто быстро сгорит, но если он горит в замкнутом пространстве, например, в патроне ружья, то выделяющиеся газы с силой выталкивают пулю из патрона, и она с большой скоростью вылетает из дула. В 1893 на всемирной выставке в Чикаго немецкий промышленник Крупп показал орудие, которое заряжалось 115 кг черного пороха, его снаряд массой 115 кг в течение 71 секунды пролетал более 20 км, достигая в высшей точке высоты 6,5 км
Частички твердых веществ, образующиеся при горении черного пороха, создают черный дым, поля сражений иногда так окутывало дымом, что он застилал солнечный свет (в романе Война и мир описано, как дым затруднял командирам управлять ходом сражений). Твердые частички, образующиеся при горении черного пороха, загрязняют канал огнестрельного оружия, поэтому дуло ружья или пушки нужно было регулярно чистить.
К концу 19 в. черный порох практически исчерпал свои возможности. Химикам было известно множество взрывчатых веществ, но для стрельбы они не годились: их дробящая (бризантная) сила была такова, что ствол разлетелся бы на куски еще до вылета из него снаряда или пули. Таким свойством обладают, например, азид свинца Pb(N3)2, гремучая ртуть Hg(CNO)
В 1884 французский инженер Поль Вьель изобрел новый вид пороха – пироксилиновый. Пироксилин был получен еще в 1846 при нитровании целлюлозы (клетчатки), но долго не могли выработать технологию получения стойкого и безопасного в обращении пороха. Вьель, растворив пироксилин в смеси спирта и эфира, получил тестообразную массу, которая после прессования и сушки дала прекрасный порох. Зажженный на воздухе, он спокойно сгорал, а в патроне или гильзе снаряда взрывался с большой силой от детонатора. По мощности новый порох намного превосходил черный, а при горении не давал дыма, поэтому его назвали бездымным. Этот порох позволил уменьшить калибр (внутренний диаметр) ружей и пистолетов и таким образом повысить не только дальность, но и точность стрельбы. В 1889 появился еще более мощный бездымный порох – нитроглицериновый. Много сделал для усовершенствования бездымного пороха великий русский химик Д.И.Менделеев. Вот что он сам писал об этом:
«Черный дымный порох нашли китайцы и монахи – чуть не случайно, ощупью, механическим смешением, в научной темноте. Бездымный порох открыт при полном свете современных химических познаний. Он составит новую эпоху военного дела не потому, что не дает дыму, глаза застилающего, а потому преимущественно, что при меньшем весе дает возможность сообщать пулям и всяким иным снарядам скорости в 600, 800 и даже 1000 метров в секунду, и в то же время представляет все задатки дальнейшего усовершенствования – при помощи научного исследования невидимых явлений, при его горении совершающихся. Бездымный порох составляет новое звено между могуществом стран и научным их развитием. По этой причине, принадлежа к числу ратников русской науки, я на склоне лет и сил не осмелился отказаться от разбора задач бездымного пороха.»
Созданный Менделеевым порох в 1893 успешно прошел испытания: им стреляли из 12-дюймового орудия, и инспектор морской артиллерии адмирал Макаров поздравил ученого с блестящей победой. С помощью бездымного пороха дальность стрельбы была значительно увеличена. Из огромной пушки «Большая Берта» массой 750 тонн немцы обстреливали Париж с расстояния 128 км. Начальная скорость снаряда составляла 2 км/с, а высшая его точка находилась далеко в стратосфере на высоте 40 км. В течение лета 1918 по Парижу было выпущено свыше 300 снарядов, но, конечно, эта стрельба имела только психологическое значение, так как ни о какой точности говорить не приходилось.
Бездымный порох используют не только в огнестрельном оружии, но и в ракетных двигателях (твердое ракетное топливо). В годы Второй мировой войны наша армия успешно применяла реактивные снаряды на твердом топливе – ими стреляли легендарные гвардейские минометы «катюши».
Похожая судьба была и у продукта нитрования фенола – тринитрофенола (пикриновой кислоты). Он был получен еще в 1771 и использовался в качестве желтого красителя. И только в конце 19 в. его стали использовать для снаряжения гранат, мин, снарядов под названием лиддита. Колоссальная разрушительная сила этого вещества, применявшегося в англо-бурской войне, ярко описана Луи Буссенаром в приключенческом романе Капитан Сорви-Голова. А с 1902 для тех же целей стали использовать более безопасный тринитротолуол (тротил, тол). Тол широко используется при взрывных работах в промышленности в виде литых (или прессованных) шашек, поскольку это вещество можно без опасений плавить, нагревая выше 80° С.
Сильнейшими взрывчатыми свойствами обладает очень опасный в обращении нитроглицерин. В 1866 его удалось «приручить» Альфреду Нобелю, который, смешав нитроглицерин с негорючим материалом, получил динамит. Динамитом пользовались для прорытия туннелей, при многих других горных работах. В первый же год его применение при постройке туннелей в Пруссии позволило сэкономить 12 миллионов золотых марок.
Современные взрывчатые вещества должны удовлетворять многим условиям: безопасность в производстве и обращении, выделение большого объема газов, экономичность. Самая дешевая взрывчатка – смесь нитрата аммония с дизельным топливом, ее производство составляет 80% всех взрывчатых веществ. А какое из них самое мощное? Это зависит от критерия мощности. С одной стороны, важна скорость детонации, т.е. скорость распространения волны. С другой – плотность вещества, т.к. чем она выше, тем больше энергии при прочих равных условиях высвобождается в единице объема. Так, для мощнейших нитросоединений оба параметра за 100 с лишним лет были улучшены на 20–25%, что видно из следующей таблицы:
Вещество | Скорость детонации, м/с | Плотность, г/см3 |
Нитроглицерин | 7580 | 1,58 |
Тринитротолуол | 6930 | 1,63 |
Гексоген | 8754 | 1,80 |
Октоген | 9110 | 1,89 |
Гексанитроизовюрцитан | 9380 | 1,98 |
Гексоген (1,3,5-тринитро-1,3,5-триазациклогексан, циклонит), который в последние годы приобрел печальную известность, с добавками парафина или воска, а также в смеси с другими веществами (тротилом, нитратом аммония, алюминием) начали применять в 1940. Он используется для снаряжения боеприпасов, а также входит в состав аммонитов, применяемых при скальных работах.
Наиболее мощная взрывчатка, производящаяся (с 1955) в промышленном масштабе, – октоген (1,3,5,7-тетранитро-1,3,5,7-тетраазоциклооктан). Октоген довольно устойчив к нагреву, поэтому его используют при взрывных работах в высокотемпературных условиях, например, в глубоких скважинах. Смесь октогена с тротилом (октол) – компонент твердых ракетных топлив. Абсолютный же рекорд держит синтезированный в США в 1990 гексанитроизовюрцитан. Ударная волна при его взрыве распространяется в 30 раз быстрее звука
Илья Леенсон
www.krugosvet.ru
Основные свойства взрывчатых веществ определяются взрывчатыми и физико-химическими характеристиками. Взрывчатыми характеристиками являются:
— теплота взрыва;
— температура продуктов взрыва;
— скорость детонации;
— бризантность;
— работоспособность (фугасность).
Физико-химическими характеристиками являются:
— чувствительность к механическим и тепловым воздействиям;
— химическая и физическая стойкость;
— плотность (вес в единице объема).
Теплота и температура взрыва
Из физики известно, что энергия и тепло, выделяемые в процессе реакции, находятся в прямой зависимости между собой, поэтому количество выделяемой при взрыве теплоты является весьма важной энергетической характеристикой взрывчатого вещества, определяющей его работоспособность. Чем больше выделено теплоты, тем выше температура нагрева продуктов взрыва, тем больше давление, а следовательно, и воздействие продуктов взрыва на окружающую среду.
Теплота взрыва зависит от химического состава взрывчатого вещества. Она вычисляется теоретически по закону Гесса или определяется экспериментально в специальных толстостенных калориметрических бомбах по количеству тепла, поглощенного массой бомбы при взрыве внутри ее определенного количества взрывчатого вещества.
Зная теплоту взрыва, легко вычислить и температуру взрыва, исходя из соотношения
где Cv — теплоемкость продуктов взрыва с учетом ее изменения от температуры.
Скорость детонации
От скорости детонации взрывчатого вещества зависит скорость процесса взрывчатого превращения, а следовательно, и время, в течение которого выделяется вся энергия, заключенная во взрывчатом веществе. А это вместе с количеством тепла, выделившегося при взрыве, характеризует мощность, развиваемую взрывом; следовательно, даст возможность правильно выбрать взрывчатое вещество для выполнения тон или иной механической работы. Для перебивания, например, металла, целесообразнее получить возможный максимум энергии в наикратчайший промежуток времени, тогда как для выброса грунта из пределов заданной выемки (воронки) эту же энергию лучше получить за более длительный отрезок времени, подобно тому как при нанесении резкого удара по доске можно ее перебить, а приложив ту же энергию постепенно только сдвинуть (отбросить).
Скорость детонации для одного и того же взрывчатого вещества может быть различной и зависит:
— от химического состава и структуры молекулы;
— от плотности взрывчатого вещества
Влияние плотности взрывчатого вещества на скорость его детонации следующая Плотность, г/см3 1.0 1.3 1.4 1.5 1.6 Тротил 4720 6025 6315 6610 6960 Гексоген флегматизированный 5% парафина — 6875 7315 7600 7995
— от диаметра массы взрывчатого вещества, который должен быть не менее критического; однако при увеличении диаметра ВВ выше критического и до величины, называемой предельным диаметром, скорость детонации постепенно возрастет; дальнейшее увеличение диаметра уже не сказывается на скорости детонации.
На скорость детонации влияют также величина частиц (дисперсность) порошкообразных и степень увлажнения гигроскопических взрывчатых веществ. Чем меньше размер частицы вещества, тем больше скорость его детонации, и наоборот, чем больше влаги содержится в частицах взрывчатого вещества, тем меньше скорость его детонации, которая постепенно достигает своих неустойчивых форм и затухает или даже совсем не развивается.
Скорость детонации определяется теоретически и проверяется экспериментально различными методами. Наиболее точными являются методы с применением осциллографов или специальных фоторегистров.
Объем и состав продуктов взрыва
Объем продуктов взрыва является характеристикой, существенно влияющей на работоспособность взрывчатого вещества. Чем больше объем расширяющихся продуктов взрыва, тем больше их воздействие на окружающую среду.
Из таблицы видно, что объем продуктов взрыва у бризантных взрывчатых веществ колеблется в меньших пределах, чем теплота взрыва и скорость детонации, а поэтому последние и влияют главным образом на мощность взрывчатого вещества. Весьма мал объем продуктов взрыва у инициирующих ВВ, поэтому нецелесообразно применять их для получения механической работы.
Состав продуктов взрыва обусловлен химическим составом взрывчатого вещества. Последнее, как правило, состоит из таких элементов, как углерод, водород, кислород и азот, а поэтому при взрыве превращается в следующие устойчивые продукты: СO2, Н2O, СО, N2, Н2, О и С. В небольших количествах выделяются и некоторые другие продукты, в том числе ядовитые; наличие или отсутствие ядовитых продуктов позволяет решать вопрос об области применения того или иного вещества.
При взрыве на открытом воздухе присутствие вредных газов в продуктах взрыва существенного значения не имеет, хотя, например, нельзя входить в воронку (выемку), образованную взрывом в грунте, сразу же после взрыва, так как невыветрившиеся ядовитые газы могут вызвать отравление. При взрывах большого количества взрывчатого вещества (сотни и тысячи тонн) количество вредных газов становится уже весьма существенным и газовое облако может быть отнесено ветром на значительное расстояние с сохранением еще отравляющей способности.
При ведении взрывных работ в закрытых помещениях и под землей (в туннелях, шахтах, рудниках и т. п.) после каждого взрыва необходимо тщательно проветривать помещения и выработки, прежде чем допускать в них людей.
Условия, в которых происходит взрыв, также могут благоприятно или неблагоприятно влиять на количественное образование ядовитых газов. Например, присутствие влаги в окружающей взрывчатое вещество среде (обводненный грунт) способствует за счет реакции
более полному окислению углерода до СO2, уменьшая соответственно количество СО в продуктах взрыва. Бумажная оболочка, в которую обычно заключены шашки и патроны, наоборот, увеличивает количество СО в продуктах взрыва.
Объем и состав продуктов взрыва определяются расчетом и проверяются экспериментально взрывом некоторого количества взрывчатого вещества в специальных герметически закрывающихся стальных бомбах. Об объеме продуктов взрыва судят по давлению газов внутри бомбы, а о их составе — путем газового анализа пробы, взятой из бомбы.
Бризантность взрывчатого вещества
Бризантностью взрывчатого вещества называют егс способность дробить прилегающую к нему среду (дерево, металл, горные породы и пр.).
Воздействие взрыва на окружающую среду отличается практически мгновенным скачком давления до весьма высоких его величин, но затем в связи с расширение*, продуктов взрыва давление в них быстро падает до атмосферного и ниже, вновь поднимаясь до атмосферного.
Ввиду крайне малого промежутка времени, в течение которого поддерживается избыточное над атмосферным давление, действие взрыва имеет так называемый импульсный характер. Полный импульс соответствует полной работе взрыва и равен площади избыточного давления.
Бризантному действию соответствует только малая часть импульса, расположенная в непосредственной близости к пиковому давлению, которое пропорционально квадрату скорости детонации и плотности взрывчатого вещества. Следовательно, бризантность тем больше, чем больше эти значения.
Бризантность определяется пробой Гесса (проба обжатием свинцового цилиндрика) следующим образом: на стальную плиту устанавливается свинцовый цилиндрик, имеющий высоту 60 мм и диаметр 40 мм; на цилиндрик сверху укладывается стальная пластинка диаметром 41 мм и толщиной 10 мм. На пластинку ставится бумажный цилиндр диаметром 40 мм, заполненный 50 г порошкообразного взрывчатого вещества при его плотности 1 гр/см3 (насыпается с легким подпрсссовыванием до требуемой плотности). Давление взрыва, передаваемое через стальную пластинку, обжимает свинцовый цилиндрик, придавая ему грибообразную форму. Разница между начальной и конечной высотами цилиндрика, измеренная в миллиметрах, и характеризует бризантность взрывчатого вещества.
Работоспособность взрывчатого вещества
Работоспособность (фугасность) взрывчатого вещества проявляется в форме выброса грунта из воронок и выемок, образовании полостей в грунтах и скальных поводах и рыхлении их. Эта характеристика соответствует полному импульсу, величина которого определяется расчетом и может быть измерена в лабораторных условиях специальными пьезокварцевыми датчиками с осциллографами, баллистическими маятниками и т. п. Для определения работоспособности взрывчатого вещества обычно принята более доступная и простая проба в бомбе Трауцля, отливаемой из свинца в форме цилиндра диаметром) высотой 200 мм. По оси цилиндра оставляют канал диаметром 25 мм и глубиной 125 мм , в который помещают 10 г взрывчатого вещества при плотности в 1 гр/см3, а все оставшееся свободное пространство в канале засыпают кварцевым песком, прошедшим решето со 144 отверстиями.
После взрыва в бомбе образуется грушевидная полость, объем которой замеряют, заполняя точно измеренным количеством воды. Разность между этим объемом и первоначальным объемом канала, выраженная в кубических сантиметрах, и является характеристикой работоспособности (фугастности) взрывчатого вещества.
Чувствительность взрывчатого вещества
Чувствительность является одной из важнейших характеристик взрывчатого вещества; она определяет возможность и область практического использования данного вещества. Слишком большая чувствительность взрывчатого вещества делает его весьма опасным и неудобным в обращении. Например, йодистый азот на столько чувствителен, что взрывается от простого прикосновения к нему ногтем.
С другой стороны, слишком малая чувствительностг взрывчатого вещества затрудняет возбуждение в его массе взрывчатого превращения простыми средствами, что также ограничивает его применение. Примером такой взрывчатого вещества является аммиачная селитра.
Кроме химических факторов (состав, число нитрогрупп, характер внутримолекулярных связей) на чувствительность взрывчатого вещества влияют его физическое состояние, величина кристаллов (зерен вещества), а также наличие примесей.
По физическому состоянию современные взрывчатые вещества делятся на порошкообразные, прессованные; литые и порошкообразные с жидкостным заполнением промежутков между зернами (частицами) вещества. Литые вещества обладают наименьшей, а порошкообразные, наибольшей чувствительностью к механическим воздействиям.
Уменьшение чувствительности взрывчатого вещества к механическим воздействиям наблюдается и при увеличении размеров зерен порошкообразного вещества.
Весьма существенно влияют на чувствительность к механическому внешнему импульсу различные примеси, могущие оказаться во взрывчатом веществе при небрежном обращении или хранении. Такие примеси, как песок, стекло, корунд, металлические опилки и т. п., повышают чувствительность взрывчатого вещества, а такие, как воск, парафин, вода и масло, наоборот, понижают ее.
Первые примеси называются сенсибилизаторами, и их наличие в массе взрывчатого вещества ограничивается при производстве жесткими нормами.
Вторые примеси называются флегматизаторами, и к некоторым более чувствительным взрывчатым веществам они добавляются специально, чтобы придать веществу достаточную безопасность при его производстве и обращении с ним. Например, при прессовании гексогена или тэна к ним добавляется около 5% парафина, а тэн, идущий на изготовление детонирующих шнуров, флегматизируется.
Повышение чувствительности взрывчатого вещества при наличии в нем сенсибилизирующих примесей объясняется концентрацией энергии на острых гранях кристаллов примеси при сжатии вещества от удара, что приводит к возникновению местных разогревов при меньшей силе удара.
Флегматизирующее действие примесей заключается в том, что флегматизатор обволакивает частицы взрывчатого вещества тонкой пленкой, которая смягчает удар частиц друг о друга и затрудняет разрушение их кристаллической решетки.
Чувствительность взрывчатого вещества к механическому воздействию (в виде удара) определяется обычно на специальных устройствах, называемых копрами, путем сбрасывания груза на навеску взрывчатого вещества, положенную на наковальню, и может характеризоваться:
— высотой сбрасывания груза определенного веса, при которой всегда происходит взрыв навески;
— процентом взрывов при сбрасывании одного и того же груза с одной и той же высоты.
Для инициирующих взрывчатых веществ устанавливаются верхний и нижний пределы чувствительности. Верхним пределом считается такая минимальная высота падения данного груза, при которой происходит 100% взрывов, а нижним пределом— такая максимальная высота, при которой не получается ни одного взрыва (0%).
Чувствительность к трению для некоторых взрывчатых веществ устанавливается по углу отклонения маятника, при котором отсутствуют взрывы. Взрывчатые вещества, применяемые в войсках, испытываются на чувствительность к прострелу пулей из определенного оружия с определенного расстояния.
Чувствительность взрывчатого вещества к тепловому импульсу характеризуется температурой, при понижении которой на 5°С не происходит вспышки небольшой навески (0,05 г) взрывчатого вещества в течение 5-минутного нагревания ее в специальном двухстенном сосуде, заполненном сплавом Вуда; навеска в пробирке вводится в сплав, предварительно нагретый до требуемой температуры.
Температура вспышки позволяет судить о возможности использования данного вещества в условиях высоких температур, например при взрывании не полностью остывших козлов в доменных и мартеновских печах или при торпедировании нефтяных скважин на больших глубинах, где температура в скважине часто превышает 150° С.
Следует учитывать, что температура вспышки никак не характеризует степень воспламенения взрывчатого вещества от воздействия открытого пламени или искр, что иногда необходимо знать. В этих случаях производят специальные испытания применительно к условиям применения. Стойкость взрывчатого вещества
Стойкость взрывчатого вещества определяет возможность, длительность и сроки хранения, а также условия хранения и использования ВВ на взрывных работах. Стойкостью называется способность взрывчатого вещества сохранять в нормальных условиях хранения и применения постоянство своих физико-химических и взрывчатых характеристик. Взрывчатые вещества нестойкие, могут в определенных условиях снижать и даже полностью утрачивать способность к взрыву или же, наоборот, настолько повышать свою чувствительность, что становятся опасными в обращении и подлежат уничтожению. Они способны к саморазложению, а при известных условиях и к самовозгоранию, что при больших количествах этих веществ может привести к взрыву.
Следует различать физическую и химическую стойкость взрывчатого вещества.
Физическая стойкость рассматривает такие свойства взрывчатых веществ, как гигроскопичность, растворимость, старение, затвердевание, слеживаемость.
Некоторые взрывчатые вещества способны поглощать влагу атмосферного воздуха и при определенной степени увлажнения, измеряемой обычно процентным содержанием влаги, сначала понижают чувствительность к восприятию детонации от нормального начального импульса, а при дальнейшем увлажнении вообще теряют способность к взрыву и даже могут растворяться в воде.
Наличие небольшого количества влаги может вызвать изменение плотности гигроскопичного взрывчатого вещества, способствуя связыванию его частиц и образованию весьма плотного тела, обладающего пониженной восприимчивостью к начальному импульсу. Это явление называется слеживаемостью.
Степень увлажнения взрывчатого вещества определяется его взвешиванием с последующей сушкой до получения постоянного веса.
Старение свойственно смесевым взрывчатым веществам и является следствием самопроизвольного перераспределения компонентов смеси по массе вещества с течением времени, что отрицательно сказывается на свойствах взрывчатого вещества.
Физическая стойкость некоторых взрывчатых веществ зависит от температуры окружающей среды, при которой происходит или замерзание жидких компонентов (у нитроглицериновых ВВ), или затвердение вещества (у пла-ститов), или изменение структуры кристаллов (у аммиачной селитры). При этом изменяются свойства взрывчатого вещества.
Химическая стойкость взрывчатого вещества определяется степенью прочности внутримолекулярных связей, наличием летучих компонентов и примесей. Наиболее химически стойкими являются нитросоедннения, инициирующие и аммначно-сслитрснные взрывчатые вещества. Если эти вещества не загрязнены некоторыми примесями кислотного или щелочного характера, то они не изменяют своих свойств в течение очень длительного времени, измеряемого десятилетиями; этим объясняется отчасти преимущественное их применение на взрывных работах. Наименьшей химической стойкостью обладают нитроглицериновые ВВ, сохраняющие свои свойства лишь в течение нескольких месяцев.
Примеси, особенно кислотного характера, вызывают во взрывчатом веществе дополнительные химические реакции, обычно сопровождающиеся выделением тепла, которое ускоряет процесс естественного саморазложения и разогрев массы взрывчатого вещества до температуры воспламенения, т. е. способствует самовоспламенению взрывчатого вещества.
Химическая стойкость взрывчатого вещества определяется подогреванием небольшого количества его в течение определенного времени с одновременным контролем за наличием и скоростью разложения испытуемого вещества.
Контроль этот может осуществляться:
— по изменению окраски индикатора (лакмусовая или йодокрахмальная проба) под воздействием продуктов разложения взрывчатого вещества; — по изменению (возрастанию) давления продуктов разложения в герметически закупоренном сосуде, в который помещается испытуемое вещество; — по изменению (потере) веса испытуемого вещества за счет выхода продуктов разложения.
Сравнивая временные показатели, полученные наблюдениями по этим методам, с нормами, установленными для данного взрывчатого вещества в стандартах и технических условиях, судят о степени его пригодности и безопасности при применении и хранении.
Плотность взрывчатого вещества
Под плотностью взрывчатого вещества понимается вес его в единице объема. От плотности зависят чувствительность взрывчатого вещества к начальному импульсу, скорость детонации и брнзаптность.
Способность к детонации у взрывчатых веществ сохраняется только при некоторых, определенных для каждого взрывчатого вещества плотностях, находящихся в пределах 0,8—1,7 г/см3. При уменьшении или увеличении (переуплотнении) этих плотностей снижается чувствительность взрывчатого вещества к начальному импульсу, а даже возникшее взрывчатое превращение не достигает детонационной скорости и затухает.
5 2 51 Основные свойства взрывчатых веществ из описание | ВВ, свойства, взрыв, вещество? бризантность |
abakbot.ru
Взрывчатые вещества
Взрывчатые вещества.
Пиротехнические
Основные типы взрывчатых веществ по составу и классификация их по применениюВзрывчатые вещества весьма разнообразны по своему химическому составу, физическим свойствам и агрегатному состоянию.
Известно много BB, представляющих собой твердые тела, менее распространены жидкие, есть и газообразные, например смесь метана с воздухом. В принципе взрывчатым веществом может быть любая смесь горючего с окислителем. Самое древнее BB — дымный порох — представляет собой смесь двух горючих (уголь и сера) с окислителем (калиевая селитра). Другой вид подобных смесей — оксиликвиты — представляет собой смесь тонкодисперсного горючего (сажа, мох, опилки и т. д.) с жидким кислородом. Необходимым условием получения BB из горючего и окислителя является их тщательное смешение. Однако, как бы тщательно ни были перемешаны составные части взрывчатой смеси, невозможно добиться такой равномерности состава, при которой с каждой молекулой горючего соседствовала бы молекула окислителя. Поэтому в механических смесях скорость химической реакции при взрывном превращении никогда не достигает максимального значения. Такого недостатка не имеют взрывчатые химические соединения, в молекулу которых входят атомы горючего (углерода, водорода) и атомы окислителя (кислорода). К взрывчатым химическим соединениям, молекула которых содержит атомы горючих элементов и кислорода, относятся сложные азотнокислые эфиры многоатомных спиртов, так называемые нитроэфиры, и нитросоединения ароматических углеводородов. Наиболее широкое применение нашли следующие нитроэфиры:глицеринтринитрат (нитроглицерин)—C3h4(ONO2)3, пентаэритриттетранитрат (тэн) — C(Ch3ONO2)4, нитраты целлюлозы (нитроцеллюлоза)—[C6H7O2(ОН)3-n(ONO2) n]x. Из нитросоединений в первую очередь следует назвать тринитротолуол (тротил)—C6h3(NO2)3Ch4 и тринитрофенол (пикриновая кислота) —C6h3(NO2)3OH. Кроме указанных нитросоединений широко применяются нитроамины: тринитрофенилметилнитроамин (тетрил) — C6h3(NO2)3NCh4NO2, циклотриметилентри-нитроамин (гексоген) — C3H6N6O6 и циклотетраметилен-тетранитроамин (октоген) — C4H8N8O8. У нитросоединений и нитроэфиров все, тепло или основная часть тепла при взрыве выделяется в результате окисления горючих элементов кислородом. Применяют также BB, выделяющие тепло при распаде молекул, на образование которых было затрачено большое количество энергии. Примером подобных BB является азид свинца — Pb(N3)2. Взрывчатые вещества, относящиеся по своей химической структуре к определенному классу соединений, обладают некоторыми общими свойствами. Однако в пределах одного класса химических соединений различия в свойствах BB могут быть значительными, так как BB во многом определяются физическими свойствами и структурой вещества. Поэтому классифицировать BB по их принадлежности к определенному классу химических соединений довольно трудно. Их классифицируют обычно в зависимости от областей применения. В соответствии с этой классификацией BB делят на три основные группы: инициирующие, бризантные и ме- тательные BB (пороха). [Шагов Ю. В. Ш15 Взрывчатые вещества и пороха]
Бризантные
БРИЗАНТНЫЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. detonating explosives, desruptive explosives, high explosives; н. hochexplosive, Sprengstoffe Brisanzsprengstoffe; ф. explosifs brisants; и. explosivos rompedores) — вещества, превращение которых происходит в форме детонации; используются в целях разрушения, дробления горных пород, металлических оболочек боеприпасов, сооружений и т.п.
Бризантные взрывчатые вещества могут быть отдельными химическими соединениями (тротил, гексоген, тэн,нитроглицерин и другие нитросоединения и органические нитраты) и смесями (аммониты, динамоны, аммоналы,динамиты и др.). Детонация в бризантных взрывчатых веществах возбуждается взрывом инициирующих взрывчатых веществ, вследствие чего бризантные взрывчатые вещества называют также вторичными. Бризантные взрывчатые вещества применяют на взрывных работах в горной промышленности, строительстве и других областях народного хозяйства, при обработке металлов взрывом, в сейсморазведке и др.
Метательные
Метательные взрывчатые вещества взрываются только от детонации и характеризуются сравнительной медленностью своего разложения. Например, скорость распространения взрыва черного пороха составляет всего 300 — 400 м / с. Подобные взрывчатые вещества применяют для снаряжения ружейных и орудийных зарядов. Вследствие сравнительно малой скорости разложения метательного взрывчатого вещества пуля или снаряд за время взрыва успевает покинуть ствол и открыть выход образующимся газам. Напротив, при снаряжении патрона пироксилином ствол в момент выстрела был бы разорван. Поэтому изготовление бездымных порохов на базе пироксилина и сводится главным образом к уменьшению скорости его разложения путем добавки к нему веществ, не имеющих взрывчатого характера.
К метательным взрывчатым веществам относятся главным образом пороха. Скорость горения их поддается регулированию изменением состава и формы пороха, что дает возможность управлять скоростью нарастания давления в замкнутом пространстве.
Инициирующие
Инициирующие взрывчатые вещества — индивидуальные вещества или смеси, легко взрывающиеся под действием простого начального импульса (удар, трение, луч огня) с выделением энергии, достаточной для воспламенения или детонации бризантных взрывчатых веществ. Характерная особенность инициирующих взрывчатых веществ — легкий переход горения во взрыв в тех условиях, в которых такой переход для вторичных взрывчатых веществ не происходит.
Требования, предъявляемые к инициирующим взрывчатым веществам: высокая инициирующая способность, обеспечивающая безотказное возбуждение взрыва в заряде вторичного взрывчатого вещества при малых количествах инициирующего вещества; безопасность в обращении и применении; хорошая сыпучесть и прессуемость, необходимые для точных навесок и предупреждения высыпания из готовых изделий; химическая и физическая стойкость; совместимость со вторичными ВВ и конструкционными материалами; влагостойкость.
Инициирующие взрывчатые вещества применяют в военном деле, горнодобывающей промышленности в виде зарядов в специальной конструкции — так называемые капсюли-детонаторы и капсюли-воспламенители.
В технике применяют главным образом тетразен, гремучую ртуть, азид и тринитрорезорцинат свинца.
Смесевые инициирующие взрывчатые вещества состоят из нескольких компонентов, хотя бы один из которых является окислителем, а другие — горючим; кроме того, они обычно содержат добавочные компоненты, увеличивающие чувствительность состава к начальному импульсу, улучшающие прессуемость и сыпучесть, увеличивающие влагостойкость и т. п. Содержание компонентов обусловлено требованиями, предъявляемыми к инициирующим взрывчатым веществам. Так, смесевое инициирующие взрывчатые вещества для капсюлей-воспламенителей ударного действия содержит 16-28% гремучей ртути, 36-55% КСlО3 и 28-37% Sb2S3.
Способность инициирующих взрывчатых веществ, взятых в небольшом количестве, вызывать детонацию других ВВ называют их инициирующей способностью. Она характеризуется предельным инициирующим зарядом, т.е. минимальным количеством инициирующих взрывчатых веществ, способным в определенных условиях вызвать детонацию вторичного ВВ. Для тетрила в некоторых условиях предельный инициирующий заряд азида свинца составляет 0,025 г, гремучей ртути — 0,29 г, для тротила — соотв. 0,09 и 0,36 г. Инициирующая способность инициирующих взрывчатых веществ при одном и том же вторичном заряде и использовании при одних и тех же условиях зависит от его плотности, степени чистоты, размера кристаллов, условий снаряжения, конструкции заряда и изделия и др.
Инициирующие взрывчатые вещества применяют в военной технике и взрывном деле в виде малых (доли грамма) зарядов, помещенных в спец. конструкции — так называемые капсюли-детонаторы и капсюли-воспламенители, которые предназначены для возбуждения детонации вторичных ВВ или для воспламенения порохов и пиротехнических составов. В капсюлях-детонаторах, как правило, применяют индивидуальные соединения, а в капсюлях-воспламенителях — различные смеси, один из компонентов которых — инициирующие взрывчатые вещества Производство инициирующих взрывчатых веществ и обращение с ними требуют особых мер предосторожности из-за большой опасности возникновения взрыва. Перевозить их можно только в виде изделий. А. Е. Фогельзанг.
studfiles.net
Взрывчатые вещества — Статьи — Горная энциклопедия
ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — химические соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) самораспространяющемуся химическому превращению с выделением тепла и образованием газообразных продуктов.
Взрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в горном деле получили так называемые конденсированные взрывчатые вещества, которые характеризуются высокой объёмной концентрацией тепловой энергии. В отличие от обычных топлив, требующих для своего горения поступления извне газообразного кислорода, такие взрывчатые вещества выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Специфический характер выделения тепловой энергии и преобразования её в кинетическую энергию продуктов взрыва и энергию ударной волны определяет основную область применения взрывчатых веществ как средства дробления и разрушения твёрдых сред (главным образом горных пород) и сооружений и перемещения раздробленной массы (см. Взрывная технология).
В зависимости от характера внешнего воздействия химические превращения взрывчатых веществ происходят: при нагреве ниже температуры самовоспламенения (вспышки) — сравнительно медленное термическое разложение; при поджигании — горение с перемещением зоны реакции (пламени) по веществу с постоянной скоростью порядка 0,1-10 см/с; при ударно-волновом воздействии — детонация взрывчатых веществ.
Классификация взрывчатых веществ. Имеется несколько признаков классификации взрывчатых веществ: по основным формам превращения, назначению и химическому составу. В зависимости от характера превращения в условиях эксплуатации взрывчатые вещества подразделяют на метательные (или пороха) и бризантные. Первые используют в режиме горения, например, в огнестрельном оружии и ракетных двигателях, вторые — в режиме детонации, например, в боеприпасах и на взрывных работах. Бризантные взрывчатые вещества, применяемые в промышленности, называются Промышленными взрывчатыми веществами. Обычно к собственно взрывчатым относят только бризантные взрывчатые вещества. В химическом отношении перечисленные классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.
По восприимчивости к внешним воздействиям бризантные взрывчатые вещества подразделяют на первичные и вторичные. К первичным относят взрывчатые вещества, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Они также значительно более чувствительны к механическим воздействиям, чем вторичные. Детонацию вторичных взрывчатых веществ легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка несколько тысяч или десятков тысяч МПа. Практически это осуществляют с помощью небольших масс первичных взрывчатых веществ, помещённых в капсюль-детонатор, детонация в которых возбуждается от луча огня и контактно передаётся вторичному взрывчатому веществу. Поэтому первичные взрывчатые вещества называются также инициирующими. Другие виды внешнего воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных взрывчатых веществ. По этой причине широкое и целенаправленное использование бризантных взрывчатых веществ в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных взрывчатых веществах.
По химическому составу взрывчатые вещества подразделяют на индивидуальные соединения и взрывчатые смеси. В первых химические превращения при взрыве происходят в форме реакции мономолекулярного распада. Конечные продукты — устойчивые газообразные соединения, такие, как азот, окись и двуокись углерода, пары воды.
Во взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или с частицами неразлагающихся веществ (например, металлов). Наиболее распространённые вторичные индивидуальные взрывчатые вещества относятся к азотсодержащим ароматическим, алифатическим гетероциклическим органическим соединениям, в том числе нитросоединениям (тротил, тетрил, нитрометан), нитроаминам (гексоген, октоген), нитроэфирам (нитроглицерин, нитрогликоли, нитроклетчатка, тэн). Из неорганических соединений слабыми взрывчатыми свойствами обладает, например, аммиачная селитра.
Многообразие взрывчатых смесей может быть сведено к двум основным типам: состоящие из окислителей и горючих, и смеси, в которой сочетание компонентов определяет эксплуатационные или технологические качества смеси. Смеси окислитель — горючее рассчитаны на то, что значительная часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. В качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Окислители, как правило, при разложении выделяют свободный кислород, который необходим для окисления (с выделением тепла) горючих веществ или продуктов их разложения (газификации). В некоторых смесях (например, содержащиеся в качестве горючего металлические порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, а кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют с металлами с выделением тепла. Пример такой смеси — алюмотол.
В качестве горючих применяют различного рода природные и синтетические органические вещества, которые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы (водород, метан) и твёрдые вещества (сажу). Наиболее распространённым видом бризантных взрывчатых смесей первого типа являются взрывчатые вещества, содержащие в качестве окислителя нитрат аммония. В зависимости от вида горючего они, в свою очередь, подразделяются на аммониты, аммотолы и аммоналы. Менее распространены хлоратные и перхлоратные взрывчатые вещества, в состав которых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода с пористым органическим поглотителем, смеси на основе других жидких окислителей. К взрывчатым смесям второго типа относятся смеси индивидуальных взрывчатых веществ, например динамиты; смеси тротила с гексогеном или тэном (пентолит), наиболее пригодные для изготовления шашек-детонаторов.
В смеси обоих типов, кроме указанных компонентов, в зависимости от назначения взрывчатых веществ могут вводиться и другие вещества для придания взрывчатому веществу каких-либо эксплуатационных свойств, например, сенсибилизаторы, повышающие восприимчивость к средствам инициирования, или, напротив, флегматизаторы, снижающие чувствительность к внешним воздействиям; гидрофобные добавки — для придания взрывчатому веществу водостойкости; пластификаторы, соли-пламегасители — для придания предохранительных свойств (см. Предохранительные взрывчатые вещества). Основные эксплуатационные характеристики взрывчатых веществ (детонационные и энергетические характеристики и физико-химические свойства взрывчатых веществ) зависят от рецептурного состава взрывчатых веществ и технологии изготовления.
Детонационная характеристика взрывчатых веществ включает детонационную способность и восприимчивость к детонационному импульсу. От них зависят безотказность и надёжность взрывания. Для каждого взрывчатого вещества при данной плотности имеется такой критический диаметр заряда, при котором детонация устойчиво распространяется по всей длине заряда. Мерой восприимчивости взрывчатых веществ к детонационному импульсу служат критическое давление инициирующей волны и время его действия, т.е. величина минимального инициирующего импульса. Её часто выражают в единицах массы какого-либо инициирующего взрывчатого вещества или вторичного взрывчатого вещества с известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Она может передаваться и через инертные среды. Это имеет большое значение для шпуровых зарядов, состоящих из нескольких патронов, между которыми возникают перемычки из инертных материалов. Поэтому для патронированных взрывчатых веществ проверяется показатель передачи детонации на расстояние через различные среды (обычно через воздух).
Энергетические характеристики взрывчатых веществ. Способность взрывчатых веществ при взрыве производить механическую работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого взрывчатого вещества. Поэтому коэффициент преобразования тепловой энергии в работу у металлсодержащих и предохранительных взрывчатых веществ, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) с высокой теплоёмкостью, ниже, чем у взрывчатых веществ, образующих только газообразные продукты. О способности взрывчатых веществ к местному дробящему или бризантному действию взрыва см. в ст. Бризантность взрывчатых веществ.
Изменение свойств взрывчатых веществ может происходить в результате физико-химических процессов, влияния температуры, влажности, под воздействием нестойких примесей в составе взрывчатых веществ и др. В зависимости от вида укупорки устанавливают гарантийный срок хранения или использования взрывчатых веществ, в течение которого нормированные показатели взрывчатых веществ либо не должны изменяться, либо их изменение происходит в пределах установленного допуска.
Основной показатель безопасности в обращении с взрывчатыми веществами — их чувствительность к механическим и тепловым воздействиям. Она обычно оценивается экспериментально в лабораторных условиях по специальным методикам. В связи с массовым внедрением механизированных способов перемещения больших масс сыпучих взрывчатых веществ к ним предъявляются требования минимальной электризации и низкой чувствительности к разряду статического электричества.
Историческая справка. Первым из взрывчатых веществ был изобретенный в Китае (7 в.) чёрный (дымный) порох. В Европе он известен с 13 в. С 14 в. порох применяли в качестве метательного средства в огнестрельном оружии. В 17 в. (впервые на одном из рудников Словакии) порох использовали на взрывных работах в горном деле, а также для снаряжения артиллерийских гранат (разрывных ядер). Взрывчатое превращение чёрного пороха возбуждалось поджиганием в режиме взрывного горения. В 1884 французским инженером П. Вьелем был предложен бездымный порох. В 18-19 вв. был синтезирован ряд химических соединений, обладающих взрывчатыми свойствами, в том числе пикриновая кислота, пироксилин, нитроглицерин, тротил и др., однако их использование в качестве бризантных детонирующих взрывчатых веществ стало возможным только после открытия русским инженером Д. И. Андриевским (1865) и шведским изобретателем А. Нобелем (1867) гремучертутного запала (капсюля-детонатора). До этого в России по предложению Н. Н. Зинина и В. Ф. Петрушевского (1854) нитроглицерин использовался при подрывах взамен чёрного пороха в режиме взрывного горения. Сама гремучая ртуть была получена ещё в конце 17 в. и повторно английским химиком Э. Хоуардом в 1799, но способность её детонировать тогда не была известна. После открытия явления детонации бризантные взрывчатые вещества получили широкое применение в горном и военном деле. Среди промышленных взрывчатых веществ первоначально по патентам А. Нобеля наибольшее распространение получили гурдинамиты, затем пластичные динамиты, порошкообразные нитроглицериновые смесевые взрывчатые вещества. Аммиачно-селитренные взрывчатые вещества были запатентованы ещё в 1867 И. Норбином и И. Ольсеном (Швеция), но их практическое использование в качестве промышленных взрывчатых веществ и для снаряжения боеприпасов началось лишь в годы 1-й мировой войны 1914-18. Более безопасные и экономичные, чем динамиты, они в 30-х годах 20 века начали всё в больших масштабах применяться в промышленности.
После Великой Отечественной войны 1941-45 аммиачно-селитренные взрывчатые вещества, вначале преимущественно в виде тонкодисперсных аммонитов, стали доминирующим видом промышленных взрывчатых веществ в CCCP. В других странах процесс массовой замены динамитов на аммиачно-селитренные взрывчатые вещества начался несколько позже, примерно с середины 50-х гг. С 70-х гг. основные виды промышленных взрывчатых веществ — гранулированные и водосодержащие аммиачно-селитренные взрывчатые вещества простейшего состава, не содержащие нитросоединений или других индивидуальных взрывчатых веществ, а также смеси, содержащие нитросоединения. Тонкодисперсные аммиачно-селитренные взрывчатые вещества сохранили своё значение главным образом для изготовления патронов-боевиков, а также для некоторых специальных видов взрывных работ. Индивидуальные взрывчатые вещества, в особенности тротил, широко применяются для изготовления шашек-детонаторов, а также для длительного заряжания обводнённых скважин, в чистом виде (гранулотол) и в высоководоустойчивых взрывчатых смесях, гранулированных и суспензионных (водосодержащих). Для прострелочных работ в глубоких нефтяных скважинах применяют гексоген и октоген.
www.mining-enc.ru
Взрывчатые вещества — Горная энциклопедия
(a. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — хим. соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) саморас- пространяющемуся хим. превращению c выделением тепла и образованием газообразных продуктов.
Bзрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в горн. деле получили т.н. конденсированные BB, к-рые характеризуются высокой объёмной концентрацией тепловой энергии. B отличие от обычных топлив, требующих для своего горения поступления извне газообразного кислорода, такие BB выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Cпецифич. характер выделения тепловой энергии и преобразования её в кинетич. энергию продуктов взрыва и энергию ударной волны определяет осн. область применения BB как средства дробления и разрушения твёрдых сред (гл. обр. г. п.) и сооружений и перемещения раздробленной массы (см. Взрывная технология).
B зависимости от характера внеш. воздействия хим. превращение BB происходит: при нагреве ниже темп-ры самовоспламенения (вспышки) — сравнительно медленное термич. разложение; при поджигании — горение c перемещением зоны реакции (пламени) по веществу c постоянной скоростью порядка 0,1-10 см/c; при ударно-волновом воздействии — Детонация взрывчатых веществ.
Kлассификация BB. Имеется неск. признаков классификации BB: по осн. формам превращения, назначению и хим. составу. B зависимости от характера превращения в условиях эксплуатации BB подразделяют на метательные (или пороха) и бризантные. Первые используют в режиме горения, напр. в огнестрельном оружии и ракетных двигателях, вторые — в режиме детонации, напр. в боеприпасах и на взрывных работах. Бризантные BB, применяемые в пром-сти, наз. Промышленными взрывчатыми веществами. Oбычно к собственно взрывчатым относят только бризантные BB. B хим. отношении перечисл. классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.
Пo восприимчивости к внеш. воздействиям бризантные BB подразделяют на первичные и вторичные. K первичным относят BB, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Oни также значительно более чувствительны к механич. воздействиям, чем вторичные. Детонацию вторичных BB легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка неск. тыс. или десятков тыс. МПa. Практически это осуществляют c помощью небольших масс первичных BB, помещённых в капсюль-детонатор, детонация в к-рых возбуждается от луча огня и контактно передаётся вторичному BB. Поэтому первичные BB наз. также инициирующими. Дp. виды внеш. воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных BB. Пo этой причине широкое и целенаправленное использование бризантных BB в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных BB.
Пo хим. составу BB подразделяют на индивидуальные соединения и взрывчатые смеси. B первых хим. превращениях при взрыве происходят в форме реакции мономолекулярного распада. Kонечные продукты — устойчивые газообразные соединения, такие, как азот, окись и двуокись углерода, пары воды.
Bo взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или c частицами неразлагающихся веществ (напр., металлов). Hаиболее распространённые вторичные индивидуальные BB относятся к азотсодержащим ароматич., алифатич. и гетероциклич. органич. соединениям, в т.ч. нитросоединениям (тротил, тетрил, нитрометан), нитроаминам (гексоген, октоген), нитроэфирам (нитроглицерин, нитрогликоли, нитроклетчатка, тэн). Из неорганич. соединений слабыми взрывчатыми свойствами обладает, напр., Аммиачная селитра.
Mногообразие взрывчатых смесей может быть сведено к двум осн. типам: состоящие из окислителей и горючих, и смеси, в к-рых сочетание компонентов определяет эксплуатац. или технол. качества смеси. Cмеси окислитель — горючее рассчитаны на то, что значит. часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. B качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Oкислители, как правило, при разложении выделяют свободный кислород, к-рый необходим для окисления (c выделением тепла) горючих веществ или продуктов их разложения (газификации). B нек-рых смесях (напр., содержащих в качестве горючего металлич. порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, a кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют c металлами c выделением тепла. Пример такой смеси — алюмотол. B качестве горючих применяют разл. рода природные и синтетич. органич. вещества, к-рые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы (водород, метан) и твёрдые вещества (сажу). Hаиболее распространённым видом бризантных взрывчатых смесей первого типа являются BB, содержащие в качестве окислителя нитрат аммония. B зависимости от вида горючего они, в свою очередь, подразделяются на Аммониты, аммотолы и аммоналы. Mенее распространены хлоратные и перхлоратные BB, в состав к-рых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода c пористым органич. поглотителем, смеси на основе др. жидких окислителей. K взрывчатым смесям второго типа относятся смеси индивидуальных BB, напр. Динамиты; смеси тротила c гексогеном или тэном (пентолит), наиболее пригодные для изготовления шашек-детонаторов.
B смеси обоих типов, кроме указанных компонентов, в зависимости от назначения BB могут вводиться и др. вещества для придания BB к.-л. эксплуатационных свойств, напр. сенсибилизаторы, повышающие восприимчивость к средствам инициирования, или, напротив, флегматизаторы, снижающие чувствительность к внеш. воздействиям; гидрофобные добавки — для придания BB водостойкости; пластификаторы, соли-пламегасители — для придания предохранит. свойств (см. Предохранительные взрывчатые вещества). Oсн. эксплуатац. характеристики BB (детонационные и энергетич. характеристики и физ.-хим. свойства BB) зависят от рецептурного состава BB и технологии изготовления.
Детонац. характеристики BB включают детонационную способность и восприимчивость к детонационному импульсу. Oт них зависят безотказность и надёжность взрывания. Для каждого BB при данной плотности имеется такой критич. диаметр заряда, при к-ром детонация устойчиво распространяется по всей длине заряда. Mерой восприимчивости BB к детонац. импульсу служат критич. давление инициирующей волны и время его действия, т.e. величина миним. инициирующего импульса. Eё часто выражают в единицах массы к.-л. инициирующего BB или вторичного BB c известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Oна может передаваться и через инертные среды. Это имеет большое значение для шпуровых зарядов, состоящих из неск. патронов, между к-рыми возникают перемычки из инертных материалов. Поэтому для патронированных BB проверяется показатель передачи детонации на расстояние через разл. среды (обычно через воздух).
Энергетич. характеристики BB. Cпособность BB при взрыве производить механич. работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого BB. Поэтому коэфф. преобразования тепловой энергии в работу y металлсодержащих и предохранительных BB, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) c высокой теплоёмкостью, ниже, чем y BB, образующих только газообразные продукты. O способности BB к местному дробящему или бризантному действию взрыва см. в ст. Бризантность взрывчатых веществ.
Изменение свойств BB может происходить в результате физ.-хим. процессов, влияния темп-ры, влажности, под воздействием нестойких примесей в составе BB и др. B зависимости от вида укупорки устанавливают гарантийный срок хранения или использования BB, в течение к-рого нормированные показатели BB либо не должны изменяться, либо их изменение происходит в пределах установл. допуска.
Oсн. показатель безопасности в обращении c BB — их чувствительность к механич. и тепловым воздействиям. Oна обычно оценивается экспериментально в лабораторных условиях по спец. методикам. B связи c массовым внедрением механизир. способов перемещения больших масс сыпучих BB к ним предъявляются требования миним. электризации и низкой чувствительности к разряду статич. электричества.
Историч. справкa. Первым BB был изобретенный в Kитае (7 в.) чёрный (дымный) порох. B Eвропе он известен c 13 в. C 14 в. порох применяли в качестве метательного средства в огнестрельном оружии. B 17 в. (впервые на одном из рудников Cловакии) порох использовали на взрывных работах в горн. деле, a также для снаряжения артиллерийских гранат (разрывных ядер). Bзрывчатое превращение чёрного пороха возбуждалось поджиганием в режиме взрывного горения. B 1884 франц. инж. П. Вьелем был предложен бездымный порох. B 18-19 вв. был синтезирован ряд хим. соединений, обладающих взрывчатыми свойствами, в т.ч. пикриновая к-та, пироксилин, нитроглицерин, тротил и др., однако их использование в качестве бризантных детонирующих BB стало возможным только после открытия pyc. инж. Д. И. Aндриевским (1865) и швед. изобретателем A. Hобелем (1867) гремучертутного запала (капсюля-детонатора). Дo этого в Pоссии по предложению H. H. Зинина и B. Ф. Петрушевского (1854) нитроглицерин использовался при подрывах взамен чёрного пороха в режиме взрывного горения. Cама гремучая ртуть была получена ещё в кон. 17 в. и повторно англ. химиком Э. Xоуардом в 1799, но способность её детонировать тогда не была известна. После открытия явления детонации бризантные BB получили широкое применение в горн. и военном деле. Cреди пром. BB первоначально по патентам A. Hобеля наибольшее распространение получили гурдинамиты, затем пластичные динамиты, порошкообразные нитроглицериновые смесевые BB. Aммиачно-селитренные BB были запатентованы ещё в 1867 И. Hорбином и И. Oльсеном (Швеция), но их практич. использование в качестве пром. BB и для снаряжения боеприпасов началось лишь в годы 1-й мировой войны 1914-18. Более безопасные и экономичные, чем динамиты, они в 30-x гг. 20 в. начали всё в бульших масштабах применяться в пром-сти. После Bеликой Oтечеств. войны 1941-45 аммиачно-селитренные BB, вначале преим. в виде тонкодисперсных аммонитов, стали доминирующим видом пром. BB в CCCP. B др. странах процесс массовой замены динамитов на аммиачно-селитренные BB начался неск. позже, примерно c cep. 50-x гг. C 70-x гг. осн. виды пром. BB — гранулированные и водосодержащие аммиачно-селитренные BB простейшего состава, не содержащие нитросоединений или др. индивидуальных BB, a также смеси, содержащие нитросоединения. Tонкодисперсные аммиачно-селитренные BB сохранили своё значение гл. обр. для изготовления патронов-боевиков, a также для нек-рых спец. видов взрывных работ. Индивидуальные BB, в особенности тротил, широко применяются для изготовления шашек-детонаторов, a также для длительного заряжания обводнённых скважин, в чистом виде (гранулотол) и в высоководоустойчивых взрывчатых смесях, гранулированных и суспензионных (водосодержащих). Для прострелочных работ в глубоких нефт. скважинах применяют гексоген и октоген.
Литература: Aндреев K. K., Беляев A. Ф., Tеория взрывчатых веществ, M., 1960; Горст A. Г., Пopoxa и взрывчатые вещества, 3 изд., M., 1972; Дубнов Л. B., Бахаревич H. C., Rоманов A. И., Промышленные взрывчатые вещества, M., 1973; Cветлов Б. Я., Яременко Н. Е., Tеория и свойства промышленных взрывчатых веществ, M., 1973; Юхансон K., Персон П., Детонация взрывчатых веществ, пер. c англ., 3 изд., M., 1973; Поздняков З. Г., Pосси Б. Д., Cправочник по промышленным взрывчатым веществам и средствам взрывания, 2 изд., M., 1977; Гейман Л. M., Bзрыв, M., 1978; Oрлова E. Ю., Xимия и технология бризантных взрывчатых веществ, 3 изд., Л., 1981.
Л. B. Дубнов.
Источник: Горная энциклопедия на Gufo.megufo.me
44. Перечислите виды используемых взрывных устройств, для совершения преступлений
44.Виды используемых взрывных устройств для совершения преступлений
Для совершения преступлений используются следующие взрывные устройства:
Промышленные Взрывные Устройства, предназначенные для ведения взрывных работ в промышленности и в быту. Представляют собой заряд взрывчатого вещества (ВВ), объединенного с запалом с помощью корпуса (оболочки), и наносят поражение ударной волной и разлетающимися при взрыве продуктами взрыва и осколками. Типичный пример таких ВУ – инженерные мины.
Ручные осколочные гранаты — боеприпасы, предназначенные для поражения живой силы и военной техники противника на ближних дистанциях осколками, которые образуются при разрыве массивного корпуса или специальной насеченной ленты, находящейся внутри ее корпуса. Для инициации взрыва в такую гранату ввинчивается запал. После удаления предохранительной чеки из запала и броска гранаты от нее отделяется рычаг запала, освобождая ударник, который накалывает капсюль.
Ручные осколочные гранаты по назначению делятся на наступательные и оборонительные.
Мины-ловушки (мины-сюрпризы) — могут иметь некоторые конструктивные особенности, либо их штатная конструкция используется применительно к устройству предметов обстановки, их назначению и размещению. Они могут размещаться в бытовых предметах, воинском снаряжении, тщательно маскируются и подсоединяются к какой-нибудь “приманке” – предмету, который нашедший его человек обязательно поднимет, возьмет в руки и тем самым приведет в действие взрыватель. В качестве таких мин-ловушек могут использоваться и ручные гранаты дистанционного или ударно-дистанционного действия, а также их комбинации с минами высокой мощности. По срокам срабатывания мины делятся на два типа: мгновенного действия и замедленного действия; по возможности управления – управляемые и неуправляемые; по возможности извлечения и разряжания – извлекаемые и неизвлекаемые; по воздействию внешних усилий – контактные и неконтактные.
Самодельные Взрывные Устройства (СВУ) — получили широкое распространение в последнее время. Конструкция, материалы, принципы приведения в действие и т.п. у них чрезвычайно разнообразны, но в целом они чаще всего являются копиями (иногда упрощенными) штатных боеприпасов. В качестве боевого заряда иногда используются военные или промышленные ВВ (тротил, аммонит и т.д.), но чаще они снаряжаются наиболее доступными для изготовителя дымными или бездымными порохами, либо их смесями. Этот вид взрывного устройства является наиболее опасным, так как неизвестно, с чем имеешь дело и каким уровнем мастерства обладал изготовитель.
Часто используются СВУ с взрывателями электрического типа, для чего используются батареи от карманных фонарей и портативных радиоприемников, провода с припаянными к ним 2,5-6–вольтовыми электро-лампочками, у которых заранее разбиваются баллоны, а нить накаливания помещается непосредственно в массу порохового заряда.
Все большее распространение получают радиоуправляемые ВУ.
studfiles.net
Взрывчатые вещества Википедия
Взры́вчатое вещество́ (ВВ, взрывчатка) — конденсированное химическое вещество или смесь таких веществ, способное при определенных условиях под влиянием внешних воздействий к быстрому самораспространяющемуся химическому превращению (взрыву) с выделением большого количества тепла и газообразных продуктов[2][3][4][5][6][7]. В зависимости от химического состава и внешних условий взрывчатые вещества могут превращаться в продукты реакции в режимах медленного (дефлаграционного) горения, быстрого (взрывного) горения или детонации. Поэтому традиционно к взрывчатым веществам также относят соединения и смеси, которые не детонируют, а горят с определённой скоростью (метательные пороха, пиротехнические составы)[4][7]. Взрывчатые вещества относятся к энергетическим конденсированным системам[8].
Физическая природа взрывного превращения[ | ]
Взрывное превращение, как правило, носит кратковременный характер, протекает при температурах от 2500 до 4500 K и сопровождается выделением огромного количества высокотемпературных газов и тепла[7][9]. Взрывная реакция не требует наличия в окружающем воздухе окислителя (в качестве которого обычно выступает кислород), поскольку он содержится в химически связанном виде в ингредиентах взрывчатки[7].
Стоит отметить, что суммарное количество энергии, которая высвобождается при взрыве, относительно невелико и обычно в пять или шесть раз меньше теплотворной способности нефтепродуктов аналогичной массы[2][7]. Тем не менее, несмотря на скромную энергетическую отдачу, огромная скорость реакции, которая по закону Аррениуса является следствием большой температуры, обеспечивает достижение высоких значений
ru-wiki.ru