Простая ЭМИ пушка своими руками » Уникальные статьи и самоделки!

В этой статье мы соберем и протестируем вот такую ЭМИ пушку, с помощью которой можно выводить из строя разную электронику.

Автором данной самоделки является Роман, автор YouTube канала «Open Frime TV». В подобных статьях, видеороликах и прочих материалах, вставляют предупреждающую надпись, на всякий случай вот она:

А теперь переходим непосредственно к самоделке. Думаю, каждый кто собирал катушку Теслы видел, как она негативно влияет на различную электронику. Автор, когда изготовил и тестировал свою первую катушку, угробил телефон, было очень неприятно.

В чем же причина выхода из строя приборов? Все очень просто — сильное электромагнитное излучение большой частоты.

С этим вроде разобрались. Теперь что касается ЭМИ. Катушку Теслы, разумеется, с собой носить не будешь, а значит нужно сделать что-то подобное, только меньших размеров.

Можно реализовывать данный проект 2-мя способами. Первый показал AKA KASYAN (известный блогер на YouTube) в своем ролике.

Такая топология похожа на Качер Бровина (кто в теме, тот поймет). Хорошо, раз это показали, тогда остается второй вариант — делать на разряднике. Это проще в реализации и не требует особых навыков пайки.

Материалы

Задающее устройство
В первую очередь — это задающее устройство. Им может быть вот такой китайский модуль:

Такой можно без особых проблем приобрести в китайском интернет магазине Алиэкспресс. Стоят такие модули, как видите, довольно таки не дорого. Также, найти похожий модуль можно в дешевых китайских электрошокерах. Автор как раз будет использовать именно такой:

Этот старый китайский шокер, пролежал пару лет без дела. Автор его разобрал и достал нужный для данной самоделки элемент. Работать он может от одной или даже 2-ух литий-ионных аккумуляторов формата 18650.

Корпус
Дальше нам понадобится корпус. Тут идеально подходит корпус от блока питания ноутбука.

Провода
Следующий элемент — провод для намотки катушки диаметром от 0,5 мм и до 1 мм.

Ну и последний компонент — это разрядник. Его можно делать из чего угодно, хоть и старой свечи автомобиля, хоть из 2-ух гвоздей, закрепленных на опоре. Автор же взял 2 винтика м3 и сделал вот такой импровизированный разрядник:

Изменяя расстояние между выводами, мы изменяем напряжение пробоя, а соответственно и частоту работы устройства.

Схема сборки

Она довольно простая. Как видим, тут у нас расположен колебательный контур.

Как только конденсаторы внутри модуля зарядились до напряжения пробоя, происходит разряд и в контуре возникает магнитное поле.

Не забываем, что чем ниже напряжение пробоя, тем выше частота. Остается только подбором расстояния пробоя найти оптимальную частоту работы.

Со схемой закончили, можно приступать непосредственно к сборке нашего устройства. Собирать сегодняшнее устройство будем с помощью термо из суперклея, все в лучших традициях самодельщиков.

В первую очередь изготавливаем контур, он будет проходить по всему периметру корпуса. Это самое сложное, что придется сделать. Берем провод и не спеша укладываем его на внутреннюю сторону стенки корпуса, проклеивая суперклеем.
Таким вот способом делаем 4 витка. Как видим, после проделанной работы все пальцы будут в суперклее, куда же без этого.

Далее автор решил сразу протестировать устройство, не установив даже разрядник. Он просто хотел узнать, на что способно такое довольно компактное самодельное устройство. Первое, что попалось под руку, это старый мультиметр.


Как видим, при приближении к нему нашего устройства, значения пропали с дисплея мультиметра. Возможно, если подержать так большее время, мультиметр полностью выйдет из строя, но автору стало его жалко, и он прекратил эксперимент. Дальше он начал искать, чем бы еще проверить ЭМИ пушку. Под руки попали старые часы.

Как видите, с ними происходит тоже самое, что и с мультиметром. Вначале пропали значения, а потом часы вообще сбросились. Больше не нужной электроники в доме не было, тогда автор взял вот такую миниатюрную китайскую плату зарядки для литий-ионного аккумулятора:

Как видим, при внесении в поле, начал светить красный светодиод сигнализирующий о процессе зарядки, ну а так с ней ничего страшного не произошло. Давайте так же пробуем поднести наше устройство к старому телефону.

Но увы, это Nokia и ей такие игрушки до одного места. Как видите, область применения такой штуки большая, но не безграничная, так как при такой простоте устройства большего и не получишь.

Теперь остается все нормально закрепить, установить кнопку и закрыть корпус. Это дело 5-ти минут, справится даже школьник.

По-хорошему, разрядник нужно настроить для максимального эффекта, но это уже на выбор того, кто будет повторять данное устройство.

Устанавливать вовнутрь зарядку для аккумулятора не стоит, сами понимаете это было бы глупо. Поэтому автор вывел разъем для зарядки.

Ну а на этом сборка завершена. Для закрепления произведем еще немного тестов, но уже в собранном виде.
Результат вы видите сами. Да, и при использовании не стоит забывать, что некоторые устройства находятся в металлическом корпусе и поэтому на них не будет оказываться влияние — клетка Фарадея как никак. Ну а на этом все. Благодарю за внимание. До новых встреч!
Видео
Источник
unikumrus.com
Как сделать простой ЭМИ излучатель своими руками!

ОСТОРОЖНО ВЫСОКОЕ НАПРЯЖЕНИЕ!
Доброго времени суток любители интересных самоделок! Около года назад я впервые узнал как можно сделать ЭМИ излучатель для влияния на различную электронику с малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой «перезарядки». Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему «пробойник». Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода
Из инструментов нам понадобится:
-паяльник
-термо клей
И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки


Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса


Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:


Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:

С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:

Самый длинный провод вставляем через отверстие внутрь бутылки:

Припаиваем к нему оставшийся провод высоковольтника:

Располагаем высоковольтный модуль внутри бутылки:

Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:

Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:


Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём


укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:


Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:


Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:
Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа! До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!
Вот видео с испытаниями и ЭМИ перчаткой:


Всем спасибо за внимание!

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.usamodelkina.ru
Электромагнитные гранаты: Смерть электронике | Журнал Популярная Механика
Они работали против боевых дроидов в «Звездных войнах» — и отчего бы им не сработать против коммуникационных центров Аль-Каиды? Речь об электромагнитных гранатах, оружии, которое пока не входит в стандартных комплект военной экипировки, но скоро может в нем появиться.

До сих пор гранаты с электромагнитным импульсом использовали лишь геймеры

Подобное оружие, например, имеется в распоряжении игроков в Quake
Пока что поиск в Интернете по ключевым словам «гранаты» и «электромагнитный импульс» выдает больше ссылок на сайты, посвященные компьютерным играм и тем же «Звездным войнам», чем настоящему вооружению. Действительно, подобное оружие сперва появилось в научной фантастике и лишь затем стало воплощаться разработчиками в действительности. Это не должно смущать: подобный путь проделали и противоракетные боевые лазеры, которые активно создаются сегодня («Авиалазер»), и микроволновые нелетальные излучатели («Болевой луч»).
Считается, что для оружия с электромагнитным импульсом (ЭМИ) требуется генератор сжатия магнитного потока, состоящий из начиненной взрывчаткой трубки, помещенной внутри медной обмотки. За мгновение до детонации химического заряда ток от батареи поступает в обмотку и создает магнитное поле. Детонация заряда распространяется от заднего конца трубки к переднему. Расширяющаяся трубка касается края обмотки и вызывает движущееся короткое замыкание, которое резко сжимает магнитное поле и в то же время уменьшает индуктивность обмотки статора. В результате создается быстрорастущий импульс тока, который обрывается до окончательного разрушения устройства. Время роста составляет десятки или сотни микросекунд, а пиковое значение силы тока — десятки миллионов ампер. По сравнению с получающимся импульсом разряд молнии выглядит, как дешевая фотовспышка.
Идея эта уже давно не нова — правда, пока что на вооружении подобные боеприпасы не стоят.
Лишь недавно представитель американской армии подтвердила, что в их распоряжении имеется действующий прототип ЭМИ-гранаты, который ни размерами ни массой существенно не отличается от гранаты обычной. «Целью такого оружия, — сказала полковник Лаури Бакхаут (Laurie Buckhout), — может быть строение или небольшое поселение». Подобравшись, скажем, к пункту управления войсками противника, солдат сумеет одной такой гранатой вывести из строя всю систему командования и контроля (насколько это имеет смысл — неизвестно: обычная граната того же калибра выведет КП из строя ничуть не хуже). По ее словам, ЭМИ-гранаты могут быть переданы для полевых испытаний уже в следующем году.
Подробнее об электромагнитном оружии читайте: «Убийцы роботов», «Убийцы мин» и «Бомбы, которые не взрываются».
По сообщению DefenseTech.Org
Электромагнитный импульсный генератор – ЧАСТЬ 1
Этот серьезный проект показывает, как получить импульс электромагнитной энергии в несколько мегаватт, который может нанести непоправимый вред электронному компьютеризированному и чувствительному к электромагнитным помехам коммуникационному оборудованию. Ядерный взрыв вызывает подобный импульс, для защиты от него электронных устройств необходимо принимать специальные меры. Этот проект требует накопления смертельного количества энергии, и его не следует пытаться реализовать вне специализированной лаборатории. Подобное устройство можно использовать для вывода из строя компьютерных систем управления автомобилем с целью остановки автомобиля в неординарных случаях угона или если за рулем находится пьяный
Рис. 25.1. Лабораторный электромагнитный импульсный генератор
и опасный для окружающих автомобилистов водитель. Электронное оборудование можно протестировать с помощью электронного импульсного генератора на чувствительность к мощным импульсным помехам – к молниям и потенциальному ядерному взрыву (это актуально для военного электронного оборудования).
Проект описан здесь без указания всех деталей, указаны только основные компоненты. Используется дешевый открытый искровой разрядник, но он даст только ограниченные результаты. Для достижения оптимальных результатов необходим газовый или радиоизотопный разрядник, который эффективен для создания помех как при потенциальном ядерном взрыве (рис. 25.1).
Общее описание устройство
Генераторы ударной волны способны вырабатывать сфокусированную акустическую или электромагнитную энергию, которая может разрушать предметы, применяться в медицинских целях, например, для разрушения камней во внутренних органах человека (почках, мочевом пузыре и т.д.). Генератор электромагнитных импульсов может вырабатывать электромагнитную энергию, которая может разрушать чувствительную электронику в компьютерах и микропроцессорном оборудовании. Нестабилизированные индуктивно-емкостные цепи LC могут вырабатывать импульсы в несколько гигаватт за счет использования устройств взрывания провода. Эти импульсы высокой энергии – электромагнитные импульсы (в иностранной технической литературе ЕМР – ElectroMagnetic Pulses) можно использовать для тестирования твердости металла параболических и эллиптических антенн, гудков и других направленных дистанционных воздействий на предметы.
Например, в настоящее время ведутся исследования по разработке системы, которая будет выводить автомобиль из строя во время опасной погони на высоких скоростях за человеком, совершившим противоправное действие, например, угонщиком или пьяным водителем. Секрет заключается в генерации обладающего достаточной энергией импульса для сжигания электронных управляющих процессорных модулей автомобиля. Это гораздо проще выполнить, когда автомобиль покрыт пластиком или оптоволокном, чем когда он покрыт металлом. Экранирование металлом создает дополнительные проблемы исследователю, разрабатывающему практически применимую систему. Можно построить устройство и для этого тяжелого случая, но оно может быть дорогостоящим и оказать вредное воздействие на дружественные устройства, заодно выводя их из строя. Поэтому исследователи находятся в поиске оптимальных решений для мирных и военных целей применения электромагнитных импульсов (ЕМР).
Цель проекта
Цель проекта заключается в генерации пикового импульса энергии для тестирования на прочность электронного оборудования. В частности, данный проект исследует использование подобных устройств для выведения из строя транспортных средств за счет разрушения микросхем компьютера. Мы проведем эксперименты по разрушению цепей электронных устройств с помощью направленной ударной волны.
Риск
Внимание! Донный проект использует смертельно опасную электрическую энергию, которая при неправильном контакте может убить человека мгновенно.
Система высокой энергии, которая будет собрана, использует взрывающийся провод, который может создать эффекты, подобные шрапнели. Разряд системы может серьезно повредить электронику близко расположенных компьютеров и другого аналогичного оборудования.
Теории
Конденсатор С заряжается от источника тока до напряжения источника питания в течение определенного периода времени. Когда он достигает напряжения, соответствующего определенному уровню запасенной энергии, ему дается возможность быстро разрядиться через индуктивность резонансного LC-конту- ра. Генерируется мощная, недемпфированная волна на собственной частоте резонансного контура и на ее гармониках. Индуктивность L резонансной цепи может состоять из катушки и индуктивности связанного с ней провода, а также собственной индуктивности конденсатора, которая составляет около 20 нГн. Конденсатор цепи является накопителем энергии и также оказывает влияние на резонансную частоту системы.
Излучение энергетического импульса может быть достигнуто посредством проводящей конической секции или металлической структуры в форме рупора. Некоторые экспериментаторы могут использовать полуволновые элементы с питанием, подаваемым на центр катушкой, связанной с катушкой резонансной цепи. Эта полуволновая антенна состоит из двух четвертьволновых секций, настроенных на частоту резонансной схемы. Они представляют собой катушки, намотка которых имеет примерно одинаковую длину с длиной четверти волны. Антенна имеет две радиально направленные части, параллельные длине или ширине антенны. Минимальное излучение происходит в точках, расположенных по оси или на концах, но мы не проверяли на практике этот подход. Например, газоразрядная лампа будет вспыхивать ярче на расстоянии от источника, индицируя мощный направленный импульс электромагнитной энергии.
Наша тестовая импульсная система вырабатывает электромагнитные импульсы в несколько мегаватт (1 МВт широкополосной энергии), которые распространяются с помощью конической секционной антенны, состоящей из параболического рефлектора диаметром 100-800 мм. Расширяющийся металлический рупор 25×25 см также обеспечивает определенную степень воздействия. Специальный
Рис. 25.2. Функциональная схема импульсного электромагнитного генератора Примечание:
Базовая теория работы устройства:
Резонансная схема LCR состоит из указанных на рисунке компонентов. Конденсатор С1 заряжается от зарядного устройства постоянного тока током lc. Напряжение V на С1 опг*а’ ouivwrcs. соотношением:
V=lt/C.
Искровой разрядник GAP установлен на запуск при напряжении V чуть ниже50000 В. При запуске пиковый ток достигает значения:
di/dt-V/L.
Период отклика схемы является функцией от 0,16 х (LC)5. Kj jhj />»–гп ц > затем i ьтэрное гея в индуктивность схемы за VaX, причем пиковое значение тока приводит к взрыву провода и прерывает этотток йог» с{№лстшнно перед тем, как он достигнет пикового значения. Иц’ .^сп*»*»^ энергия (LP) виа*/»–«сдается в виде вчрьва и в jftpcxa цл^хтигггуктосго электромагнитного излучения. Пиковая мощность ипрмоьл*тз1 описанным ниже образом и щ»«**и*гг многие мегаватты!
1. Цикл заряд а: dv=ldt/C.
(Выражает напряжение заряда на конденсаторе в функции времени, где I – постоянный ток.)
2. Накопленная энергия в С как функция от напряжения: £=0,5CV
(Выражает энергию в джоулях при увеличении напряжения.)
3. Время отклика V* цикла пикового тока: 1,57 (LC)0–5. (Выражает время для первого пика резонансного тока при запуске искрового разрядника.)
4. Пиковый ток вточке V* цикла: V(C/ Ц05(Выражает пиковый ток.)
5. Исходный отклик в функции от времени:
Ldi/dt+iR+ 1/С+ 1/CioLidt=0.
(Выражает напряжение как функцию от времени.)
6. Энергия катушки индуктивности в д жоулях: E=0,5U2.
7. Отклик, когда схема разомкнута при максимальном токе через L: LcPi/dt2+Rdi/dt+it/С=dv/dt.
Из этого выражения видно, что энергия катушки должна направляться куда-либо в течение очень короткого времени, результатом чего является взрывное поле высвобождения энергии Е х В.
Мощный импульс в много мегаватт вд иапазонеулырвныилс<*хчастот можно получить засчет д естабилизации LCR- схемы, как показано выше. Единственным ограничивающим фактором является собственное сопротивление, которое всегда присутствует в разных формах, например: провода, пивирхнистн-лй эффект, потери в диэлектриках и переключателях и т.д- Потери могут быть минимизированы для достижения оптимальных результатов. электромагнитная волна рвадихастль должна излучаться антенной, которая можетбытъ в виде параболической тарелки микроволновой печи или настроенного их**» in >чг>;*ттеля. i-M. <гп1гч электромагнитная волна будетзависетъотгеометрии конструкции. Большая длина г* Х’бодз обеспечит лучшие характеристики магнитного поля В, а короткие приесда в большей степени образуют поле электрическое поле Е. Эти параметры войдут в уравнения взаимодействия эффективности излучения антенны. Наилучшим подходом здесь является экспериментирование с конструкцией антенны для достижения оптимальных результатов с использованием ваших математических знаний для улучшения основных параметров. Повреждения схемы обычно являются результатом очень высокого di/dt (поле «В») импульса. Это предмет для обсуждения!
конденсатор 0,5 мкФ с малой индуктивностью заряжается за 20 с с помощью устройства ионного заряда, описанного в главе 1 «Антигравитационный проект», и дорабатывается, как показано. Можно достичь более высокой скорости заряда с помощью систем с более высоким током, которые можно получить по специальному заказу для более серьезных исследований через сайт www.amasingl.com.
Радиочастотный импульс высокой энергии можно генерировать также и в случае, где выход импульсного генератора взаимодействует с полноразмерной полуволновой антенной с центральным питанием, настроенной на частоты в диапазоне 1-1,5 МГц. Реальная дальность действия при частоте 1 МГц – более 150 м. Такая дальность действия может быть избыточна для многих экспериментов. Однако это нормально для коэффициента излучения, равного 1, во всех других схемах этот коэффициент меньше 1. Можно уменьшить длину реальных элементов с помощью настроенной четвертьволновой секции, состоящей из 75 м провода, намотанных через интервалы или с использованием двух-трех- метровых трубок из поливинилхлорида PVC. Эта схема вырабатывает импульс низкочастотной энергии.
Пожалуйста, имейте в виду, как это уже указывалось ранее, что импульсный выход этой системы может причинить вред компьютерам и любым приборам с микропроцессорами и другими аналогичными схемами на значительном расстоянии. Всегда будьте осторожны при тестировании и использовании этой системы, она может повредить устройства, которые просто находятся рядом. Описание основных частей, использованных в нашей лабораторной системе, дает рис. 25.2.
Конденсатор
Конденсатор С, используемый для подобных случаев, должен обладать очень низкой собственной индуктивностью и сопротивлением разряда. В то же время этот компонент должен обладать способностью к накоплению достаточной энергии для генерации необходимого импульса высокой энергии заданной частоты. К сожалению, два этих требования вступают в противоречие друг с другом, их трудно выполнить одновременно. Конденсаторы высокой энергии всегда будут обладать большей индуктивностью, чем конденсаторы низкой энергии. Другим важным фактором является использование сравнительного высокого напряжения для генерации сильных токов разряда. Эти значения необходимы для преодоления собственного комплексного импеданса последовательно соединенных индуктивного и резистивного сопротивлений на пути разряда.
В данной системе используется конденсатор 5 мкФ при 50000 В с индуктивностью 0,03 мкГн. Необходимая нам основная частота для схемы низкой энергии составляет 1 МГц. Энергия системы составляет 400 Дж при 40 кВ, что определяется соотношением:
Е = 1/2 CV2.
Катушка индуктивности
Изготовить катушку для получения низкочастотного радиоимпульса легко. Индуктивность, обозначенная как L1, представляет собой сумму паразитной индуктивности проводов, искрового разрядника, устройства взрывания провода и собственной индуктивности конденсатора. Эта индуктивность входит в резонанс в широком диапазоне частот и должна выдержать высокочастотный разрядный импульс тока I. Величина общей индуктивности составляет 0,05-0,1 мкГн. Размер проводников должен учитывать ток импульса, который в идеале равен Vx(C/L)1/2. При переходном процессе ток стремится протекать по поверхности проводника вследствие высокочастотного поверхностного эффекта.
Вы можете использовать катушку из нескольких витков для экспериментов с низкими частотами с двойной антенной. Размеры определяются формулой индуктивности воздуха:
Рис. 25.7. Установка искрового разрядника для соединения с антенной при работе с низкой частотой
Применение устройство
Данная система предназначена для исследования чувствительности электронного оборудования к электромагнитным импульсам. Систему можно видоизменить для использования в полевых условиях и работы от перезаряжаемых аккумуляторных батарей. Ее энергию можно увеличить до уровня импульсов электромагнитной энергии в несколько килоджоулей, на собственный страх и риск пользователя. Нельзя предпринимать попыток изготовления своих вариантов устройства или использовать данное устройство, если вы не имеете достаточного опыта в использовании импульсных систем высокой энергии.
Импульсы электромагнитной энергии можно сфокусировать или запускать параллельно с помощью параболического отражателя. Экспериментальной мишенью может служить любое электронное оборудование и даже газоразрядная лампа. Вспышка акустической энергии может вызвать звуковую ударную волну или высокое звуковое давление на фокусном расстоянии параболической антенны.
Источники приобретении компонентов и деталей
Устройства заряда высокого напряжения, трансформаторы, конденсаторы, газовые искровые разрядники или радиоизотопные разрядники, импульсные генераторы MARX до 2 MB, генераторы ЕМР можно приобрести через сайт www.amasingl.com[21].
nauchebe.net
Устройство ЭМИ | Энциклопедия Half-Life
Устройство ЭМИ
Принадлежность
Тип
Универсальный инструмент
Устройство ЭМИ — электромагнитное импульсное мультиустройство, используемое, в основном, Аликс Вэнс для различных нужд.
- В игре ни разу не упоминается его название. Название устройство ЭМИ (EMP Tool) можно узнать только из файлов.
- Возможно, перепрограммирующее устройство (Roller Wand), является идейным предшественником данного устройства.
- Если Аликс будет убита, после её смерти на несколько секунд в воздухе зависнет устройство ЭМИ, а затем пропадёт.
- 1 Соберите необходимые материалы. Для создания простейшего электромагнитного излучателя вам понадобится одноразовый фотоаппарат, медная проволока, резиновые перчатки, припой, паяльник и железный прут. Все эти предметы можно приобрести в ближайшем строительном магазине.
- Чем толще проволоку вы возьмете для эксперимента, тем мощнее получится итоговый излучатель.
- Если вы не сможете найти железный прут, можете заменить его стержнем из неметаллического материала. Однако обратите внимание, что подобная замена негативно скажется на мощности производимого импульса.
- В ходе работы с электрическими деталями, способными удерживать заряд, или при пропускании электрического тока через объект, мы настоятельно рекомендуем надевать резиновые перчатки, дабы избежать возможного электрического удара.
- создать электромагнитный импульс 2 Соберите электромагнитную катушку. Электромагнитная катушка – это устройство, которое состоит из двух отдельных, но в то же время взаимосвязанных деталей: проводника и сердечника. В данном случае в качестве сердечника будет выступать железный прут, а в качестве проводника – медная проволока.
- Плотно обмотайте проволоку вокруг сердечника, не оставляя пробелов между витками. Не обматывайте весь провод, оставьте небольшое количество на краях обмотки, чтобы у вас была возможность подсоединить свою катушку к конденсатору.
- создать электромагнитный импульс 3 Припаяйте концы электромагнитной катушки к конденсатору. Конденсатор, как правило, имеет вид цилиндра с двумя контактами, а найти его можно на любой монтажной плате. В одноразовом фотоаппарате такой конденсатор отвечает за вспышку. Перед отпаиванием конденсатора обязательно вытащите батарейку из фотоаппарата, иначе вас может ударить током.
- Пока вы будете работать с монтажной платой и конденсатором, резиновые перчатки уберегут вас от электрических разрядов.
- Щелкните пару раз фотоаппаратом после извлечения батарейки, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
- 4 Найдите безопасное место для тестирования своего электромагнитного излучателя. В зависимости от задействованных материалов, эффективный радиус действия вашего ЭМИ будет составлять примерно один метр в любом направлении. Как бы то ни было, любая электроника, попавшая под ЭМИ, будет уничтожена.
- Не забывайте, что ЭМИ воздействует на все без исключения устройства в радиусе поражения, начиная от аппаратов жизнеобеспечения, вроде кардиостимуляторов, и заканчивая мобильными телефонами. Любой ущерб, причиненный этим устройством посредством ЭМИ, может повлечь за собой юридические последствия.
- Заземленная площадка, вроде пня или пластмассового стола, является идеальной поверхностью для тестирования электромагнитного излучателя.
- 5 Найдите подходящий объект для испытаний. Так как электромагнитное поле воздействует лишь на электронику, подумайте о приобретении какого-то недорогого устройства в ближайшем магазине электроники. Эксперимент можно считать успешным, если после активации ЭМИ электронное устройство перестанет работать.
- Множество магазинов канцелярских товаров торгуют достаточно недорогими электронными калькуляторами, с помощью которых вы можете проверить эффективность созданного излучателя.
- 6 Вставьте батарейку обратно в камеру. Для восстановления заряда необходимо пропустить через конденсатор электричество, которое впоследствии обеспечит вашу электромагнитную катушку током и создаст электромагнитный импульс. Поместите объект для испытаний как можно ближе к ЭМ излучателю.
- Наличие электромагнитного поля, в основном, невозможно определить на глаз. Без тестируемого объекта вы не сможете подтвердить успешное создание ЭМИ.
- создать электромагнитный импульс 7 Дайте конденсатору зарядиться. Позвольте батарейке снова зарядить конденсатор, отсоединив его от электромагнитной катушки, затем уже в резиновых перчатках или пластиковыми щипцами снова их соедините. Работая голыми руками, вы рискуете получить удар током.
- создать электромагнитный импульс 8 Включите конденсатор. Активация вспышки на камере высвободит накопленное в конденсаторе электричество, которое при прохождении через катушку создаст электромагнитный импульс.
- Созданное электромагнитное поле будет воздействовать на любую электронику, включая выключенную. Если в качестве испытуемого объекта вы выбрали калькулятор, то после включения конденсатора, и в случае успешного создания ЭМ импульса, калькулятор больше не включится.
- В зависимости от задействованного конденсатора, необходимое напряжение для его зарядки тоже будет разным. Емкость конденсатора в одноразовом фотоаппарате составляет где-то 80-160 мкФ, а напряжение должно быть в пределах 180-330 вольт.
- 1 Соберите все необходимое. Создание портативного устройства ЭМИ пройдет более гладко, если при себе у вас будут все необходимые инструменты и компоненты. Вам понадобятся следующие предметы:
- Пальчиковая батарейка
- Соответствующий батарейный отсек
- Медная проволока
- Картонная коробка
- Одноразовая камера (со вспышкой)
- Изолента
- Железный сердечник (желательно цилиндрической формы)
- Резиновые перчатки (рекомендовано)
- Простой выключатель
- Припой и паяльник
- Радиоантенна
- 2 Вытащите монтажную плату из фотоаппарата. Внутри одноразового фотоаппарата находится монтажная плата, которая и отвечает за его функционал. Для начала вытащите батарейки, а затем уже и саму плату, не забыв при этом отметить положение конденсатора.
- Работая с фотоаппаратом и конденсатором в резиновых перчатках, вы тем самым обезопасите себя от возможного электрического удара.
- Конденсаторы, как правило, имеют вид цилиндра с двумя контактами, прикрепленными к плате. Это одна из важнейших деталей будущего устройства ЭМИ.
- После того как вы вытащите батарейку, щелкните пару раз фотоаппаратом, чтобы израсходовать накопленный заряд в конденсаторе. Из-за накопленного заряда вас в любой момент может ударить током.
- 3 Обмотайте медную проволоку вокруг железного сердечника. Возьмите достаточное количество медной проволоки, чтобы равномерно идущие витки могли полностью покрыть железный сердечник. Также убедитесь, чтобы витки плотно прилегали друг к другу, иначе это негативно скажется на мощности ЭМИ.
- Оставьте небольшое количество провода на краях обмотки. Они нужны, чтобы подсоединить к катушке остальную часть устройства.
- 4 Нанесите изоляцию на радиоантенну. Радиоантенна послужит в качестве рукоятки, на которой будут закреплены катушка и плата от фотоаппарата. Оберните основание антенны изолентой, дабы уберечься от удара током.
- 5 Закрепите плату на плотном куске картона. Картон послужит в качестве еще одного слоя изоляции, который убережет вас от неприятного электрического разряда. Возьмите плату и изолентой закрепите ее на картоне, но так, чтобы она не закрывала дорожки электропроводящей цепи.
- Закрепите плату лицевой стороной вверх, чтобы конденсатор и его проводящие дорожки не контактировали с картоном.
- На картонной подложке для печатной платы также должно хватить достаточно места для батарейного отсека.
- 6 Закрепите электромагнитную катушку на конце радиоантенны. Поскольку для создания ЭМИ электрический ток должен пройти через катушку, неплохо бы добавить второй слой изоляции, поместив небольшой кусочек картона между катушкой и антенной. Возьмите изоленту и закрепите катушку на куске картона.
- 7 Припаяйте источник питания. Найдите на плате разъемы для батарейки и соедините их с соответствующими контактами батарейного отсека. После этого можете закрепить все это дело изолентой на свободном участке картонки.
- 8 Подсоедините катушку к конденсатору. Необходимо припаять края медной проволоки к электродам вашего конденсатора. Между конденсатором и электромагнитной катушкой также следует установить переключатель, который бы управлял потоком электроэнергии между этими двумя компонентами.
- Во время данного этапа сборки устройства ЭМИ вы должны оставаться в резиновых перчатках. Из-за оставшегося заряда в конденсаторе вас может ударить током.
- 9 Прикрепите картонную подложку к антенне. Возьмите изоленту и прочно прикрепите картонную подложку вместе со всеми деталями к радиоантенне. Закрепите ее над основанием антенны, которое вы уже должны были обмотать изолентой.
- 10 Найдите подходящий объект для испытаний. Простой и недорогой калькулятор идеально подойдет для тестирования портативного устройства ЭМИ. В зависимости от материалов и оборудования, использованных при конструировании вашего устройства, ЭМ поле будет работать либо в непосредственной близости от катушки, либо покрывать расстояние до одного метра вокруг нее.
- Любое электронное устройство, попавшее в радиус действия ЭМ поля, будет выведено из строя. Убедитесь, что рядом с выбранной тестовой площадкой нет электронных приборов, которым бы вы не хотели навредить. Вся ответственность за поврежденное имущество будет лежать на вас.
- 11 Протестируйте свое портативное устройство ЭМИ. Проверьте, чтобы переключатель устройства находился в положении «ВЫКЛ», после чего вставьте батарейки в батарейный отсек на картонной подложке. Держите устройство за изолированное основание антенны (словно протоновый ускоритель из «Охотников за привидениями»), направьте катушку в сторону объекта для испытаний и переключите выключатель в положение «ВКЛ».
- Если вы сомневаетесь в своих знаниях и навыках соединения электронных компонентов, при работе с устройством в качестве дополнительной меры предосторожности наденьте резиновые перчатки.
- В случае успеха эксперимента, тестируемый объект вкупе с другой электроникой, оказавшейся в эффективном диапазоне ЭМ поля, перестанет работать.
- В зависимости от задействованного конденсатора, необходимое напряжение для его зарядки тоже будет разным. Емкость конденсатора в одноразовом фотоаппарате составляет где-то 80-160 мкФ, а напряжение должно быть в пределах 180-330 вольт.
- Размер медной проволоки и длина катушки определят силу и радиус электромагнитного импульса. В целях безопасности прежде чем приступать к созданию большего, более мощного излучателя, начните с небольшого устройства, чтобы проверить эффективность вашей конструкции.
- Вся ответственность за поврежденное электромагнитным полем имущество будет лежать на вас.
- Работать с электромагнитными импульсами крайне опасно. Существует высокая вероятность поражения электрическим током, а в более редких случаях – взрыва, пожара или повреждения электроники. Перед созданием медной катушки уберите из комнаты или рабочей зоны все электронные приборы. Любые электронные устройства на расстоянии нескольких метров от импульса будут повреждены.
- Медная проволока (ЭМ излучатель)
- Одноразовый фотоаппарат (ЭМ излучатель)
- Железный прут (ЭМ излучатель)
- Припой и паяльник (ЭМ излучатель)
- Пальчиковая батарейка (портативное устройство ЭМИ)
- Батарейный отсек (портативное устройство ЭМИ)
- Медная проволока (портативное устройство ЭМИ)
- Картонная коробка (портативное устройство ЭМИ)
- Одноразовый фотоаппарат (со вспышкой; портативное устройство ЭМИ)
- Изолента (портативное устройство ЭМИ)
- Железный сердечник (желательно цилиндрической формы; портативное устройство ЭМИ)
- Резиновые перчатки (рекомендовано для обоих устройств)
- Простой электрический выключатель (портативное устройство ЭМИ)
- Припой и паяльник (портативное устройство ЭМИ)
- Радиоантенна (портативное устройство ЭМИ)
Устройство всегда закреплено на поясе Аликс, и чаще всего используется ей для обхождения систем устройств Альянса. С помощь устройства ЭМИ можно получать доступ к компьютерам Альянса, взламывать замки, тем самым открывая ворота и перепрограммировать шаровые мины. Также это устройство может использоваться как хранитель информации, имея способность считывать, копировать и перемещать данные. К примеру, именно так поступила Аликс, захватив с собой в Белую Рощу данные о Борее.
В конце Half-Life 2 Джудит Моссман запугивает доктора Брина при помощи устройства ЭМИ. Это указывает на то, что оно предположительно может использоваться в качестве оружия. Однако, возможно, Уоллес Брин даже не знает о свойствах этого устройства, и оно лишь выглядит пугающе.
Интересные фактыПравить
halflife.fandom.com
Как создать электромагнитный импульс Как? Так!
Содержимое:
2 метода:
Электромагнитный импульс (ЭМИ) – это естественное явление, вызванное резким ускорением частиц (в основном, электронов), которое приводит к возникновению интенсивного всплеска электромагнитной энергии. Повседневными примерами ЭМИ могут служить следующие явления: молния, системы зажигания двигателей внутреннего сгорания и солнечные вспышки. Несмотря на то, что электромагнитный импульс способен вывести из строя электронные устройства, данную технологию можно применить для целенаправленного и безопасного отключения электронных устройств или для обеспечения безопасности персональных и конфиденциальных данных.
Шаги
Метод 1 Создание элементарного электромагнитного излучателя
Метод 2 Создание портативного устройства ЭМ излучения
Советы
Предупреждения
Что вам понадобится
Прислал: Суханова Анна . 2017-11-12 11:11:49
kak-otvet.imysite.ru
Защита электроники от электромагнитного импульса

Мощный электромагнитный импульс (ЭМИ) появляется вследствие всплеска энергии, которая излучается или проводится таким источником как солнце или взрывное устройство. Если в вашем арсенале выживальщика присутствуют электротехнические или электронные устройства, необходимо предусмотреть их защиту от ЭМИ, чтобы они смогли продолжать работать после начала боевых действий, природной или техногенной катастрофы.
Что такое электромагнитный импульс
Всякий раз, когда электрический ток проходит через провода, он производит электрическое и магнитное поля, которые исходят перпендикулярно движению тока. Размер этих полей пропорционален силе тока. Длина провода напрямую влияет на силу тока индуцированного электромагнитного импульса. Кроме того, даже обычное включение питания производит короткий всплеск электрической и магнитной энергии.
При этом всплеск настолько мал, что едва заметен. Например, коммутационные действия в электрической схеме, двигателях и системах зажигания для газовых двигателей так же производят к небольшим ЭМИ импульсам, которые могут вызвать помехи на соседнем радио или телевидении. Для их поглощения используются фильтры, удаляющие незначительные всплески энергии и помехи от них.
Большой выброс энергии производится, когда некий заряд электричества быстро разряжается. Данный электростатический разряд (ESD) может шокировать человека или вызвать опасные искры вокруг паров топлива. Так же многие помнят, что в детстве мы бы протирали ноги об ковер, а затем касались друзей, создавая разряд ESD. Это тоже одна из форм ESD.
Чем сильнее энергия импульса, тем больше он может повредить здания и воздействовать людей. Например, молния является мощной формой ЭМИ. Электростатический разряд от молнии может быть очень опасным и стать причиной катастрофы. К счастью, большинство молнии замкнуто на землю, где электрический заряд поглощается. Громоотвод изобрел Бенджамин Франклин, благодаря чему сегодня сохраняются многие здания и сооружения.
Такие события, как ядерные взрывы, высотные неядерные взрывы и солнечные бури могут создать мощный ЭМИ, который наносит ущерб электрическому и электронному оборудованию, расположенному недалеко от источника события. Все это угрожает электросетям и функционированию большинства электрических и электронных устройств в нашей жизни.
Поражающие факторы электромагнитного импульса
Опасность ЭМИ заключается в том, что он поражает системы жизнеобеспечения и транспорта. Поэтому, например, при мощном воздействии электромагнитного импульса современная незащищенная автотехника выходит из строя. Особенно это касается автомобилей, произведенных после 1980 года. Поэтому в случае техногенной катастрофы, начала боевых действий или всплеска солнечной активности оптимально использовать автомашины старого образца.
Кроме того, электромагнитный импульс поражает:
• Компьютеры.
• Дисплеи.
• Принтеры.
• Маршрутизаторы.
• Трансформаторы.
• Генераторы.
• Источники питания.
• Стационарные телефоны.
• Любые электронные схемы.
• Телевизоры.
• Радио, DVD плееры.
• Игровые устройства.
• Медиа центры
• Усилители.
• Системы связи (передатчики, приемники)
• Кабели (передачи данных, телефонные, коаксиальные, USB и т.д.)
• Провода (особенно большой длины).
• Антенны (внешние и внутренние).
• Электрические шнуры питания.
• Системы зажигания (авто и самолетов).
• Электрические схемы СВЧ.
• Кондиционеры.
• Аккумуляторы (все виды).
• Фонарики.
• Реле.
• Системы сигнализации.
• Контроллеры заряда.
• Преобразователи.
• Калькуляторы.
• Электроинструменты.
• Электронные запчасти.
• Зарядные устройства.
• Устройства контроля (CO2, детекторы дыма и т.д.).
• Кардиостимуляторы.
• Слуховые аппараты.
• Устройства медицинского мониторинга и т.п.
Факторы, которые определяют урон от ЭМИ
• Сила входящего электромагнитного импульса.
• Расстояние до источника импульса.
• Угол линии удара от источника к вашему положению на вращающейся Земле.
• Размер и форма объектов, которые получают и собирают ЭМИ.
• Степень изоляции приборов и устройств от вещей, которые могут собирать и передавать энергию ЭМИ.
• Защита или экранирование приборов и устройств.
Как защититься от ЭМИ: первые действия
С большой долей вероятности небольшие системы не будут затронуты ЭМИ (англ. EMP), если они изолированы от сети питания. Поэтому при поступлении предупреждения о грядущем EMP отключите все подключенные к электрической розетке приборы и устройства. Не забудьте вентиляцию и термостаты. Отключите солнечные панели и весь дом от общей сети, откройте запорные переключатели между солнечными панелями и инвертором, и между преобразователем и распределительной панелью питания. При слаженных действиях это займет несколько минут.
Общая защита от электромагнитного излучения
Предлагаемые защитные действия:
• Отключайте электронные устройства, когда они не используется.
• Отключайте электроприборы, когда они не используются.
• Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
• Используйте короткие кабели для работы.
• Установите защитную индукцию вокруг компонентов.
• Используйте компоненты с автономными батареями.
• Используйте рамочные антенны.
• Подключите все провода заземления к одной общей точке заземления.
• По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
• Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
• Используйте ИБП для защиты электроники от всплеска EMP.
• Используйте блокирования устройства.
• Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
• Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
• Устанавливайте кабель под землей, в экранированных кабельных каналах.
• Постройте одну или несколько клеток Фарадея.
Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.
Как построить клетку Фарадея
Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.
Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Клетка Фарадея из мусорного бака

Клетка Фарадея из металлического ящика
Что поместить в клетку Фарадея
Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:
• Батарейки для радио.
• Портативные рации.
• Портативные телевизоры.
• Светодиодные фонарики.
• Солнечное зарядное устройство.
• Компьютер (ноутбук или планшет).
• Сотовые телефоны и смартфоны.
• Различные лампочки.
• Зарядные шнуры для мобильных телефонов, планшетов и т.п.
Как защитить важную информацию от ЭМИ
Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае Апокалипсиса – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.
Вместо послесловия
Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.
Будьте готовы, и будете в безопасности!
Источник: www.extreme-voyage.ru НАША СТРАНИЦА В ФЕЙСБУК: МЫ ВКОНТАКТЕ:www.extreme-voyage.ru