«Дизельные подводные лодки ВМФ России (фотообзор)» в блоге «Армия и Флот»

Предлагаю вашему вниманию фотообзор всех ДПЛ стоящих на вооружении и строящихся для ВМФ России.

Проект 636.3 «Варшавянка»:

1. Подводная лодка проекта 636.3 «Варшавянка» Б-261 «Новороссийск». Вступление во флот — 2014 год. Водоизмещение — 3950 тонн.

2. Подводная лодка проекта 636.3 «Варшавянка» Б-237 «Ростов-на-Дону». Вступление во флот — 2014 год. Водоизмещение — 3950 тонн.

3. Подводная лодка проекта 636.3 «Варшавянка» Б-262 «Старый Оскол». Спуск на воду — 2014 год. Водоизмещение — 3950 тонн. 4. Подводная лодка проекта 636.3 «Варшавянка Б-265 «Краснодар». Заложена — 2014 год. Водоизмещение — 3950 тонн. 5. Подводная лодка проекта 636.3 «Варшавянка» Б-268 «Великий Новгород». Заложена — 2014 год. Водоизмещение — 3950 тонн.

6. Подводная лодка проекта 636.3 «Варшавянка» Б-271 «Колпино». Заложена — 2014 год. Водоизмещение — 3950 тонн.

7. Дизель-электрическая подводная лодка проекта 677 «Лада» Б-585 «Санкт-Петербург». Переименовали в феврале, перезакладут в марте под названием Вступление во флот — 2010 год. Водоизмещение — 1760 тонн. 8. Дизель-электрическая подводная лодка проекта 677 «Лада» Б-586 «Кронштадт». Заложена — 2005 год. Водоизмещение — 1760 тонн.

9. Дизель-электрическая подводная лодка проекта 677 «Лада» Б-587 «Великие Луки». Заложена — 2006 год. Водоизмещение — 1760 тонн.

Проект 877 «Палтус»:

10. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-260 «Чита». Вступление во флот — 1981 год. Водоизмещение — 3040 тонн.

11. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-227 «Выборг». Вступление во флот — 1982 год. Водоизмещение — 3040 тонн.

12. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-401 «Новосибирск». Вступление во флот — 1984 год. Водоизмещение — 3040 тонн. Статус — находится на консервации.

13. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-402 «Вологда». Вступление во флот — 1984 год. Водоизмещение — 3040 тонн.

14. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-808 «Ярославль». Вступление во флот — 1988 год. Водоизмещение — 3040 тонн. 15. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-445 «Святой Николай Чудотворец». Вступление во флот — 1988 год. Водоизмещение — 3040 тонн.16. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-394. Вступление во флот — 1988 год. Водоизмещение — 3040 тонн.

17. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-871 «Алроса». Вступление во флот — 1989 год. Водоизмещение — 3950 тонн. Статус — находится в ремонте.

18. Дизель-электрическая подводная лодка проекта 877ЛПМБ «Палтус» Б-800 «Калуга». Вступление во флот — 1989 год. Водоизмещение — 3040 тонн. 19. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-459 «Владикавказ». Вступление во флот — 1990 год. Водоизмещение — 3040 тонн. Статус — находится на ремонте. Спущена на воду. 20. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-471 «Магнитогорск». Вступление во флот — 1990 год. Водоизмещение — 3040 тонн. 21. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-464 «Усть-Камчатск». Вступление во флот — 1990 год. Водоизмещение — 3040 тонн.

22. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-494 «Усть-Большерецк». Вступление во флот — 1990 год. Водоизмещение — 3040 тонн.

23. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-177 «Липецк». Вступление во флот — 1991 год. Водоизмещение — 3040 тонн.&nbsp

24. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-187. Вступление во флот — 1991 год. Водоизмещение — 3040 тонн. Статус — находится в ремонте. 25. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-190 «Краснокаменск». Вступление во флот — 1992 год. Водоизмещение — 3040 тонн.

26. Дизель-электрическая подводная лодка проекта 877 «Палтус» Б-345 «Могоча». Вступление во флот — 1994 год. Водоизмещение — 3040 тонн.

Проект 877ЭКМ

27. Дизель-электрическая подводная лодка проекта 877ЭКМ Б-806 «Дмитров». Вступление во флот — 1986 год. Водоизмещение — 3040 тонн.

Проект 641

28. Дизель-электрическая подводная лодка Б-380 «Святой князь Георгий» проекта 641Б «Сом». Вступление во флот — 1982 год. Водоизмещение — 4600 тонн.

29. Дизель-электрическая подводная лодка проекта 641 «Запорожье». Вступление во флот — 1970 год. Водоизмещение — 2550 тонн. Статус — в 2014 году была захвачена у украинской армии. В настоящее время неофициально в резерве ЧФ. Официально обещают вернуть Украине после завершения гражданской войны.

Проект 2012030

Дизельная подводная лодка специального назначения проекта 20120 Б-90 «Саров». Вступление во флот — 2008 год. Водоизмещение — 3950 тонн.

sdelanounas.ru

Суровая судьба дизель-электрических подлодок | Армейский вестник

Не секрет, что не существует вещей, которые были бы только положительными или только отрицательными. В некотором роде не являются исключением из этого правила и подводные лодки. При всех плюсах атомных подлодок, как то автономность, ограниченная только «человеческим фактором» или превосходные боевые характеристики, они обходятся дорого. Причем не только в плане строительства – для их эксплуатации требуется создание специфической инфраструктуры для обслуживания атомных силовых установок.

• Но не все страны могут себе позволить такие расходы, а подводный флот им требуется. В этой ситуации устаревшие на первый взгляд дизель-электрические подлодки (ДЭПЛ или ДПЛ) еще долго будут оставаться единственной дешевой и удобной альтернативой атомным

.

• Для справки напомним, что только две страны, имеющие или строящие подводные лодки, отказались от дизель-электрических: США и Великобритания. Россия, Китай и Франция (к ним до конца года должна присоединиться Индия, получающая российскую атомную лодку К-152 «Нерпа») имеют смешанный подводный флот, состоящий и из атомных, и из дизельных лодок. Все прочие страны, эксплуатирующие подлодки, имеют только ДЭПЛ.

Подлодки на распутье

• Дизель-электрическая схема на сегодняшний день по факту ничуть не устарела. Вернее, получает развитие и остается современной. Проблемы ДЭПЛ времен Второй Мировой войны остались в прошлом. За счет развития «по всем фронтам» — дизеля, аккумуляторы, электромоторы и другое оборудование – удалось избавиться от низкой подводной скорости и малого времени в подводном положении.

• В итоге «классическая» схема, сочетающая дизели и электромоторы в качестве непосредственного привода винтов, уже несколько десятков лет не используется в новых проектах. Сейчас развитие силовых установок ДЭПЛ идет по трём путям:

полное электродвижение. В таком случае подлодка не имеет механических связей между дизелями и винтами – последние всегда вращаются электромоторами. На большинстве лодок с полным электродвижением применяются два двигателя: главный и экономического хода; хотя в самых последних проектах их роль играет один мотор с двумя режимами работы.

топливные элементы. Дальнейшее развитие предыдущей системы. Топливные элементы на основе различных химических соединений позволили увеличить емкость аккумуляторов и снизить шум. Эта система пока что не получила большого распространения, но ей прочат большое будущее.

ДЭПЛ с двигателями Стирлинга. Применение этого двигателя значительно повышает время пребывания лодки в подводном положении без серьезных потерь в других показателях. Интересная и заслуживающая внимания система, но таких лодок было построено чуть более десятка – это шведский проект «Готланд», французский «Сага», а также японские «Сорю».

В России

Основным типом отечественных ДЭПЛ на данный момент являются лодки проекта 877 «Палтус» конца 70-х годов. Общее количество этих лодок, включая экспортные, превышает четыре десятка. В середине 90-х было начато строительство экспортных ДЭПЛ проекта 636 «Варшавянка», созданного на основе «Палтуса». Примерно в это же время проект 877 был значительно переработан в 677 «Лада». Недавно появились нерадостные новости о судьбе последних.

• Будем надеяться, что ЦКБ «Рубин» справится с доработкой проекта и к 2013 году начнется полноценное строительство ДЭПЛ «Лада». Главными отличиями проектов 877 и 677 является конструкция (у последней – однокорпусная) и силовая установка. На «Палтусах» и «Варшавянках» имеется два электродвигателя, главный и экономического хода. На «Ладах» функции обоих выполняет один двигатель.

• Также было серьезно обновлено оборудование, улучшена эргономика центрального поста и создана интегрированная система управления всеми вооружениями. Вооружение лодок проекта 677 состоит из шести торпедных аппаратов (533 мм) с боезапасом в 18 или 16 торпед УСЭТ-80К, мин (до 44 штук) и десяти пусковых установок для ПКР. Также на борту имеется ПЗРК «Игла-1М» и шесть ракет для нее.

• Отдельно специалисты из ЦКБ «Рубин» отмечают экологичность лодки – за счет систем переработки отходов за борт сливается только чистая вода, а все остальные «компоненты» лодка отвозит на базу, где они и утилизируются. При всех выявленных на испытаниях недостатках проект 677 является весьма и весьма перспективным, требуется только некоторая «работа над ошибками», точный объем и состав которой, похоже, засекречен.

U-Boot

Среди зарубежных стран лидером в строительстве ДЭПЛ считается Германия. Так, к примеру, немецкие подлодки проекта 209 с 1971 года поставлялись в 13 стран, всего их было построено более шести десятков. Таким образом, «209» стали самыми коммерчески успешными подлодками в истории. В конце 90-х Израиль получил три лодки проекта 800 Dolphin, являющегося доработкой 21-го проекта под его требования. Более новыми немецкими ДЭПЛ являются лодки проекта 212.

Главное, на что обращают внимание немцы, продвигая свои новые лодки – электрическая часть силовой установки. Состоит она из девяти протон-обменных топливных элементов производства Siemens и 144 серебряно-цинковых аккумуляторов. Вооружение проекта 212 состоит из шести торпедных аппаратов калибра 533 миллиметра (боезапас – 12 торпед различных типов) и ПКР. Вместо торпед лодка может нести мины.

• Четыре лодки проекта 212 уже вошли в строй Бундесмарине, еще две строятся. По заказу Италии была создана модификация 212А: две такие лодки уже переданы заказчику, еще две будут сданы после 2013 года. С экспортной версией 212-го проекта – проектом 214 – вышла неприятная история: в начале этого года всплыли коррупционные истории десятилетней давности.

• Тогда ряду греческих чиновников от обороны бюргеры-подрядчики сделали «презенты» на полсотни миллионов евро. Взятки, похоже, не помогли и несколько лет производитель лодок, фирма HDW, имела проблемы со сдачей головной греческой лодки. В 2008 году появилась новость о намерении Пакистана купить для своего флота лодки проекта 214, но с тех пор более новой информации не появлялось.

Sous-marin

Самым новым французским проектом ДЭПЛ являются подлодки Scorpene. Работы над проектом велись компанией DCN с начала 90-х, причем Scorpene изначально делались как экспортные лодки. К концу десятилетия к Франции присоединились испанцы из Izar. В результате работ было создано три модификации подлодки:

Scorpene Basic. Обычная дизель-электрическая лодка, вооруженная шестью торпедными аппаратами (запас 18 торпед) с возможностью стрельбы противокорабельными ракетами. На лодке могут применяться ПКР SM-39 Exocet или Sub-Garpoon.

Scorpene Basic-AIP. Та же «Скорпен-Бейсик», но с воздухонезависимой энергетической установкой (ВНЭУ) MESMA. Эта паротурбинная установка, сжигая в камере сгорания топливо (скорее всего, этанол, хотя иногда упоминают дизельное топливо) в кислородной атмосфере, испаряет воду. Пар подается на генераторную установку мощностью до 200 кВт. После турбины генератора пар поступает в конденсатор, где охлаждается забортной водой. Охлажденная вода снова поступает в парогенератор и т.д. Таким образом, паротурбинная установка работает по замкнутому циклу. Необходимый кислород в жидком виде заливается в специальную цистерну на базе.

Scorpene Compact. Как видно из названия, компактная версия лодки. Может комплектоваться ВНЭУ и предназначена для работы недалеко от береговой линии.

• В итоге заказчик может выбрать не только тип силовой установки, но и наиболее подходящий ему вариант рубки (отличаются разным составом выдвижного оборудования) и количество и тип дизель-генераторов. На данный момент построено четыре лодки Scorpene: две для Чили и две для Малайзии. Также некоторое время назад Франция продавала лодки проекта Agosta. Из 13 построенных сейчас во флотах Испании и Пакистана находятся девять таких лодок.

Бочка меда и…

• В начале 20-х чисел ноября 2011 года появились неутешительные сообщения о судьбе российских подлодок проекта 677. Тогда «Известия» со ссылкой на некий безымянный источник в Минобороны написали, что подлодки «Лада» не устраивают военное ведомство, ведь головной корабль серии «Санкт-Петербург» на испытаниях не показал расчетных данных по силовой установке, а боевая аппаратура, такая как система управления вооружением «Литий», еще слишком сыра для принятия на вооружение.

• В той же статье говорилось о том, что «Санкт-Петербург» до конца своих дней останется опытным экземпляром, а другие уже заложенные лодки проекта, скорее всего, достроят и продадут. Конечно, анонимность источника в Министерстве придает новости, как минимум, спорный характер, но осадочек, как говорится, остался.

Не избежали проблем и немцы. Помимо коррупционных скандалов, у них есть и чисто технические беды. Например, лодки проекта 214 получились шумнее, чем надо. В ряде источников упоминается, что при испытаниях головной лодки для Южной Кореи было зафиксировано значительное превышение шума относительно заявленного производителем. После этого корейцам пришлось ставить винт собственной разработки: это уменьшило шум, но ненамного.

Другая проблема немецких лодок связана с аккумуляторами. У серийных серебряно-цинковых батарей оказалась неприятная особенность: если разрядить их до уровня в 30-40% от максимального заряда, то при ряде условий у них может появиться т.н. эффект памяти. Конечно, батарею можно использовать и с ним, но тогда серьезно падает автономность лодки. Ходят слухи, что Южная Корея даже собирается снять со своих 214-х лодок новые «перспективные» батареи немецкого производства и купить для их замены российские.

Французские лодки, как и все прочие, также не безгрешны. Так, к примеру, из трех версий Scorpene реально строится только базовая. ВНЭУ еще не готова к массовому производству, да и не особо выгодна. Индия уже затребовала, чтобы на «Скорпенах» для их флота была воздухонезависимая энергетическая установка. Франция согласилась, но увеличила сроки и цену чуть ли не в два раза. Иногда также встречаются претензии к оборудованию Scorpene, но на фоне ценовых проблем их даже не замечаешь.

Еще один момент, где во всей красе всплывает экономика – вооружение. К примеру, американская торпеда Mk-48 последней седьмой модификации (2008 г.) стоит 3,8 млн. долларов. Предыдущая версия, шестая, кроме американского флота закупалась только Бразилией, да и та вряд ли стала покупать много торпед по такой цене. Прочие страны, а именно Канада, Австралия и Нидерланды, преспокойно пользуются 4-й версией торпеды (около 2-2,5 млн. долларов за штуку).

• Для сравнения, российская торпеда УСЭТ-80 в поздних модификациях стоит около одного миллиона долларов, при этом она не сильно уступает в характеристиках американской конкурентке. Таким образом, может быть просто невыгодно топить торпедой за 3,5 миллиона долларов какой-нибудь ракетный катер, стоящий не сильно дороже. А если принять во внимание возможность непопадания торпеды в цель…
Что же до ракет, то тут наблюдается какой-никакой паритет.

Вышеупомянутые лодки различных стран используют три основных типа ракет: Exocet, Sub-Harpoon и «Калибр». В плане дальности с отрывом лидируют российская и американская ракеты: максимальная дальность пуска у них составляет 300 и 280 км соответственно. Максимальная дальность «Экзосета» – всего 180 км, и то, только у последней модификации (block 3). По скоростным, массогабаритным и ценовым параметрам ракеты в целом схожи.

• Как видим, абсолютно хороших и абсолютно плохих дизель-электрических подлодок на этой планете пока нет. Одни выигрывают в оборудовании, другие в автономности, но все подвержены одним и тем же проблемам. У всех современных ДЭПЛ есть ограничения по продолжительности использования дизельных установок во избежание их перегрева. У всех стран, делающих ДЭПЛ, есть одни и те же проблемы с аккумуляторами, обусловленные их физико-химической стороной. Наконец, внедрять новые технологии – дело небыстрое и нелегкое.

• Тем не менее, ДЭПЛ продолжают строиться и покупаться. При всех недостатках, присущих этому классу боевой техники, они сравнительно дешевы и выгодны в эксплуатации. К тому же не все страны имеют собственные ядерные технологии, а передача всей документации, связанной с ними, стране без собственной атомной программы… Вряд ли кто будет продавать вместе с подлодками подобные вещи. Так что геополитическая обстановка только способствует экспортным перспективам дизель-электрических лодок.

/Кирилл Рябов, topwar.ru/

army-news.ru

Неатомные подлодки против атомоходов » Военное обозрение

«Две дизель-электрические лодки проекта 677 «Лада» будут переданы российскому флоту в 2018-2019 гг. Следующие лодки будут строиться по новому проекту «Калина». Проект «Калина» разработки ЦКБ МТ «Рубин» уже есть, но он пока не одобрен и не согласован с Минобороны. Главными особенностями этого проекта станет штатная анаэробная (воздухонезависимая) энергетическая установка» (РИА «Новости»).
“Не одобрен” и “не согласован” означает, что сроков нет.

Долгая и безрезультатная эпопея с созданием отечественной ДЭПЛ с воздухонезависимой установкой (ВНЭУ) наводит на простую мысль: нужна ли она вообще?

Во-первых, не получается.

Во-вторых, какова потребность в лодках, оснащенных ВНЭУ, для российского флота?

Что касается первого пункта, то в России объективно наблюдается отсутствие технологической базы для производства анаэробных силовых установок (разумеется, при наличии массы патентов и идей). Вы много слышали про отечественные топливные элементы? Попытки делались неоднократно. В 2005 году усилиями Российской академии наук и компании «Норильский никель” была учреждена Национальная инновационная компания “Новые энергетически проекты” (НИК НЭП) в области водородной энергетики и топливных элементов. Как и любая компания, содержащая в своем названии “инновации”, НИК НЭП быстро ликвидировалась (в рамках решения “Норникеля” по избавлению от убыточных активов).

Энергетическая установка — самый сложный элемент, определяющий параметры любой системы. Единственным конкурентоспособным российским изделием в области корабельных силовых установок является ядерный реактор. Но об этом поговорим чуть позже.

На сегодняшний день появление электрохимических генераторов российского производства похоже на научную фантастику. Менее сложный по конструкции двигатель Стирлинга имеет свои проблемы (охлаждение, жидкий кислород), при том объективно создает вчетверо больший уровень шума, чем ЭХГ.

Отечественные аналоги паротурбинной установки закрытого цикла (ПТУЗц) по типу французской MESMA также отсутствуют. Ко всему, такой двигатель — не лучшее решение; ПТУЗц обеспечивает вдвое меньшую дальность хода по сравнению с ЭХГ.

Необходимость?

Дизель-электрические ПЛ каждые 2-3 дня всплывают на поверхность для подзарядки аккумуляторных батарей. От использования шноркеля (РДП, для работы дизеля на перископной глубине) в боевых условиях лучше отказаться. Лодка становится беспомощной; из-за грохота дизелей она не слышит ничего, а её слышат все.

Большой противолодочный корабль и «Варшавянка»


Идея об оснащении ДЭПЛ гибридной силовой установкой (дизель + вспомогательная анаэробная ЭУ), которая сможет продлить нахождение в подводном положении, родилась далеко не сегодня. Первые экспериментальные образцы (например, советский проект А615, построено 12 лодок) использовали дизельную ЭУ закрытого цикла с сжиженным кислородом и поглотителем углекислого газа. Практика показала высокую пожароопасность такого решения.

Современные неатомные подлодки используют значительно менее мощные, но более безопасные ВНЭУ, примеры которых были рассмотрены выше. Стирлинг, ЭХГ или ПТУЗц.

При экономичном расходе химсоставов и окислителя они способны непрерывно находиться под водой на протяжении 2-3 недель. При этом лодка не лежит на грунте, а может непрерывно двигаться на 5 узлах. С точки зрения специалистов, этого вполне достаточно для скрытного патрулирования в указанном квадрате и «подкрадывания» к проходящим мимо позиции вражеским кораблям.

Главная проблема — стоимость. Сравнительный анализ зарубежных НАПЛ показывает, что современная лодка с ВНЭУ обходится военному флоту по цене 500-600 млн. евро за штуку.

Как показывает мировая практика, примерно за такую же сумму можно построить лодку, способную находиться под водой не 2-3 недели, а пару месяцев. При этом ей не требуется ползать 5-узловым ходом, экономя окислитель.

Оперативная скорость 20 узлов на протяжении большей части похода. Скрытное развертывание в любой точке океана. Неограниченный маневр и сопровождение корабельных ударных групп.

Это “Рубин”. Серия из шести французских АПЛ, ставших самыми маленькими атомными подлодками в мире. При длине корпуса 74 метра их надводное водоизмещение составляет всего 2400 тонн (подводное — 2600 т).

По официальным данным, малютка “Рюби” получилась в шесть раз дешевле американского “Сивулфа” (≈350 млн. долл. в ценах 1980-х гг.). Даже с поправкой на инфляцию сегодняшняя стоимость такой лодки может сравниться с самыми “продвинутыми” НАПЛ стран Европы и Дальнего востока. Немецко-турецкий контракт — 3,5 млрд. евро за шесть субмарин с ЭХГ; Япония — 537 млн. долл. за подлодку “Сорю” с более простым и дешевым двигателем Стирлинга.

“Рубин”, этот миниатюрный атомоход, не является супергероем, способным сокрушить любого и безраздельно доминировать в морских глубинах. Один из многих типов АПЛ третьего поколения со скромным набором характеристик. Но даже при своих компромиссах “Рубин” на голову превосходит по боевым возможностям любую “дизелюху” со вспомогательной ВНЭУ.

Подобно тому, как надводные корабли с тепловым двигателем (дизель — КТУ — ГТУ) абсолютно превосходят морских средства с альтернативными источниками энергии (ветер, солнечные батареи и т.д.). Слишком слабые и ненадежные полумеры, неспособные обеспечить длительную и надежную выработку требуемого кол-ва энергии.

Под водой дизели не работают. Единственным источником, способным обеспечить сравнимый уровень обеспечения энергией, был и остается ядерный реактор.


В 2009 году АПЛ «Изумруд» (фр. Emeraude) была привлечена к сканированию океанского дна и поиску обломков Эйрбас А330, разбившегося Южной Атлантике. Хороший пример, описывающий возможностей и операционную зону действия атомных ПЛ.

Скрытность

Как и любое техническое решение, ВНЭУ имеет свои преимущества и недостатки. Одним из главных “плюсов” движения под водой с использованием Стирлинга и ЭХГ называется повышенная скрытность лодки. Параметр, от которого зависит все.

Во-первых, меньшие габариты, а следовательно, меньшая площадь смачиваемой поверхности и меньшие гидродинамические шумы при движении. Продиктованные меньшими размерами неатомных подлодок.

Но, как указывалось выше, атомоход “Рюби” мало отличается по размерам от ДЭПЛ. По длине французская АПЛ идентична “Варшавянке”. Причём ширина корпуса “Рюби” меньше на два метра.

Тем не менее, наиболее заметным источником шума (особенно при малых скоростях), является силовая установка. Неатомные подлодки лишены гудящих насосов, обеспечивающих круговорот теплоносителя в реакторе. У них нет турбозубчатых агрегатов и мощных холодильных машин — только бесшумные аккумуляторы. Воздухонезависимая установка при работе не создает заметного шума и вибраций.

Все это, разумеется, верно: крадущаяся в глубине ДЭПЛ тише самого тихого атомохода. С одной поправкой: это различная техника для решения различных задач. Какая польза от высокой скрытности НАПЛ, если она просто неспособна в подводном положении пересечь океан? Так же, как неспособна сопровождать эскадру (АУГ или КУГ), идущую крейсерским ходом 18-20 узлов.

Два разных вида техники.

Выбор зависит от концепции применения ВМФ. Несмотря на очевидные преимущества ДЭПЛ (повышенная скрытность “черных дыр”, относительно низкая стоимость), США перестали строить “дизелюхи” еще 60 лет назад. По их мнению, оборонять побережье им не от кого. Все боевые действия ведутся на удаленных морских ТВД в европейских водах, Азии и на Дальнем Востоке. Там, куда могут добраться в срок только подводные атомоходы (не теряя скрытности и ни разу не поднимаясь на поверхность).

Аналогичного мнения придерживается Великобритания, где последние ДЭПЛ были сняты с вооружения в 1994 году. В настоящее время британский подводный флот полностью состоит из атомоходов (11 единиц в строю).

Шум — один из демаскирующих факторов в подводной войне.

Другой перспективный способ обнаружения связан с тепловым следом подлодки. Субмарина с реактором тепловой мощностью 190 МВт отдает морской воде 45 млн. калорий в секунду. Это повышает температуру воды в непосредственной близости от ПЛ на 0,2°С. Разница температур, достаточная для внимания чувствительных тепловизоров.

Шведская НАПЛ типа “Готланд” оперирует мощностями иного порядка. Два “Стирлинга” вырабатывают под водой полезную мощность 150 кВт, с учетом КПД, тепловая мощность машин составит 230…250 кВт.

190 и 0,25 мегаватт. У вас еще остались сомнения?

Правильно, сравнение некорректно. Вывод реактора лодки на полную мощность возможен только при исключительных обстоятельствах. На малых скоростях (5 узлов) атомные подлодки используют считанные проценты номинальной мощности реактора. Так, стратегическому 667БДР хватает 20% мощности реактора, причём только одного борта (18% — автоматическое ограничение системы управления и защиты реактора “Бриг-М”). Реактор другого борта держат в “холодном” состоянии.

Итого: из двух ЯР используется только один (90 МВт), на минимальной мощности (около 20%).

В дальнейшем основная часть этих мегаватт “теряется” на турбине. Джоули теплоты конвертируются в джоули полезной работы. Подводный ракетоносец высотой с 7-этажный дом приводится в движение. Перегретый пар (300°) на выходе из турбины превращается в 100-градусный “кипяток”, который направляют в конденсатор. Там он охлаждается, но не до абсолютного нуля, а всего лишь до 50°С. Вот эту разницу температур и требуется “рассеять” в забортном пространстве.

Японская НАПЛ типа «Сорю» с анаэробным двигателем Стирлинга

На практике тепловая следность подлодки определяется не тепловыми выбросами двигателя, а перемешиванием водных слоев при прохождении ПЛ. В этом смысле атомные ПЛ даже имеют преимущества перед НАПЛ. Форма их корпуса идеально подобрана для подводного хода, в то время, как большинство “дизелюх” вынужденно имеют выраженные “надводные” очертания (там, где они проводят половину своего времени).

Выводы

Среди стран-эксплуатантов ПЛ с воздухонезависимым двигателем — Израиль (тип “Долфин”), Швеция (“Готланд” и Проект А26), Греция, Италия, Турция, Ю. Корея и Португалия (немецкая ПЛ тип 214), Япония (тип “Сорю”), Бразилия, Малайзия, Чили (французский “Скорпен”). Примечательно, что сами французы, строящие отличные НАПЛ для других стран, полностью отказались от неатомных подлодок в пользу атомоходов (10 единиц).

Высокий спрос на ПЛ с анаэробной ЭУ формируют страны, желающие иметь современный и боеспособный флот, но не имеющие возможности построить и эксплуатировать АПЛ.

Атомная лодка — это не только корабль. Это сопутствующая атомная отрасль, технологии перезарядки ЯР, выгрузки и утилизации отработанного топлива. Инфраструктура базирования с особыми мерами безопасности и контроля.

У России, США, КНР, Франции и Великобритании эти технологии накапливались десятками лет. Остальным пришлось бы начинать все сначала. Поэтому для Греции, Малайзии и Турции иллюзия выбора между АПЛ и “дизелюхой” со вспомогательной ВНЭУ (по цене атомохода) имеет единственное решение. Неатомный подводный флот.

У России все иначе.

По состоянию на 2017 год военно-морской флот располагает 48 атомными подводными лодками и 24 ДЭПЛ, в т.ч. шестью новыми “Варшавянками” с обновленным гидроакустическим комплексом и крылатыми ракетами “Калибр”.

Атомные “акулы” предназначены для действий в любой точке Мирового океана. Дизель-электрические “Варшавянки” — рациональное решение для ближней морской зоны. Для действий в районах, для которых предназначены эти подлодки, наличие ВНЭУ не имеет большого значения. Двигаясь под водой самым медленным, 3-5 узловым ходом, “Варшавянка” переползет Черное море (от Крыма до побережья Турции) всего за одни сутки. Причём сделает то максимально тихо, в отличие от Стирлинга. Аккумуляторы не создают никакого шума.

Черноморский театр

Выбор между дорогостоящей ПЛ с анаэробной ЭУ и миниатюрным атомоходом (по типу французского “Рюби”) для России не имеет большого значения. В существующих реалиях и текущей концепции применения ВМФ для них просто не находится места.

topwar.ru

Флот России ждет дизельные подлодки с анаэробным двигателем: aleks070565 — LiveJournal

Дизель-электрические подводные лодки (ДЭПЛ) незаменимы в прибрежных и мелководных районах, куда далеко не всегда могут пройти их более тяжелые атомные собратья. Современные российские ДЭПЛ — грозное и универсальное оружие, но по сравнению с атомными подводными лодками у них есть один серьезный недостаток. Если атомоход способен находиться под водой сколь угодно долго, пока не закончится продовольствие, то дизельные субмарины вынуждены периодически всплывать для зарядки аккумуляторных батарей генераторами. Впрочем, благодаря воздухонезависимым энергетическим установкам (ВНЭУ) некоторые современные «дизелюхи» обходятся и без этого.

Любая субмарина, вне зависимости от конструкции, водоизмещения, вооружения и выучки экипажа, в надводном положении беззащитна, как котенок перед стаей собак. Лодка не располагает значимой корабельной артиллерией, способной дать отпор скоростным катерам абордажных команд противника. Не сможет отбиться от налета противолодочной авиации или противокорабельных ракет. И даже если успеет срочно погрузиться, вряд ли уйдет от «загонщиков», уже точно определивших ее координаты. В мирное время это грозит срывом «автономки». В военное — гибелью лодки и ее экипажа.

Моторы неатомной подводной лодки приводятся в движение аккумуляторными батареями, заряда которых хватает максимум на четверо суток, если субмарина идет со скоростью до пяти узлов. Если же дана команда «Полный вперед!», батареи сядут через несколько часов. Их максимальная зарядка бортовыми дизель-генераторами занимает около двух суток, для этого необходим кислород, поэтому лодка вынуждена всплывать. Конечно, можно использовать режим работы двигателя под водой (РДП). В этом случае подлодка поднимает над поверхностью воды трубу-шнорхель, через которую и поступает воздух. Однако способ, активно использовавшийся еще в середине прошлого века, сегодня резко повышает вероятность обнаружения субмарины радиолокационными, инфракрасными, оптико-электронными и акустическими средствами противника.


Воздухонезависимому, или анаэробному, двигателю прямой доступ к атмосфере не требуется. В настоящее время в мире существует четыре основных типа ВНЭУ: дизельный двигатель замкнутого цикла, двигатель Стирлинга, топливные элементы (электрохимический генератор) и паротурбинная установка замкнутого цикла. Они должны соответствовать следующим требованиям: низкий уровень шумности, малое тепловыделение, приемлемые массогабаритные характеристики, простота и безопасность эксплуатации, большой ресурс и невысокая стоимость.

Подводная лодка O’Higgins типа Scorpene на верфи в Шербуре, Франция


Важно отметить, что технология изготовления ВНЭУ очень сложная и наукоемкая. В мире не так много государств, освоивших ее полностью. ВМС США темой ВНЭУ не интересовались, предпочтя перевести весь подводный флот на атомную энергию. По тому же пути пошли и французы, построившие тем не менее экспортные субмарины типа «Скорпен». Эти небольшие лодки работают от турбин по замкнутому циклу, используя этанол и жидкий кислород. Автономность без всплытия — около трех недель.

Подводная лодка U-34 проекта 212А


Немцы приняли другую стратегию и в начале нулевых представили серию подлодок проекта U-212/214. У этих субмарин «гибридная» энергетическая установка: в режиме РДП или для хода в надводном положении аккумуляторы заряжаются дизельным генератором мощностью 1050 киловатт. А под водой для экономичного хода в дело вступает воздухонезависимый двигатель Siemens SINAVY Permasin. Его приводит в действие энергетическая установка из девяти протон-обменных топливных элементов, включающих цистерны с криогенным кислородом и емкости с гидридом металла. Эти элементы и обеспечивают вращение гребных винтов.

Сегодня в России нет дизель-электрических подводных лодок с воздухонезависимой энергетической установкой, однако они должны появиться в ближайшие годы. Представители Минобороны неоднократно утверждали, что первые ВНЭУ получат субмарины проекта 677 «Лада». Тем не менее принятый в строй «Санкт-Петербург» и строящиеся «Кронштадт» и «Великие Луки» по-прежнему полностью зависят от дизель-генераторов. А вот следующую лодку проекта, которую спустят на воду до 2025 года, уже оснастят анаэробной энергетической установкой собственного производства. Большинство данных об этой разработке строго засекречены, но известно, что в основу ее конструкции заложен паровой реформинг с электрохимическим генератором на твердотельных элементах.

«Эксперименты с ВНЭУ проводили еще в Советском Союзе, — рассказал РИА Новости главный редактор журнала «Арсенал Отечества» Виктор Мураховский. — Создать новую силовую установку на современной элементной базе и соответствующую требованиям сегодняшнего дня достаточно сложно. Раньше она должна была обеспечивать запас окисляющего компонента для работы двигателя внутреннего сгорания. Сейчас же подход другой — питание силовой установки топливными элементами. Главный мировой тренд — полный переход на электродвижение без использования дизельных генераторов. В этом случае топливные элементы с большой энергетической емкостью будут напрямую питать электродвигатели. Необходимости всплывать просто не возникнет».

Прибытие в Петербург военных кораблей для участия в Дне Военно-Морского Флота


Конструкторское бюро «Рубин», к слову, сообщало о готовности представить воздухонезависимую энергетическую установку для неатомных подводных лодок в 2021-2022 годах. А в апреле текущего года макетный образец ВНЭУ с газотурбинным двигателем замкнутого цикла успешно испытало КБ «Малахит». Новинку предполагается использовать в малых подводных лодках, которые пока существуют только в виде макетов.

«Мы разработали линейку малых подводных лодок водоизмещением от двухсот до тысячи тонн, — сообщил РИА Новости ведущий конструктор КБ «Малахит» Игорь Караваев. — Одно из главных их достоинств — применение ВНЭУ. Эти лодки смогут комфортно себя чувствовать в проливных зонах, мелководных районах, гаванях и даже будут способны заходить во вражеские порты и на военно-морские базы. Высокая скрытность, небольшие габариты и возможность неделями оставаться под водой без всплытия делает их идеальными разведчиками и позволяет наносить внезапный удар по кораблям и ключевым объектам прибрежной инфраструктуры».

Международный дальневосточный морской салон (МДМС)


По словам Виктора Мураховского, чтобы выйти на собственное серийное производство воздухонезависимых энергетических установок и массово ставить их на подводные лодки, необходимо формировать гигантский научно-технический задел для создания топливных элементов, которые будут питать электродвигатели подводного флота. В качестве более дешевой и простой альтернативы он рассматривает разработку перспективных литий-полимерных аккумуляторов, работающих на одной «подзарядке» гораздо дольше, чем имеющиеся сегодня в ВМФ аналоги. «Однако их производство, судя по всему, придется начинать с нуля, потому что на Западе нам такие технологии никто не продаст. А если и продаст, то в один прекрасный день может просто перекрыть поставки», — добавил эксперт.


©

aleks070565.livejournal.com

Неатомные подводные лодки — Мастерок.жж.рф — LiveJournal

Минобороны РФ приняло решение о серийном строительстве неатомных подлодок проекта 677 («Лада») и внесло их в гособоронзаказ, сообщил РИА Новости в среду гендиректор ОАО «Рособоронэкспорт» Анатолий Исайкин.

Ранее адмирал Владимир Высоцкий, тогда занимавший пост главкома ВМФ РФ, заявил о возможности создания первой российской неатомной подлодки с воздухонезависимой энергоустановкой (ВНЭУ) в 2014 году на основе проекта 677. В августе прошлого года Минобороны, ВМФ и Объединенная судостроительная корпорация договорились о возобновлении строительства серии подлодок «Лада» с 2013 года, и корпорация ожидала внесения ее в гособоронзаказ в этом году. Сейчас на «Адмиралтейских верфях» заложены две подлодки этого проекта, которые планировалось оснастить ВНЭУ. Позднее гендиректор «Адмиралтейских верфей» Александр Бузаков сообщил, что ВНЭУ может быть установлена только на одной из лодок. Разрабатывают установку специалисты ЦКБ «Рубин».

«На сегодняшний день решение о серийном строительстве этих подлодок министерством обороны России принято. Финансирование строительства запланировано в гособоронзаказе, а опытная эксплуатация подлодок проходит в соответствии с программой, которая успешно выполняется», — сказал Исайкин.

Он отметил, что на лодке установлено более 130 образцов новейшего радиоэлектронного и корабельного оборудования. «Все характеристики, заданные техзаданием ВМФ, в ходе государственных испытаний в основном подтверждены, за исключением скорости полного подводного хода», — пояснил глава Рособоронэкспорта.

По его словам, на серийные подлодки будут установлены модернизированные двигатели, которые обеспечат необходимую мощность. «В настоящее время подлодка проекта 677 находится в главной базе Балтийского флота и готовится к переходу на Северный флот для завершения опытной эксплуатации», — заключил Исайкин.

Давайте узнаем подробнее про этот проект …

Не секрет, что не существует вещей, которые были бы только положительными или только отрицательными. В некотором роде не являются исключением из этого правила и подводные лодки. При всех плюсах атомных подлодок, как то автономность, ограниченная только «человеческим фактором» или превосходные боевые характеристики, они обходятся дорого. Причем не только в плане строительства – для их эксплуатации требуется создание специфической инфраструктуры для обслуживания атомных силовых установок. Но не все страны могут себе позволить такие расходы, а подводный флот им требуется. В этой ситуации устаревшие на первый взгляд дизель-электрические лодки (ДЭПЛ или ДПЛ) еще долго будут оставаться единственной дешевой и удобной альтернативой атомным. Для справки напомним, что только две страны, имеющие или строящие подводные лодки, отказались от дизель-электрических: США и Великобритания. Россия, Китай и Франция (к ним до конца года должна присоединиться Индия, получающая российскую атомную лодку К-152 «Нерпа») имеют смешанный подводный флот, состоящий и из атомных, и из дизельных лодок. Все прочие страны, эксплуатирующие подлодки, имеют только ДЭПЛ.

Дизель-электрическая схема на сегодняшний день по факту ничуть не устарела. Вернее, получает развитие и остается современной. Проблемы ДЭПЛ времен Второй Мировой войны остались в прошлом. За счет развития «по всем фронтам» — дизеля, аккумуляторы, электромоторы и другое оборудование – удалось избавиться от низкой подводной скорости и малого времени в подводном положении. В итоге «классическая» схема, сочетающая дизели и электромоторы в качестве непосредственного привода винтов, уже несколько десятков лет не используется в новых проектах. Сейчас развитие силовых установок ДЭПЛ идет по трем путям:
— полное электродвижение. В таком случае подлодка не имеет механических связей между дизелями и винтами – последние всегда вращаются электромоторами. На большинстве лодок с полным электродвижением применяются два двигателя: главный и экономического хода; хотя в самых последних проектах их роль играет один мотор с двумя режимами работы.

— топливные элементы. Дальнейшее развитие предыдущей системы. Топливные элементы на основе различных химических соединений позволили увеличить емкость аккумуляторов и снизить шум. Эта система пока что не получила большого распространения, но ей прочат большое будущее.

— ДЭПЛ с двигателями Стирлинга. Применение этого двигателя значительно повышает время пребывания лодки в подводном положении без серьезных потерь в других показателях. Интересная и заслуживающая внимания система, но таких лодок было построено чуть более десятка – это шведский проект «Готланд», французский «Сага», а также японские «Сорю».

 

Шведский проект «Готланд»

 

Японские «Сорю»

 

Среди зарубежных стран лидером в строительстве ДЭПЛ считается Германия. Так, к примеру, немецкие подлодки проекта 209 с 1971 года поставлялись в 13 стран, всего их было построено более шести десятков. Таким образом, «209» стали самыми коммерчески успешными подлодками в истории. В конце 90-х Израиль получил три лодки проекта 800 Dolphin, являющегося доработкой 21-го проекта под его требования. Более новыми немецкими ДЭПЛ являются лодки проекта 212. Главное, на что обращают внимание немцы, продвигая свои новые лодки – электрическая часть силовой установки. Состоит она из девяти протон-обменных топливных элементов производства Siemens и 144 серебряно-цинковых аккумуляторов. Вооружение проекта 212 состоит из шести торпедных аппаратов калибра 533 миллиметра (боезапас – 12 торпед различных типов) и ПКР. Вместо торпед лодка может нести мины.

 

 

Четыре лодки проекта 212 уже вошли в строй Бундесмарине, еще две строятся. По заказу Италии была создана модификация 212А: две такие лодки уже переданы заказчику, еще две будут сданы после 2013 года. С экспортной версией 212-го проекта – проектом 214 – вышла неприятная история: в начале этого года, как подводная лодка, всплыли коррупционные истории десятилетней давности. Тогда ряду греческих чиновников от обороны бюргеры-подрядчики сделали «презенты» на полсотни миллионов евро. Взятки, похоже, не помогли и несколько лет производитель лодок, фирма HDW, имела проблемы со сдачей головной греческой лодки. В 2008 году появилась новость о намерении Пакистана купить для своего флота лодки проекта 214, но с тех пор более новой информации не появлялось.

 

 

Самым новым французским проектом ДЭПЛ являются лодки Scorpene. Работы над проектом велись компанией DCN с начала 90-х, причем Scorpene изначально делались как экспортные лодки. К концу десятилетия к Франции присоединились испанцы из Izar. В результате работ было создано три модификации лодки. Покупатель может выбрать из:

— Scorpene Basic. Обычная дизель-электрическая лодка, вооруженная шестью торпедными аппаратами (запас 18 торпед) с возможностью стрельбы противокорабельными ракетами. На лодке могут применяться ПКР SM-39 Exocet или Sub-Garpoon.
— Scorpene Basic-AIP. Та же «Скорпен-Бейсик», но с воздухонезависимой энергетической установкой (ВНЭУ) MESMA. Эта паротурбинная установка, сжигая в камере сгорания топливо (скорее всего, этанол, хотя иногда упоминают дизельное топливо) в кислородной атмосфере, испаряет воду. Пар подается на генераторную установку мощностью до 200 кВт. После турбины генератора пар поступает в конденсатор, где охлаждается забортной водой. Охлажденная вода снова поступает в парогенератор и т.д. Таким образом, паротурбинная установка работает по замкнутому циклу. Необходимый кислород в жидком виде заливается в специальную цистерну на базе.
— Scorpene Compact. Как видно из названия, компактная версия лодки. Может комплектоваться ВНЭУ и предназначена для работы недалеко от береговой линии.

 


Американская торпеда Mk-48

 

В итоге заказчик может выбрать не только тип силовой установки, но и наиболее подходящий ему вариант рубки (отличаются разным составом выдвижного оборудования) и количество и тип дизель-генераторов.

На данный момент построено четыре лодки Scorpene: две для Чили и две для Малайзии. Также некоторое время назад Франция продавала лодки проекта Agosta. Из 13 построенных сейчас во флотах Испании и Пакистана находятся девять таких лодок.

Не избежали проблем и немцы. Помимо коррупционных скандалов, у них есть и чисто технические беды. Например, лодки проекта 214 получились шумнее, чем надо. В ряде источников упоминается, что при испытаниях головной лодки для Южной Кореи было зафиксировано значительное превышение шума относительно заявленного производителем. После этого корейцам пришлось ставить винт собственной разработки: это уменьшило шум, но ненамного. Другая проблема немецких лодок связана с аккумуляторами. У серийных серебряно-цинковых батарей оказалась неприятная особенность: если разрядить их до уровня в 30-40% от максимального заряда, то при ряде условий у них может появиться т.н. эффект памяти. Конечно, батарею можно использовать и с ним, но тогда серьезно падает автономность лодки. Ходят слухи, что Южная Корея даже собирается снять со своих 214-х лодок новые «перспективные» батареи немецкого производства и купить для их замены российские.

Французские лодки, как и все прочие, также не безгрешны. Так, к примеру, из трех версий Scorpene реально строится только базовая. ВНЭУ еще не готова к массовому производству, да и не особо выгодна. Индия уже затребовала, чтобы на «Скорпенах» для их флота была воздухонезависимая энергетическая установка. Франция согласилась, но увеличила сроки и цену чуть ли не в два раза. Иногда также встречаются претензии к оборудованию Scorpene, но на фоне ценовых проблем их даже не замечаешь.

Еще один момент, где во всей красе всплывает экономика – вооружение. К примеру, американская торпеда Mk-48 последней седьмой модификации (2008 г.) стоит 3,8 млн. долларов. Предыдущая версия, шестая, кроме американского флота закупалась только Бразилией, да и та вряд ли стала покупать много торпед по такой цене. Прочие страны, а именно Канада, Австралия и Нидерланды, преспокойно пользуются 4-й версией торпеды (около 2-2,5 млн. долларов за штуку). Для сравнения, российская торпеда УСЭТ-80 в поздних модификациях стоит около одного миллиона долларов, при этом она не сильно уступает в характеристиках американской конкурентке. Таким образом, может быть просто невыгодно топить торпедой за 3,5 миллионов какой-нибудь ракетный катер, стоящий не сильно дороже. А если принять во внимание возможность непопадания торпеды в цель…

 

«Варшавянка» ВМС Индии

Что же до ракет, то тут наблюдается какой-никакой паритет. Вышеупомянутые лодки различных стран используют три основных типа ракет: Exocet, Sub-Harpoon и «Калибр». В плане дальности с отрывом лидируют российская и американская ракеты: максимальная дальность пуска у них составляет 300 и 280 км соответственно. Максимальная дальность «Экзосета» – всего 180 км, и то, только у последней модификации (block 3). По скоростным, массогабаритным и ценовым параметрам ракеты в целом схожи.

Как видим, абсолютно хороших и абсолютно плохих дизель-электрических подлодок на этой планете пока нет. Одни выигрывают в оборудовании, другие в автономности, но все подвержены одним и тем же проблемам. У всех современных ДЭПЛ есть ограничения по продолжительности использования дизельных установок во избежание их перегрева. У всех стран, делающих ДЭПЛ, есть одни и те же проблемы с аккумуляторами, обусловленные их физико-химической стороной. Наконец, внедрять новые технологии – дело небыстрое и нелегкое.

Тем не менее, ДЭПЛ продолжают строиться и покупаться. При всех недостатках, присущих этому классу боевой техники, они сравнительно дешевы и выгодны в эксплуатации. К тому же не все страны имеют собственные ядерные технологии, а передача всей документации, связанной с ними, стране без собственной атомной программы… Вряд ли кто будет продавать вместе с подлодками подобные вещи. Так что геополитическая обстановка только способствует экспортным перспективам дизель-электрических лодок.

 

Основным типом отечественных ДЭПЛ на данный момент являются лодки проекта 877 «Палтус» конца 70-х. Общее количество этих лодок, включая экспортные, превышает четыре десятка. В середине 90-х было начато строительство экспортных ДЭПЛ проекта 636 «Варшавянка», созданного на основе «Палтуса». Примерно в это же время проект 877 был значительно переработан в 677 «Лада».

 

Проект 877 «Палтус»

 

Начиная с конца 50 гг. в СССР возобновилось строительство дизельных подводных лодок (ДПЛ) с торпедным и ракетным вооружением. После завершения в 1968 г. создания серии ДПЛ пр.651 строительство неатомных ПЛ продолжалось по проектам 641Б и 877, оснащенных только торпедным вооружением. Однако с середины 80 гг. за рубежом стали производиться ДПЛ с противокорабельными ракетами (ПКР) «Гарпун», запускаемых из торпедных аппаратов (ТА).

В 1987 г. по заданию отечественного ВМФ ЦКБ МТ «Рубин» (в последующем ФГУП «ЦКБ МТ «Рубин») приступило к разработке ДПЛ пр.677 класса «Лада». Целесообразность этого подтверждалась положительным опытом многолетней эксплуатации ВМФ России и флотами других государств ДПЛ пр.613 (Whiskey), 641 (Foxtrot), 641Б (Tango), 877 и 636 (Kilo). Проект завершился успешной разработкой двух вариантов неатомной ДПЛ пр.677 и 677Э.

 

 

26 декабря 1997 г. на стапелях государственного предприятия «Адмиралтейские верфи» в Санкт-Петербурге были заложены две новые дизель-электрические подводные лодки так называемого 4-го поколения. Первая из них строится по проекту 677 (шифр — «Лада») для ВМФ России, она получила номер Б-100 и название «Санкт-Петербург»; вторая — по экспортному варианту этого проекта 677Э (шифр — «Амур-1650»), эта лодка предназначена для иностранного заказчика.

Разработка проекта 677 была начата в ЦКБ МТ «Рубин» в 1987 г. на основании тактико-технического задания ВМФ России. Хотя по архитектуре новая ПЛ близка к лодкам проектов 877 и 636, проект 677 создан практически «с нуля», и, по словам генерального конструктора ЦКБ МТ «Рубин» Ю. Н. Кормилицына, в нем не использована ни одна единица оборудования, применявшегося ранее на лодках упомянутых выше проектов.

ПЛ проекта 677 выполнена по двухкорпусной архитектуре. Осесимметричный прочный корпус изготовлен из стали АБ-2 и практически по всей длине имеет одинаковый диаметр. Носовая и кормовая законцовки имеют сферическую форму. Плоскими переборками корпус разделен по длине на пять водонепроницаемых отсеков, посредством платформ корпус разделен но высоте на три яруса.

Легкому корпусу придана обтекаемая форма, обеспечивающая высокие гидродинамические характеристики. Ограждение выдвижных устройств имеет такую же форму, как у лодок проектов 877 и 636, в то же время кормовое оперение выполнено крестообразным, а передние горизонтальные рули размещаются на ограждении, где они создают минимальные помехи работе гидроакустического комплекса.

Все жилые помещения ПЛ размещены в третьем отсеке. Для всех членов экипажа предусмотрены каюты: для командного состава — двухместные, у командира — уютная одноместная, хорошо оборудованная.

Для приема пищи имеется кают-компания с буфетной. Все запасы продовольствия размещены в специальных кладовых, охлаждаемых и неохлаждаемых. Кам-бузное оборудование новой разработки при малых габаритах и энергопотреблении способно обеспечить быстрое приготовление горячей пищи с сохранением вкусовых и питательных качеств продуктов.

 

 

Пресная вода хранится в цистернах из нержавеющей стали. Это благоприятно сказывается на сохранении ее качества. Пополнение запасов воды возможно с помощью водоопреснительной установки, утилизирующей тепло дизелей. В целом водоснабжение вполне достаточно как для питьевых, так и для гигиенических целей (мытье посуды, душевые). Условия обитаемости и запасы топлива, продовольствия и питьевой воды обеспечивают автономность 45 суток.

Лодка имеет дизель-электрическую главную энергетическую установку, разработанную по схеме полного электродвижения. В ее состав входят размещенная в четвертом отсеке дизель-генераторная установка в составе двух дизель-генераторов с выпрямителями, две группы аккумуляторных батарей по 126 элементов в каждой, находящиеся в первом и третьем отсеках, а также всережимный гребной электродвигатель с постоянными магнитами типа СЭД-1 мощностью 4100 кВт.

Выбранная мощность дизель-генераторов позволяет осуществлять не только «обычную» зарядку аккумуляторной батареи, но и специально разработанный российскими специалистами режим ускоренной зарядки, позволяющий значительно сократить время нахождения подводной лодки в перископном положении. Отсутствие щеточного токосъемного устройства повышает безопасность эксплуатации генераторов.

 

Всережимный гребной электродвигатель выполняет функцию главного гребного электродвигателя и электродвигателя экономического хода. Он приводит в действие семилопастный малошумный гребной винт большого диаметра. Наибольшая скорость подводного хода достигает 21 узла, при движении в надводном положении лодка развивает скорость хода 10 узлов. Дальность плавания в режиме РДЛ достигает 6000 миль, в подобном положении при движении экономическим ходом лодка может преодолеть 650 миль. Здесь следует отметить, что на основе ПЛ типов «Лада» и «Амур-1650» в ЦКБ МТ «Рубин» разработан проект ПЛ с комбинированной главной энергетической установкой в составе дизель-электрической установки и воздухонезависимой установки на основе электрохимических генераторов водородно-кислородного типа. Эта лодка отличается существенно большей дальностью непрерывного подводного плавания, обеспечиваемой воздухонезависимой установкой.

Лодка имеет торпедно-ракетное вооружение. На ней установлены 6 торпедных аппаратов калибра 533 мм. Боезапас составляет 18 единиц, в который могут входить универсальные торпеды, противолодочные ракето-торпеды, крылатые ракеты, мины. Предусмотрена возможность использования скоростных противолодочных ракет «Шквал».

 

Система стрельбы позволяет выстреливать боезапас одиночно и залпом до 6 единиц. Готовность к залпу двумя торпедами из дежурных торпедных аппаратов измеряется секундами. Традиционное для российских подводных лодок механическое устройство заряжания позволяет быстро автоматически произвести перезарядку торпедных аппаратов и осуществить второй и последующий залпы. Весь цикл подготовки комплекса к использованию оружия и стрельба автоматизированы и осуществляются с пульта оператора из главного командного пункта подводной лодки.

Координация работы всех средств радиоэлектронного вооружения обеспечивается боевой информационно-управляющей системой «Литий».

Гидроакустический комплекс включает высокочувствительные шумопеленгаторные антенны. В состав комплекса входят носовая и две бортовые антенны в носовой оконечности ПЛ. Размеры антенн увеличены в максимально возможной степени. Они занимают большую часть поверхности носовой оконечности. Гидроакустическими антеннами столь большой площади не располагает ни одна из аналогичных подводных лодок в России и за рубежом.

 

Кроме стационарных антенн, на ПЛ размещена выпускная буксируемая гидроакустическая антенна с точкой выхода в верхнем вертикальном стабилизаторе.

Низкая шумность разрабатываемого для ПЛ комплектующего оборудования, системное применение новейших средств акустической защиты, оригинальные технические решения позволяют прогнозировать снижение шумности ПЛ в 8—10 раз по сравнению с ПЛ предыдущего поколения класса «Варшавянка». Сочетание высокой эффективности гидроакустического комплекса с низкой шумностью самой ПЛ обеспечивает гарантированное упреждающее обнаружение кораблей противника, в том числе особо малошумных подводных лодок, на значительном расстоянии. Тем самым созданы благоприятные возможности для принятия оптимальных решений на атаку.

 

 

Навигационный комплекс включает инерциальную навигационную систему и обеспечивает безопасность кораблевождения и выработку данных о месте нахождения и параметрах движения подводной лодки с необходимой для использования оружия точностью.

На ПЛ применен командирский перископ с каналом ночного видения и лазерным дальномером. Комплект средств радиосвязи позволяет осуществлять надежную двустороннюю радиосвязь с береговыми командными пунктами, кораблями, судами и самолетами при нахождении в надводном и перископном положениях. Для приема командных сообщений при нахождении на большой глубине имеется выпускная буксируемая радиоантенна. Выпуск антенны производится из прочного корпуса. Радиолокационная система с размещенными на одном подъемно-мачтовом устройстве активной и пассивной антеннами имеет канал повышенной скрытности в активном режиме и дает полную информацию и надводной, и воздушной обстановке, не демаскируя подводную лодку.

 

По традиции, заложенной еще во времена Советского Союза, все оборудование и средства вооружения ПЛ проекта 677 изготавливаются на отечественных предприятиях. Правда, командование ВМФ России не исключает, что, начиная с кораблей проекта 677, будет рассматривать возможность импортных поставок комплектующего оборудования. В частности, по импорту могут быть приобретены системы кондиционирования. В то же время поставка импортного оборудования при постройке экспортных подводных лодок 677Э «Амур-1650» предусматривается уже на этапе проектирования лодок с учетом требований заказчиков. Также для наиболее полного удовлетворения требований заказчиков ЦКБ МТ «Рубин» выполнило проектные проработки целого семейства дизель-электрических подводных лодок «Амур» водоизмещением от 550 до 1850 т. При этом были приняты одинаковые принципиальные конструктивные и компоновочные решения — как общекорабельные, так и по отдельным подсистемам. Использовано единое либо модифицированное оборудование.

Например, основные отличия ПЛ «Амур-1850» от «Амур-1450» заключаются в применении более энергоемкой аккумуляторной батареи и более мощного гребного электродвигателя. Это позволило значительно увеличить дальность плавания, полную подводную скорость и автономность плавания, улучшить обитаемость. Однако водоизмещение возросло до 1850 т.

 

В целом, главенствует мнение, что улучшение проекта 677 следует вести по пути совершенствования электроники и энергетической установки. Что касается последней, то в настоящее время экспортный вариант «Лады» под названием «Амур-1650» участвует в конкурсе, объявленном министерством обороны Индии. Одним из требований индийских военных является наличие воздухонезависимой энергоустановки. «Амур-1650» оснащается таковой и потому представляет определенный интерес для зарубежных заказчиков. Объем контракта, который будет подписан по результатам тендера, оценивается почти в 12 миллиардов американских долларов. Вполне возможно, что именно из-за таких контрактов «Рубин» в свое время и начал разработку ВНЭУ. Если обновленный экспортный вариант проекта 677 окажется удачным, то Центральное конструкторское бюро морской техники «Рубин» сможет с лихвой окупить все затраты на инициативную разработку ВНЭУ. Да и отечественный флот вряд ли откажется от подобных систем.

 

 

 

ДПЛ пр.677 класса «Лада» отличается высокой степенью скрытности, что достигнуто за счет реализации большого объема мероприятий по снижению физических полей. Этому способствовало, в первую очередь, использование механизмов и источников энергии новой разработки — дизель-генераторов переменного вместо постоянного тока и низкооборотного всережимного ГЭД, позволившего отказаться от ГЭД экономического хода. По сравнению с ДПЛ пр.877 (класс Kilo), которую за малошумность называют «черной дырой», шумность «Лады», по утверждению разработчиков, снижена в несколько раз. Это, в сочетании с высокоэффективным гидроакустическим комплексом, обеспечивает гарантированное упреждающее обнаружение кораблей противника, в т.ч. и особо малошумных подводных лодок, на значительном расстоянии.

 

 

Подводные лодки семейства “Амур” («Амур 950″, «Амур-1650″) являются экспортным вариантом дизель-электрических подводных лодок класса «Лада» и могут эксплуатироваться в любом районе Мирового океана (кроме районов со сплошным ледовым покрытием) с любыми метеоусловиями в мелководных и глубоководных акваториях. При их создании предусмотрена установка оборудования отечественного производства и производства заказчика, а также третьих стран.

ПЛ семейства «Амур» имеют автоматизированное управление всеми механизмами и вооружением, что позволяет значительно сократить численность экипажа.

В составе мощного арсенала вооружения может быть ракетный комплекс»Клаб-С». В отличие от ДЭПЛ пр.877ЭКМ класса «Кило», состоящих на вооружении других стран, ПЛ типа «Амур» могут осуществлять залповый пуск этих ракет за время до 2 минут, чем резко снижается возможность защиты от них и повышается эффективность поражения целей.

 

 

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Общие характеристики
Название проект 677 «Лада»
Код НАТО «Amur» (?)
Разработчик ЦКБ-18 (ЦКБ морской техники «Рубин»)
Изготовитель «Адмиралтейские верфи» (г. Санкт-Петербург)
Количество лодок в серии 2
Экипаж, чел. 34
Автономность 45 суток
Архитектура однокорпусная, 5 отсеков
Материал корпуса сталь марки АБ-2
Запас плавучести n/a
Массо-габаритные характеристики
Водоизмещение надводное, т 1950
Водоизмещение подводное, т 2700
Длина, м 67
Ширина, м 7.1
Средняя осадка, м n/a
Вооружение
Вооружение 6 х 533-мм торпедных аппаратов, ПУ ЗРК «Игла-1М»
Боекомплект 18 торпед 533-мм (САЭТ-60М и УГСТ) и ракето-торпед (РПК-6), 6 ЗУР
Прибор управления торпедной стрельбой «Мурена»
Радиоэлектронное оборудование
Гидроакустический комплекс n/a
Боевая информационно-управляющая система «Литий»
Навигационный комплекс «Андога»
Радиолокационный комплекс n/a
Станция обнаружения РЛС n/a
Перископ n/a
Двигатель и динамические характеристики
Дизельный двигатель 2 x n/a
Аккумуляторные батареи 2 группы по 126 шт.
Гребной электродвигатель n/a (мощностью 3010 кВт (4100 л.с.))
ГЭД экономического хода n/a (один)
Гребные винты малошумный ВФШ
Максимальная надводная скорость, узлов 10
Максимальная подводная скорость, узлов 21
Рабочая глубина погружения, м 250
Максимальная глубина погружения, м 300
Запас дизельного топлива, т n/a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[источники]

источники

http://topwar.ru

http://www.arms-expo.ru

http://www.sudden-strike.ru

 

Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия — http://infoglaz.ru/?p=11306

masterok.livejournal.com

Суровая судьба дизель-электрических подлодок » Военное обозрение

Не секрет, что не существует вещей, которые были бы только положительными или только отрицательными. В некотором роде не являются исключением из этого правила и подводные лодки. При всех плюсах атомных подлодок, как то автономность, ограниченная только «человеческим фактором» или превосходные боевые характеристики, они обходятся дорого. Причем не только в плане строительства – для их эксплуатации требуется создание специфической инфраструктуры для обслуживания атомных силовых установок. Но не все страны могут себе позволить такие расходы, а подводный флот им требуется. В этой ситуации устаревшие на первый взгляд дизель-электрические лодки (ДЭПЛ или ДПЛ) еще долго будут оставаться единственной дешевой и удобной альтернативой атомным. Для справки напомним, что только две страны, имеющие или строящие подводные лодки, отказались от дизель-электрических: США и Великобритания. Россия, Китай и Франция (к ним до конца года должна присоединиться Индия, получающая российскую атомную лодку К-152 «Нерпа») имеют смешанный подводный флот, состоящий и из атомных, и из дизельных лодок. Все прочие страны, эксплуатирующие подлодки, имеют только ДЭПЛ.


Подлодки на распутье

Дизель-электрическая схема на сегодняшний день по факту ничуть не устарела. Вернее, получает развитие и остается современной. Проблемы ДЭПЛ времен Второй Мировой войны остались в прошлом. За счет развития «по всем фронтам» — дизеля, аккумуляторы, электромоторы и другое оборудование – удалось избавиться от низкой подводной скорости и малого времени в подводном положении. В итоге «классическая» схема, сочетающая дизели и электромоторы в качестве непосредственного привода винтов, уже несколько десятков лет не используется в новых проектах. Сейчас развитие силовых установок ДЭПЛ идет по трем путям:

— полное электродвижение. В таком случае подлодка не имеет механических связей между дизелями и винтами – последние всегда вращаются электромоторами. На большинстве лодок с полным электродвижением применяются два двигателя: главный и экономического хода; хотя в самых последних проектах их роль играет один мотор с двумя режимами работы.

— топливные элементы. Дальнейшее развитие предыдущей системы. Топливные элементы на основе различных химических соединений позволили увеличить емкость аккумуляторов и снизить шум. Эта система пока что не получила большого распространения, но ей прочат большое будущее.

— ДЭПЛ с двигателями Стирлинга. Применение этого двигателя значительно повышает время пребывания лодки в подводном положении без серьезных потерь в других показателях. Интересная и заслуживающая внимания система, но таких лодок было построено чуть более десятка – это шведский проект «Готланд», французский «Сага», а также японские «Сорю».

Шведский проект «Готланд»

Японские «Сорю»

В России

Основным типом отечественных ДЭПЛ на данный момент являются лодки проекта 877 «Палтус» конца 70-х. Общее количество этих лодок, включая экспортные, превышает четыре десятка. В середине 90-х было начато строительство экспортных ДЭПЛ проекта 636 «Варшавянка», созданного на основе «Палтуса». Примерно в это же время проект 877 был значительно переработан в 677 «Лада». Недавно появились нерадостные новости о судьбе последних.

Проект 877 «Палтус»


«Варшавянка» ВМС Индии

Будем надеяться, ЦКБ «Рубин» справится с доработкой проекта и к 2013 году начнется полноценное строительство «Лад». Главными отличиями проектов 877 и 677 является конструкция (у последней – однокорпусная) и силовая установка. На «Палтусах» и «Варшавянках» имеется два электродвигателя, главный и экономического хода. На «Ладах» функции обоих выполняет один двигатель. Также было серьезно обновлено оборудование, улучшена эргономика центрального поста и создана интегрированная система управления всеми вооружениями. Вооружение лодок проекта 677 состоит из шести торпедных аппаратов (533 мм) с боезапасом в 18 или 16 торпед УСЭТ-80К, мин (до 44 штук) и десяти пусковых установок для ПКР. Также на борту имеется ПЗРК «Игла-1М» и шесть ракет для нее. Отдельно специалисты из ЦКБ «Рубин» отмечают экологичность лодки – за счет систем переработки отходов за борт сливается только чистая вода, а все остальные «компоненты» лодка отвозит на базу, где они и утилизируются. При всех выявленных на испытаниях недостатках проект 677 является весьма и весьма перспективным, требуется только некоторая «работа над ошибками», точный объем и состав которой, похоже, засекречен.

U-Boot

Среди зарубежных стран лидером в строительстве ДЭПЛ считается Германия. Так, к примеру, немецкие подлодки проекта 209 с 1971 года поставлялись в 13 стран, всего их было построено более шести десятков. Таким образом, «209» стали самыми коммерчески успешными подлодками в истории. В конце 90-х Израиль получил три лодки проекта 800 Dolphin, являющегося доработкой 21-го проекта под его требования. Более новыми немецкими ДЭПЛ являются лодки проекта 212. Главное, на что обращают внимание немцы, продвигая свои новые лодки – электрическая часть силовой установки. Состоит она из девяти протон-обменных топливных элементов производства Siemens и 144 серебряно-цинковых аккумуляторов. Вооружение проекта 212 состоит из шести торпедных аппаратов калибра 533 миллиметра (боезапас – 12 торпед различных типов) и ПКР. Вместо торпед лодка может нести мины.

Четыре лодки проекта 212 уже вошли в строй Бундесмарине, еще две строятся. По заказу Италии была создана модификация 212А: две такие лодки уже переданы заказчику, еще две будут сданы после 2013 года. С экспортной версией 212-го проекта – проектом 214 – вышла неприятная история: в начале этого года, как подводная лодка, всплыли коррупционные истории десятилетней давности. Тогда ряду греческих чиновников от обороны бюргеры-подрядчики сделали «презенты» на полсотни миллионов евро. Взятки, похоже, не помогли и несколько лет производитель лодок, фирма HDW, имела проблемы со сдачей головной греческой лодки. В 2008 году появилась новость о намерении Пакистана купить для своего флота лодки проекта 214, но с тех пор более новой информации не появлялось.

Sous-marin

Самым новым французским проектом ДЭПЛ являются лодки Scorpene. Работы над проектом велись компанией DCN с начала 90-х, причем Scorpene изначально делались как экспортные лодки. К концу десятилетия к Франции присоединились испанцы из Izar. В результате работ было создано три модификации лодки. Покупатель может выбрать из:

— Scorpene Basic. Обычная дизель-электрическая лодка, вооруженная шестью торпедными аппаратами (запас 18 торпед) с возможностью стрельбы противокорабельными ракетами. На лодке могут применяться ПКР SM-39 Exocet или Sub-Garpoon.
— Scorpene Basic-AIP. Та же «Скорпен-Бейсик», но с воздухонезависимой энергетической установкой (ВНЭУ) MESMA. Эта паротурбинная установка, сжигая в камере сгорания топливо (скорее всего, этанол, хотя иногда упоминают дизельное топливо) в кислородной атмосфере, испаряет воду. Пар подается на генераторную установку мощностью до 200 кВт. После турбины генератора пар поступает в конденсатор, где охлаждается забортной водой. Охлажденная вода снова поступает в парогенератор и т.д. Таким образом, паротурбинная установка работает по замкнутому циклу. Необходимый кислород в жидком виде заливается в специальную цистерну на базе.
— Scorpene Compact. Как видно из названия, компактная версия лодки. Может комплектоваться ВНЭУ и предназначена для работы недалеко от береговой линии.

В итоге заказчик может выбрать не только тип силовой установки, но и наиболее подходящий ему вариант рубки (отличаются разным составом выдвижного оборудования) и количество и тип дизель-генераторов.

На данный момент построено четыре лодки Scorpene: две для Чили и две для Малайзии. Также некоторое время назад Франция продавала лодки проекта Agosta. Из 13 построенных сейчас во флотах Испании и Пакистана находятся девять таких лодок.

Бочка меда и…

В начале 20-х чисел ноября 2011 года появились неутешительные сообщения о судьбе российских подлодок проекта 677. Тогда «Известия» со ссылкой на некий безымянный источник в Минобороны написали, что лодки «Лада» не устраивают военное ведомство, ведь головной корабль серии «Санкт-Петербург» на испытаниях не показал расчетных данных по силовой установке, а боевая аппаратура, такая как система управления вооружением «Литий», еще слишком сыра для принятия на вооружение. В той же статье говорилось о том, что «Санкт-Петербург» до конца своих дней останется опытным экземпляром, а другие уже заложенные лодки проекта, скорее всего, достроят и продадут. Конечно, анонимность источника в Министерстве придает новости, как минимум, спорный характер, но осадочек, как говорится, остался.

Проект 677 «Лада» — дизель-электрическая подводная лодка типа «Санкт-Петербург»

Не избежали проблем и немцы. Помимо коррупционных скандалов, у них есть и чисто технические беды. Например, лодки проекта 214 получились шумнее, чем надо. В ряде источников упоминается, что при испытаниях головной лодки для Южной Кореи было зафиксировано значительное превышение шума относительно заявленного производителем. После этого корейцам пришлось ставить винт собственной разработки: это уменьшило шум, но ненамного. Другая проблема немецких лодок связана с аккумуляторами. У серийных серебряно-цинковых батарей оказалась неприятная особенность: если разрядить их до уровня в 30-40% от максимального заряда, то при ряде условий у них может появиться т.н. эффект памяти. Конечно, батарею можно использовать и с ним, но тогда серьезно падает автономность лодки. Ходят слухи, что Южная Корея даже собирается снять со своих 214-х лодок новые «перспективные» батареи немецкого производства и купить для их замены российские.

Проект 214


Французские лодки, как и все прочие, также не безгрешны. Так, к примеру, из трех версий Scorpene реально строится только базовая. ВНЭУ еще не готова к массовому производству, да и не особо выгодна. Индия уже затребовала, чтобы на «Скорпенах» для их флота была воздухонезависимая энергетическая установка. Франция согласилась, но увеличила сроки и цену чуть ли не в два раза. Иногда также встречаются претензии к оборудованию Scorpene, но на фоне ценовых проблем их даже не замечаешь.

Еще один момент, где во всей красе всплывает экономика – вооружение. К примеру, американская торпеда Mk-48 последней седьмой модификации (2008 г.) стоит 3,8 млн. долларов. Предыдущая версия, шестая, кроме американского флота закупалась только Бразилией, да и та вряд ли стала покупать много торпед по такой цене. Прочие страны, а именно Канада, Австралия и Нидерланды, преспокойно пользуются 4-й версией торпеды (около 2-2,5 млн. долларов за штуку). Для сравнения, российская торпеда УСЭТ-80 в поздних модификациях стоит около одного миллиона долларов, при этом она не сильно уступает в характеристиках американской конкурентке. Таким образом, может быть просто невыгодно топить торпедой за 3,5 миллионов какой-нибудь ракетный катер, стоящий не сильно дороже. А если принять во внимание возможность непопадания торпеды в цель…

Что же до ракет, то тут наблюдается какой-никакой паритет. Вышеупомянутые лодки различных стран используют три основных типа ракет: Exocet, Sub-Harpoon и «Калибр». В плане дальности с отрывом лидируют российская и американская ракеты: максимальная дальность пуска у них составляет 300 и 280 км соответственно. Максимальная дальность «Экзосета» – всего 180 км, и то, только у последней модификации (block 3). По скоростным, массогабаритным и ценовым параметрам ракеты в целом схожи.

Американская торпеда Mk-48

Как видим, абсолютно хороших и абсолютно плохих дизель-электрических подлодок на этой планете пока нет. Одни выигрывают в оборудовании, другие в автономности, но все подвержены одним и тем же проблемам. У всех современных ДЭПЛ есть ограничения по продолжительности использования дизельных установок во избежание их перегрева. У всех стран, делающих ДЭПЛ, есть одни и те же проблемы с аккумуляторами, обусловленные их физико-химической стороной. Наконец, внедрять новые технологии – дело небыстрое и нелегкое.

Тем не менее, ДЭПЛ продолжают строиться и покупаться. При всех недостатках, присущих этому классу боевой техники, они сравнительно дешевы и выгодны в эксплуатации. К тому же не все страны имеют собственные ядерные технологии, а передача всей документации, связанной с ними, стране без собственной атомной программы… Вряд ли кто будет продавать вместе с подлодками подобные вещи. Так что геополитическая обстановка только способствует экспортным перспективам дизель-электрических лодок.

topwar.ru

Воздухонезависимые энергетические установки современных ДПЛ — Германия — По странам — Статьи

Капитан 1 ранга Н. Сергеев,
капитан 1 ранга И. Яковлев,
капитан 3 ранга С. Иванов

Подводные лодки с традиционной дизель-электрической энергетической установкой (ЭУ) являются достаточно эффективным средством для решения определенных им задач и имеют ряд преимуществ перед ПЛА, особенно при действиях в прибрежных и мелководных районах моря. К числу таких преимуществ относятся низкий уровень шумности, высокая маневренность на малых скоростях хода и соизмеримая с ПЛА ударная мощь. Кроме того, включение в состав ВМС неатомных ПЛ во многом обусловлено невысокой стоимостью их создания и эксплуатации. В то же время они имеют ряд недостатков, в частности ограниченное время пребывания в подводном положении в связи с небольшим запасом энергии в аккумуляторной батарее (АБ).

Для зарядки АБ ПЛ вынуждена всплывать в надводное положение или использовать режим работы дизеля под водой (РДП), в результате чего повышается вероятность ее обнаружения радиолокационными, инфракрасными, оптико-электронными и акустическими средствами. Отношение времени плавания под РДП, необходимого для зарядки аккумуляторов, к периоду разряжания АБ называется «степенью неосторожности».

Существует несколько направлений увеличения дальности плавания под водой, основным из которых являются научно-технические и технологические разработки с целью совершенствования традиционной ЭУ неатомных ПЛ и ее составных элементов. Однако в современных условиях реализация этого направления не может в полной мере обеспечить решение главной задачи. Выход из сложившейся ситуации, по мнению зарубежных специалистов, заключается в использовании на ПЛ воздухонезависимой энергетической установки (ВНЭУ), которая может служить в качестве вспомогательной.

Успешные результаты, полученные в ходе работ по данной тематике, сделали возможным оборудование вспомогательными ВНЭУ вновь строящихся и дооборудование находящихся в эксплуатации дизель-электрических ПЛ. У последних в прочный корпус врезается дополнительный отсек, содержащий саму энергоустановку, емкости для хранения топлива и окислителя, цистерны замещения массы расходуемых реагентов, вспомогательные механизмы и оборудование, а также приборы контроля и управления. В дальнейшем ВНЭУ планируется использовать на ПЛ в качестве основной.

В настоящее время существуют четыре основных типа воздухонезависимых энергетических установок: дизельный двигатель замкнутого цикла (ДЗЦ), двигатель Стирлинга (ДС), топливные элементы или электрохимический генератор (ЭХГ) и паротурбинная установка замкнутого цикла.

К числу основных требований, предъявляемыми к ВНЭУ, относятся следующие: низкий уровень шумности, малое тепловыделение, приемлемые массогабаритные характеристики, простота и безопасность эксплуатации, большой ресурс и невысокая стоимость, возможность использовать существующую береговую инфраструктуру. В наибольшей мере данным требованиям удовлетворяют вспомогательные ЭУ с двигателем Стирлинга, ЭХГ и паротурбинной установкой замкнутого цикла. Поэтому в ВМС ряда стран ведутся активные работы по их практическому применению на неатомных ПЛ.

Энергетическая установка с двигателем Стирлинга. К ее разработке в 1982 году приступила шведская фирма «Кокумс марин AB» по заказу правительства. Специалисты изначально рассматривали ВНЭУ с двигателем Стирлинга как вспомогательную, работающую совместно с традиционной дизель-электрической ЭУ (ДЭЭУ). Проведенные ими исследования показали, что новая установка, создаваемая как главная (без использования традиционной ДЭЭУ), будет слишком дорогой в производстве и технические требования, предъявляемые к энергоустановке подводной лодки, будет трудно удовлетворить.

Принципиальная схема двигателя Стирлинга

Королевские ВМС Швеции выбрали ВНЭУ с двигателем Стирлинга по нескольким причинам: высокая удельная мощность, низкий уровень шумности, отработанность технологий производства ДС, надежность и простота эксплуатации.

Высокая удельная мощность ДС достигается за счет сжигания в камере сгорания дизельного топлива в сочетании с кислородом. На ПЛ необходимый запас кислорода хранится в жидком состоянии, что обеспечивается современными криогенными технологиями.

Двигатель Стирлинга является двигателем внешнего сгорания. Принцип его работы предусматривает использование тепла, вырабатываемого внешним источником, и его подвод к рабочему телу, находящемуся в замкнутом контуре. ДС превращает тепло, производимое внешним источником, в механическую энергию, которая затем преобразуется генератором в постоянный ток. Регенератор, входящий в состав замкнутого рабочего контура двигателя, забирает от рабочего тела тепловую энергию, образующуюся после его расширения, и возвращает ее назад в цикл, когда газ меняет направление.

В ДС применяются поршни двойного действия. Пространство над поршнем является полостью расширения, а пространство под поршнем — полостью сжатия. Полость сжатия каждого цилиндра внешним каналом через холодильник, регенератор и нагреватель связана с полостью расширения соседнего цилиндра.

Необходимое сочетание фаз расширения и сжатия достигается с помощью распределительного механизма на основе кривошипов. Принципиальная схема двигателя Стирлинга приведена на рисунке.

Тепловая энергия, которая требуется для работы ДС, вырабатывается в камере сгорания высокого давления путем сжигания дизельного топлива и жидкого кислорода.

Кислород и дизельное топливо в пропорции 4 : 1 поступают в камеру сгорания, где и происходит их сжигание.

Для того чтобы поддерживать необходимую температуру рабочего процесса и обеспечить достаточную термостойкость материалов, в конструкции ДС применяется специальная система рециркуляции газов (GRC). Эта система предназначена для разбавления чистого кислорода, поступающего в камеру сгорания, газами, образующимися в процессе горения топливной смеси.

При работе двигателя Стирлинга часть выхлопных газов удаляется за борт, что может привести к образованию следа из пузырей. Это связано с тем, что процесс сгорания в ДС идет с большим избытком неиспользованного кислорода, который не может быть выделен из выхлопных газов. Для уменьшения количества пузырей, образующихся при растворении отработавших газов в забортной воде, применяется абсорбер, в котором происходит смешивание газов и воды. При этом выхлопные газы предварительно охлаждаются в специальном теплообменнике с 800 до 25 °С. Рабочее давление в камере сгорания позволяет удалять выхлопные газы на разных глубинах погружения ПЛ, вплоть до рабочей, что не требует использования для этих целей специального компрессора, обладающего повышенной шумностью.

Так как процесс внешнего подвода тепла неизбежно сопровождается дополнительными тепловыми потерями, КПД ДС меньше, чем у дизельного двигателя. Повышенная коррозия не позволяет использовать в ДС обычное дизельное топливо. Необходимо топливо с низким содержанием серы.

Для шведской программы был принят ДС типа V4-275 фирмы «Юнайтед Стирлинг». Он представляет собой четырех-цилиндровый двигатель (рабочий объем каждого цилиндра 275 см3). Цилиндры расположены V-образно с целью снижения шума и вибрации. Рабочее давление в камере сгорания двигателя 2 МПа, благодаря чему обеспечивается его использование на глубинах погружения ПЛ до 200 м. Для работы двигателя на больших глубинах необходима компрессия выхлопных газов, что потребует дополнительного расхода мощности на удаление выхлопных газов и приведет к повышению уровня шумности.

Первой энергоустановкой на базе ДС была оборудована подводная лодка типа «Нэккен», спущенная на воду после модернизации в 1988 году. Двигатель Стирлинга, цистерны для хранения дизельного топлива, жидкого кислорода и вспомогательное оборудование были размещены в дополнительной секции с нулевой плавучестью, врезанной в прочный корпус ПЛ. За счет этого длина лодки увеличилась на 10 %, что незначительно повлияло на изменение ее маневренных качеств.

Два ДС типа V4-275R работают на генераторы постоянного тока мощностью по 75 кВт. Двигатели размещены в шумоизоляционных модулях на виброизолирующих конструкциях с двухкаскадной амортизацией. Как показали испытания, ДС способен вырабатывать достаточное количество электроэнергии, необходимое для питания бортовых систем ПЛ, обеспечения подзарядки АБ и движения лодки со скоростью до 4 уз.

Для достижения более высоких скоростей хода и питания главного гребного электродвигателя предусматривается использование двигателя совместно с АБ.

Благодаря применению комбинированной энергоустановки время плавания в подводном положении увеличилось с 3-5 до 14 сут, а скорость патрулирования — с 3 до 6 уз. В результате этого повысилась скрытность ПЛ.

Как утверждают шведские специалисты, двигатель Стирлинга в корабельных условиях продемонстрировал высокие надежность и ремонтопригодность. Его шумоизлучение не превосходит шума гребного электродвигателя и на 20-25 дБ ниже, чем у эквивалентного по мощности дизельного двигателя.

ВМС Швеции оснащают данной вспомогательной ВНЭУ ПЛ типа «Готланд».

Контракт на строительство трех ПЛ этого типа был подписан правительством страны с фирмой «Кокумс» в марте 1990 года.

Первая подводная лодка данной серии — «Готланд» — была принята на вооружение в 1996 году, две последующие: «Апланд» и «Халланд» — в 1997-м. В ходе модернизации планируется оборудовать вспомогательными ЭУ данного типа также ПЛ типа «Вэстерготланд».
Как сообщают иностранные источники, шведские подводные лодки, оснащенные ЭУ с ДС, уже на практике показали хорошие результаты. В частности, во время учений было доказано превосходство ПЛ «Халланд» над ПЛ ВМС Испании с традиционной дизель-электрической энергоустановкой, а также продемонстрированы ее улучшенные ТТХ в ходе совместного плавания с атомными подводными лодками ВМС США и Франции.

Энергетическая установка с ЭХГ. Электрохимический генератор — это установка, в которой химическая энергия топлива непосредственно превращается в электрическую. Основой ЭХГ являются топливные элементы (ТЭ), в которых и происходит процесс генерирования электроэнергии, возникающей при взаимодействии топлива и окислителя, непрерывно и раздельно подводимых к ТЭ. В принципе топливный элемент — разновидность гальванического.

В отличие от последнего ТЭ не расходуется, так как активные компоненты подводятся непрерывно (топливо и окислитель).

В ходе исследований проводились испытания различных типов топлива и окислителей. Наилучших результатов удалось добиться при использовании реакции между кислородом и водородом, в результате взаимодействия которых вырабатываются электрическая энергия и вода.

Генерирование постоянного тока посредством холодного сгорания водорода и кислорода было известно давно и успешно использовалось для получения электроэнергии на подводных аппаратах. Этот принцип получения электроэнергии был использован на ПЛ только в 1980-е годы. В ПА кислород и водород хранились раздельно в прочных резервуарах под высоким давлением. Хотя электрохимические генераторы более эффективны, чем аккумуляторные батареи, их применение на ПЛ было затруднено тем, что запас топливных реагентов, хранящихся в газообразном состоянии, не позволял обеспечивать требуемую продолжительность подводного плавания.

Наиболее оптимальный способ хранения кислорода — в жидком состоянии (в криогенной форме — при температуре 180 °С), водорода — в форме металлгидрида.

К середине 1980-х годов немецкий консорциум GSC (German Submarine Consortium), включающий фирмы IKL (Ingenieurkontor Lubeck), HDW (Howaldtswerke Deutsche Werft AG) и FS (Ferrostaal), разработал и создал опытную береговую установку ЭХГ с топливными элементами фирмы «Сименс» для проверки совместной работы ее компонентов — топливных элементов, систем хранения водорода и кислорода, трубопроводов, системы управления, а также взаимодействия работы с традиционной ЭУ ПЛ. Опытный образец ЭХГ был конструктивно выполнен с таким расчетом, чтобы по завершении испытаний он мог быть установлен на действующей ПЛ без доработок. Результаты береговых испытаний показали, что ЭУ с ЭХГ может быть эффективно использована на ПЛ.

В 1989 году в интересах ВМС ФРГ успешно закончилась девятимесячная серия морских испытаний ПЛ U-1 проекта 205, оборудованной вспомогательной ВНЭУ с ЭХГ на верфи HDW. В результате руководство этого вида ВС отказалось от дальнейшего строительства ПЛ только с дизель-электрической ЭУ и приняло решение использовать «гибридные» (ДЭЭУ как основная и вспомогательная ЭУ с ЭХГ). Дальнейшие исследования направлены на разработку таких установок с ЭХГ в качестве главной.

Конструктивно ЭХГ представляет собой электрохимические модули с полимерными мембранами (PEM). Все модули устанавливаются на единой раме и могут быть соединены как последовательно, так и параллельно.

Вспомогательными в ЭУ с ЭХГ являются система охлаждения с использованием забортной воды и система остаточных газов. Последняя обеспечивает дожигание остаточного водорода в системе вентиляции АБ и использование остаточного кислорода для бортовых нужд. Система управления ЭУ интегрирована с системой контроля безопасности, мониторы которой находятся в центральном посту.

Преобразование энергии в топливных элементах происходит бесшумно.

В составе ЭУ отсутствуют узлы, совершающие вращательные или колебательные движения. Она имеет малое тепловыделение, вследствие чего не оказывает значительного влияния на формирование физических полей. Единственная вспомогательная система с вращающимися частями — система охлаждения, но она не настолько шумная, чтобы сильно повлиять на уровень акустического поля ПЛ.

Первоначальная активизация реакций в топливных элементах не требует много электроэнергии, для того чтобы металл-гидрид, хранящийся в баллонах, расположенных в междубортном пространстве, стал выделять водород и начал испаряться кислород, хранящийся в жидком состоянии в ударозащищенных криогенных цистернах, выполненных из маломагнитной стали.

Этот тип ЭУ достаточно эффективен, он имеет высокий КПД — до 70 %, и по этому показателю значительно превосходит другие воздухонезависимые энергоустановки. Сравнительные данные зависимости КПД разных типов ВНЭУ от относительного уровня выходной мощности показаны на графике. Процесс преобразования энергии происходит при низкой рабочей температуре (60-90 °С). Для поддержания первоначально инициированного электрохимического процесса требуется небольшое количество тепла, выделяемого системой в процессе работы. Часть тепла, вырабатываемого ЭУ, может использоваться для бытовых нужд, таких как обогрев.

Количество тепла, которое необходимо отводить от установки, невелико, поэтому принудительное охлаждение ЭУ забортной водой не требует длительного времени (до суток ее работы). Воду, производимую в ходе реакции, после соответствующей обработки можно использовать для питья.

Комбинация компактных топливных, последовательно соединенных элементов позволяет получить любое требуемое напряжение. Регулировка напряжения достигается изменением числа пластин в агрегатах с топливными элементами.

Наибольшая мощность может быть достигнута посредством последовательного соединения этих элементов.

Работа ЭУ с ЭХГ не зависит от глубины погружения ПЛ. Электроэнергия, генерируемая такой энергоустановкой, поступает прямо на главный распределительный щит лодки. 65 % ее расходуется на движение и корабельные нужды, 30 % — на систему охлаждения и систему остаточных газов ЭУ, 5 % — на дополнительное оборудование ЭУ.

Вспомогательная ЭУ может работать как параллельно с АБ, обеспечивая электродвижение ПЛ и питание других потребителей, так и для подзарядки АБ.

Планируется оснастить вспомогательной ЭУ с ЭХГ четыре и две ПЛ типа 212А, строящихся для ВМС ФРГ и Италии соответственно, а также экспортный вариант лодки типа 214 для ВМС Греции и Республики Корея.

Две ПЛ из первой подсерии лодок типа 212А для ВМС ФРГ оборудованы вспомогательной ЭУ с ЭХГ номинальной мощностью около 300 кВт с девятью топливными элементами по 34 кВт. Лодки второй подсерии планируется оснастить двумя топливными элементами по 120 кВт. Они будут иметь практически те же массогабаритные характеристики, что и топливные элементы мощностью 34 кВт, но при этом их эффективность увеличится в 4 раза. ПЛ типа 212А будет способна находиться в подводном положении в течение примерно двух недель. Номинальная мощность данной установки позволит развивать скорость хода до 8 уз без использования АБ.

Модульная конструкция ЭУ на основе топливных элементов не только облегчает их установку на строящихся ПЛ, но и позволяет оборудовать ими ранее построенные, даже те, которые были построены по лицензиям на верфях стран — импортеров немецких ПЛ.

Кроме того, такая ЭУ, как утверждают немецкие специалисты, отличается высокой ремонтопригодностью и более продолжительным сроком службы.

Паротурбинная установка (ПТУ) замкнутого цикла. ПТУ MESMA (Module d’Energie Sous-Marin Autonome), работающая по замкнутому циклу Ренкина, была разработана управлением кораблестроения ВМС Франции DCN для продажи на экспорт. В ее производстве участвуют французские фирмы «Текникатом», «Термодайн», «Эр ликвид», «Бертин», а также судоверфь «Эмпреса насьональ Базан» (Испания).

Сравнительные данные зависимости КПД воздухонезависимой ЭУ от относительного уровня выходной мощности (1 — ЭХГ, 2 — ДЗЦ, 3 — двигатель Стирлинга, 4 — ПТУ MESMA)

MESMA является двухконтурной установкой. В первом контуре в результате сгорания этанола в кислороде образуется теплоноситель (парогаз), который проходит через тракт парогенератора и отдает тепло воде, циркулирующей во втором контуре.

Вода превращается в пар высокого давления, вращающий паровую турбину, соединенную с генератором. Кислород хранится на борту ПЛ в специальных емкостях в жидком состоянии. Продуктами реакции горения являются вода и отработанные газы, отводимые за борт. Это может привести к увеличению заметности ПЛ.

Горение в камере сгорания происходит под давлением 6 МПа, вследствие чего установка может работать на глубинах до 600 м, поэтому для удаления за борт продуктов горения не надо задействовать компрессор.

КПД энергоустановки с ПТУ MESMA составляет 20 %, что обусловлено большими потерями при многократном преобразовании энергии — сжигание топлива, получение перегретого пара, генерация трехфазного тока и последующее его преобразование в постоянный.

Вся установка в целом отличается достаточной компактностью и монтируется в секции прочного корпуса длиной 10 м и шириной 7,8 м. Кислород хранится в сжиженном состоянии в баллонах, смонтированных на специальных амортизационных креплениях внутри прочного корпуса ПЛ в вертикальном положении.

В сентябре 1998 года завершились стендовые испытания опытного образца ЭУ MESMA. В апреле 2000 года на судоверфи в г. Шербур была изготовлена первая корабельная энергоустановка, размещенная в секции прочного корпуса.

После завершения сдаточных испытаний модуль с ЭУ должен был быть отправлен в Пакистан для оснащения строящейся там по французской лицензии ПЛ «Гази» типа «Агоста 90B». Это первая ПЛ данного типа, на которой вспомогательная воздухонезависимая ЭУ будет установлена в процессе строительства. Две другие ПЛ, построенные ранее, намечается дооборудовать ими позже — в процессе модернизации и ремонта.

Применение вспомогательных воздухонезависимых энергетических установок на неатомных ПЛ позволило улучшить их ТТХ по продолжительности подводного плавания, что повысило скрытность лодок и расширило их боевые возможности. Помимо строящихся ПЛ вспомогательными ВНЭУ можно оборудовать имеющиеся дизельные подводные лодки в процессе их модернизации. Дальнейшее развитие технологий и получение на этой основе качественно новых характеристик ВНЭУ, вероятнее всего, позволит неатомным ПЛ решать задачи, свойственные атомным.

Зарубежное военное обозрение 2004 №6, С. 59-63

 

factmil.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *