Происхождение галактик и звёзд

Происхождение галактик и звёзд. Строение нашей Галактики. Эволюция звёзд. Синтез химических элементов в звёздах. Сверхновые и квазары

Существует точка зрения, что с самого начала протовещество, из которого впоследствии образовалась Вселенная, с гигантской скоростью начало расширяться. На начальной стадии это плотное вещество разлетелось, разбегалось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновении частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки – там в последствии и образовались звёзды и даже целые галактики.

Окружающие Солнце звёзды и само Солнце составляют малую часть гигантского скопления звёзд и туманностей, которую называют Галактикой. Галактика имеет довольно сложную структуру. В первом, самом грубом, приближении можно считать, что звёзды и туманности, из которых она состоит, заполняют объём, имеющий форму сильно сжатого эллипсоида вращения. На самом деле всё обстоит гораздо сложнее, и нарисованная картина является слишком грубой. В действительности разные типы звёзд по-разному концентрируется к центру Галактики и к её «экваториальной плоскости». Например, газовые туманности, а также очень горячие массивные звёзды сильно концентрируются к экваториальной плоскости Галактики. С другой стороны, звёзды и звёздные скопления некоторых типов почти никакой концентрации к экваториальной плоскости не обнаруживают, но зато характеризуются огромной концентрацией в центре. Существенная часть звёзд в Галактике находится в гигантском диске диаметром примерно 100 тыс. и толщиной около 1500 световых лет. В этом диске насчитывается более сотни миллиардов звёзд самых различных видов. Наше Солнце – одна из таких звёзд, находящихся на периферии Галактики вблизи её экваториальной плоскости. Галактика содержит и структурные детали гораздо больших масштабов.

Звёзды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего они участвуют во вращении Галактики вокруг оси, перпендикулярной её экваториальной плоскости. Различные участки Галактики имеют различные периоды вращения. Звёзды очень сильно удалены друг от друга. (одно столкновение в миллион лет). Число звёзд в Галактике порядка триллиона. Самые многочисленные из них – карлики с массами, примерно в 10 раз меньшими массы Солнца. Существуют также двойные и кратные звёзды, а также звёздные скопления –группы звёзд, связанных силами тяготения и движущиеся в пространстве как единое целое. В различных созвездиях обнаруживаются туманные пятна, которые в основном состоят из газа и пыли – туманности. Интересна небольшая диффузная туманность, названная Крабовидной. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения – пульсар. Но даже там, где не видно ни звёзд, ни туманностей, пространство не пусто. Оно заполнено очень разреженным межзвёздным газом и межзвёздной пылью. В межзвёздном пространстве существуют различные поля (гравитационное и магнитное). Галактику можно представить очень упрощённо в виде диска с ядром в центре и огромными спиральными ветвями, в основном содержащими наиболее горячие и яркие звёзды и массивные газовые облака. Диск со спиральными ветвями образует основу плоской подсистемы Галактики. А объекты, концентрирующиеся к ядру Галактики и лишь частично проникающие в диски, относятся к сферической подсистеме. Сама Галактика вращается вокруг своей центральной области. В центре Галактики сосредоточена небольшая часть звёзд. Поэтому при вращении Галактики с увеличением расстояния от центра изменяются и угловая (убывает), и линейные(возрастает) скорости вращения Галактики.

Галактики бывают эллиптические (эллипсоиды с разной степенью сжатости (красные гиганты)), спиральные (наша Галактика, Туманность Андромеды), неправильные (не имеют центральных ядер, в них не обнаружены закономерности).

В ходе структурообразования во Вселенной возникли звёзды, эти ядерные «костры», горение которых поддерживается протекающими в их недрах реакциями нуклеосинтеза. в отличие от первичного он получил название звёздного нуклеосинтеза. Разнообразие типов звёзд и соответственно реакций звёздного нуклеосинтеза, изменение условий протекания таких реакций со временем создало ситуацию, коренным образом отличную от существовавшей в эпоху первичного нуклеосинтеза. отсюда возникло убеждение, что элементы тяжелее гелия рождались (и продолжают рождаться) в недрах звёзд, что они – зола и шлаки звёздных костров. Как же звёздный нуклеосинтез сделал то, что оказалось не под силу первичному нуклеосинтезу – преодолел «щели масс»?

Идея механизма такого преодоления впервые была высказана английским астрофизиком Ф.Хойлом (р.1915). Хойл высказал идею: на определённых стадиях развития некоторых типов звёзд появляются условия для объединения трёх ядер гелия (трёх частиц) в ядро углерода 12С. такая реакция решает проблему преодоления «щели масс», оставляя позади сразу оба барьера. Далее открываются возможности образования ещё более тяжёлых, чем углерод, ядер неона, кислорода, кремния и др.

Согласно современным представлениям, присутствующие в межзвёздной среде тяжёлые элементы появились в звёздах типа красных гигантов. Жёлтые карлики типа нашего Солнца поддерживают своё состояние главным образом в результате ядерных реакций, названных водородным циклом. Так что звёзды этого типа не создают элементов тяжелее гелия. Красные гиганты обладают массой, в несколько раз превышающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает нескольких сотен миллионов градусов, что оказывается достаточным для протекания реакций углеродного цикла. В этом цикле три ядра гелия соединяются и образуют возбуждённое ядро углерода. Оно в свою очередь может присоединить ещё одно ядро гелия и образовать ядро кислорода, затем неона и так вплоть до кремния. Выгорающее ядро звезды сжимается и температура в нём поднимается до 3-10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа.

С 1963 года начались открытия звёздоподобных источников радиоизлучения – квазаров. Сейчас их открыто более тысячи. Самый яркий квазар, имеющий обозначение 3С 273, виден как звезда. В действительности этот квазар, находящийся от нас на расстоянии около 3 млрд. Световых лет, излучает больше энергии в оптическом диапозоне, чем самые яркие галактики. Этот квазар оказался одним из самых мощных источников рентгеновского излучения. Блеск квазара не остаётся постоянным, что позволяет оценить размеры квазара. Они превышают размеры одного светового года. Следовательно, квазар больше обычных звёзд, но гораздо меньше нашей галактики. Квазары не похожи на обычные звёзды своими массами. Массы квазаров достигают многих миллионов солнечных масс.

Происхождение и состав Солнечной системы. Исследования планет космическими аппаратами.

Два коренных вопроса планетологии: является ли образование планетных систем во Вселенной правилом или единственная известная человечеству Солнечная система появилась в результате редчайшего совпадения обстоятельств, что делает её уникальной? Каков механизм образования Солнечной системы? Доказательных ответов на эти вопросы пока нет.

Современная научная мысль решительно отвергает допущение о случайном образовании и исключительном характере события такой значимости, как возникновение сложнейшего сообщества звёзд и группы связанных с ними планет. В пользу такой точки зрения говорят известные на сегодняшний день факты, полученные при исследовании звёзд в близких к Солнцу галактических окрестностях. У большинства астрономов на этот счёт сложилось вполне определённое мнение: современная астрономия даёт серьёзные аргументы в пользу наличия планетных систем у многих звёзд, в пользу их типичности, а не исключительности.

За последние 50 лет регулярно поступают сведения, которые истолковываются как аргументы в пользу наличия планетных тел или предпосылок для их образования около большого числа звёзд, находящихся в радиусе примерно 20 парсек от Солнца. Особенно богатая информация начала поступать после запусков астрономических спутников, оснащённых разнообразными исследовательскими приборами высокой точности. Заметно усовершенствовались и наземные средства наблюдения, развиты принципиально новые методы обработки получаемых с их помощью данных.

Начиная с 1983 года американский спутник ИРАС, заслуги которого отмечались в связи с его вкладом в «горячую» модель образования галактик, обнаружил примерно у 10% звёзд, находящихся в окрестностях Солнца, избыточное инфракрасное излучение. По мнению специалистов, оно связано с присутствием вокруг таких звёзд пылевых дисков, содержащих мелкие твёрдые частицы. Детальные наземные исследования этих звёзд подтвердили такие предположения.

О механизме формирования планет, в частности в Солнечной системе, также нет общепризнанных заключений. Солнечная система, по оценкам, образовалась примерно 5 млрд. лет назад, причём Солнце – звезда второго (или ещё более позднего) поколения. Так что Солнечная система возникла на продуктах  жизнедеятельности звёзд предыдущих поколений, скапливавшихся в газопылевых облаках. Это обстоятельство даёт основание назвать Солнечную систему малой частью звёздной пыли. О происхождении Солнечной системы и её исторического эволюции наука знает меньше, чем необходимо для построения теории планетообразования. От первых научных гипотез, выдвинутых примерно 250 лет назад, до наших дней предложено большое число различных моделей происхождения и развития Солнечной системы, но ни одна из них не удостоилась перевода в ранг общепризнанной теории. Большинство из выдвигавшихся ранее гипотез сегодня представляет лишь исторический интерес.

Солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих её элементов с высочайшей устойчивостью системы как целого.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела – Солнца.

При таком числе и разнообразии составляющих систему элементов, при тех сложных  взаимоотношениях, которые устанавливаются между ними, задача теоретического описания Солнечной системы, не говоря уж о задаче определения механизма её образования, оказывается очень непростой.

Согласно современным представлениям, решение проблемы образования Солнечной системы требует учёта присутствующих магнитных полей, плазменного состояния вещества, эффектов взаимодействия магнитных полей с плазмой, магнитогидродинамических и газодинамических явлений, химических взаимодействий элементов. Хотя сегодняшние представления о процессе образования Солнечной системы далеки от завершения, сложилось прочное представление о закономерном характере процессов этого типа, протекающих в общем потоке структурной самоорганизации Вселенной. Локальные структуры формируются при участии двух противоположных, но взаимосвязанных механизмов: фракционирования крупных неорганизованных образований (таких, как газопылевые облака) и аккреции мелких частиц вещества с образованием более организованных крупных объектов, развивающихся потом как естественное тело. Необходимое условие совместного действия этих механизмов – значительная неравновесность среды, в которой происходит формирование структур.

studfiles.net

Происхождение и эволюция галактик и звезд. Эволюция Вселенной

«Все изменяется, ничто не исчезает»

Овидий

В данной теме разговор пойдёт о том, как рождаются, живут и умирают звезды, как изменяется Вселенная.

Солнце имеет свой жизненный цикл. Оно образовалось в результате гравитационного сжатия плотного газопылевого облака. По мере сжатия температура и плотность облака возрастает, и оно испускает излучение в инфракрасном диапазоне спектра. Облако в этом состоянии называется протозвездой. Температура в недрах протозвезды постепенно возрастает, и когда она достигает нескольких миллионов кельвинов, начинается термоядерная реакция, в результате которой из водорода синтезируется гелий. Протозвезда превращается в обычную звезду главной последовательности. Как уже говорилось, Солнце относится к главной последовательности, а его возраст составляет примерно 4,5 миллиарда лет. После того, как водород на Солнце закончится, оно начнет раздуваться, превращаясь в красный гигант. Размеры Солнца возрастут в десятки раз, оно поглотит Меркурий и Венеру, и уничтожит жизнь на Земле. Это произойдет приблизительно через 5 миллиардов лет. Температура ядра станет настолько высока, что начнет происходить реакция превращения гелия в углерод. Раздувшаяся оболочка Солнца будет уже слишком слабо притягиваться ядром и постепенно рассеется, образовав так называемую планетарную туманность. После того, как оболочка окончательно рассеется, останется только ядро – белый карлик. Этот белый карлик будет очень медленно остывать, постепенно превращаясь в черный карлик.

Эволюция Солнца

Следует заметить, что есть и другие варианты эволюции звезд, в зависимости от их массы. Итак, основные стадии эволюции звезд таковы: сначала образуется плотное газопылевое облако, которое под действием собственной гравитации коллапсирует в протозвезду. После начала термоядерной реакции в горячем ядре, протозвезда превращается в звезду главной последовательности. Когда в звезде заканчивается водород, она начинает раздуваться, превращаясь в красного гиганта или сверхгиганта. А вот после этого есть несколько вариантов развития событий. Один из них был только что рассмотрен – это превращение звезды в белый карлик, а затем и в черный карлик. Такой путь развития характерен для звезд, масса которых не превышает две солнечные массы. Ядра более массивных звезд могут колоссально сжаться под действием собственной гравитации, что приведет к превращению протонов в нейтроны. Этот объект будет называться нейтронной звездой.

Для сверхмассивных звезд возможен несколько иной вариант развития событий: ядро сверхгиганта начинает сжиматься, в результате чего, вновь увеличивается плотность и температура. Это приводит к новой последовательности термоядерных реакций, в процессе которых синтезируются все более тяжелые элементы. В конечном итоге, синтезируется железо 56 (Fe-56), обладающее самым большим дефектом масс, поэтому дальнейшее образование других веществ с выделением энергии уже невозможно. Когда железное ядро достигает определенных размеров, вновь происходит коллапс ядра. Буквально через несколько секунд после этого происходит взрыв сверхновой звезды. На сегодняшний день еще неизвестно, что именно приводит к взрыву, но этот взрыв выносит значительную часть накопленного материала вместе со струями нейтрино в межзвездное пространство. Выброшенное вещество может послужить материалом для образования новых звезд. От начальной звезды остается нейтронная звезда. Но если звезда обладала достаточно большой массой, то коллапс может продолжаться даже после образования нейтронной звезды. Тогда звезда становится черной дырой. Согласно общей теории относительности, черные дыры могут искажать пространство и замедлять время в непосредственной близости от себя. На данный момент, многие вопросы о сверхновых, нейтронных звездах и черных дырах остаются открытыми.

Во Вселенной существует множество галактик, которые, как выяснилось, разбегаются. Это косвенно подтверждает модель расширяющейся Вселенной. Исходя из этой модели и из расстояния до галактик, удалось определить радиус наблюдаемой Вселенной с помощью закона Хаббла. Также, с помощью этого закона был вычислен примерный возраст наблюдаемой Вселенной. Но как образовалась Вселенная? Конечно, на сегодняшний день никто не может дать точный ответ на этот вопрос. Разбегание галактик напоминает разлет вещества при взрыве, поэтому, теория, описывающая расширяющуюся Вселенную, получила называние теории Большого взрыва.

Большой взрыв – это общепринятая космологическая модель, описывающая раннее развитие Вселенной (то есть, начало её расширения). Ветвь астрономии, изучающая вопросы, связанные с эволюцией Вселенной, называется космологией. Существует еще одна важная космологическая модель – это модель горячей Вселенной. Эта модель описывает ранние этапы развития Вселенной. Плотность и температура Вселенной спустя несколько секунд после Большого взрыва были настолько огромны, что ни о каких галактиках и звездах не могло быть и речи. По мере расширения Вселенной, её температура и плотность уменьшались, начали образовываться первые звезды, а спустя некоторое время – галактики.

Конечно, можно задать резонный вопрос: если вся Вселенная образовалась в результате Большого взрыва, тогда что взорвалось? В сложности ответа на этот вопрос, пожалуй, и состоит основная проблема космологии. На сегодняшний день, Большой взрыв объясняется возникновением, так называемой, космологической сингулярностигравитационной сингулярности, характеризующейся бесконечной плотностью и температурой. Сегодня ученые не могут с уверенностью объяснить происхождение этой сингулярности, да и вообще, не совсем ясно, что собой представляет гравитационная сингулярность. Считается, что ответы на эти вопросы сможет дать теория квантовой гравитации.

Исходя из наблюдаемых процессов, происходящих во Вселенной, существует еще одно довольно интересное предположение. Известно, что звезды рано или поздно умирают, превращаясь в белые, а затем и черные карлики. Некоторые звезды могут превратиться в нейтронную звезду или в черную дыру. Одновременно с этим из газовых облаков образуются всё новые и новые звезды. Но, когда-нибудь галактики исчерпают всю энергию, и строительный материал для звезд закончится. Все существующие звезды дойдут до последних стадий эволюции: останутся только белые и черные карлики, нейтронные звезды и черные дыры. Скопления галактик начнут сливаться в одну большую галактику. Черные дыры, находившиеся в центрах галактик, начнут поглощать все больше и больше вещества, постепенно разрастаясь и сливаясь друг с другом. В конце концов, скопления черных дыр образуют гигантскую черную дыру с невообразимо мощным гравитационным полем. Возможно, столь мощное гравитационное поле заставит эту черную дыру сжаться в ту самую гравитационную сингулярность, о которой говорилось. В этом случае, всё вернётся к начальной точке – то есть, произойдет еще один Большой взрыв.

Помимо того, что происходило с Вселенной до нынешнего момента, не менее интересно и её будущее. На этот счет есть несколько точек зрения, в зависимости от массы, энергии, плотности Вселенной, а также, скорости её расширения. По современным оценкам, критическое значение плотности вещества вычисляется по формуле

Подставив все константы в данное выражение, получим, что критическая плотность Вселенной равна

Считается, что если средняя плотность Вселенной больше критической, то в будущем расширение Вселенной сменится сжатием. То есть, Вселенная вновь сожмется в одну точку и, вероятно, вновь произойдет Большой взрыв. Если же плотность Вселенной меньше критической, то она не перестанет расширяться. По сегодняшним оценкам, плотность Вселенной примерно в 5 раз меньше критической плотности, что отбрасывает теорию о Большом сжатии. Но спешить с такими выводами, всё же, не стоит. Есть основания полагать, что существует так называемая скрытая масса, которая может изменить современную оценку плотности Вселенной. Например, основываясь на современных данных, не удается объяснить аномально большую скорость вращения внешних областей галактик. Считается, что, возможно, это поможет объяснить существование темной материи – гипотетической материи, не испускающей электромагнитного излучения и не взаимодействующей с ним. Прямое наблюдение такой материи невозможно, но существует несколько косвенных признаков её существования – например, гравитационные эффекты, создаваемые некоторыми астрофизическими объектами.

Также, не так давно было введено понятие тёмной энергии, без которой не удавалось объяснить наблюдаемое расширение Вселенной с ускорением. Под темной энергией подразумевается космологическая константа, то есть, постоянная энергетическая плотность, которая равномерно заполняет Вселенную. Иными словами, существование тёмной энергии говорит нам о том, что полного вакуума не существует. На сегодняшний день, ни одно из надежных наблюдательных данных не противоречит существованию темной энергии.

Конечно, в данной теме немного вышли за рамки школьной физики, но, всё же, рассмотрим основные этапы развития Вселенной и сегодняшние представления человечества о ней. Поскольку Вселенная расширяется с момента Большого взрыва, этапы развития Вселенной разделены на этапы расширения. Первый этап называется Планковской эпохой – период с того момента, когда начинают работать законы современной физики до инфляционной стадии (гравитационное взаимодействие отделяется от остальных видов взаимодействий). Инфляционная стадия – это стадия резкого увеличения и сильного нагрева Вселенной. После этого наступает стадия радиационного доминирования – основная стадия развития ранней Вселенной. На этой стадии появляются некоторые виды излучения, понижается температура, начинают выделяться остальные виды взаимодействий, энергия переходит в массу, образуя кварки – то есть, начинает появляться материя. Образуются известные нам сегодня химические элементы. После этого наступает эпоха доминирования вещества: электромагнитное излучение отделяется от вещества, начинают формироваться звезды и галактики. И, наконец, Вселенная переходит в стадию доминирования темной энергии – это является текущей эпохой.

Как видно, многие вопросы до сих пор остаются открытыми, и неизвестно, можно ли вообще понять, как образовалась Вселенная, находясь внутри неё. Тем не менее, сегодня были рассмотрены основные этапы эволюции звезд. В результате коллапса газопылевого облака под действием гравитационных сил, образуется протозвезда. Когда температура ядра протозвезды становится достаточно высока, начинается термоядерная реакция, и протозвезда становится звездой главной последовательности. Когда в звезде заканчивается водород, из гелия начинают синтезироваться более тяжелые элементы. Звезда расширяется и становится красным гигантом или сверхгигантом. После этого, возможны несколько вариантов развития событий, в зависимости от массы звезды. Либо после того, как оболочка звезды рассеивается, она образует планетарную туманность, а потом оставшееся ядро становится белым карликом, либо звезда превращается в нейтронную звезду или черную дыру.

Сегодня эволюция Вселенной описывается теорией Большого взрыва и моделью горячей Вселенной. Также, на сегодняшний день, наблюдения говорят о том, что Вселенная расширяется с ускорением. О будущем Вселенной существует множество теорий, ни одна из которых, на данном этапе развития науки, не может быть доказана.

videouroki.net

Происхождение и эволюция галактик и звезд

Поиск Лекций

Возраст галактик и звезд

Возраст Метагалактики оценивается 1.5*1010 лет.

Самые «старые» звезды должны входить в длительно существующие скопления. Это шаровые скопления, возраст которых порядка 1010 лет. В шаровых скоплениях много красных и желтых звезд. (Их возраст достигает нескольких миллиардов лет). Рассеянные скопления «моложе». Возраст белых и голубых сверхгигантов, которые есть в этих скоплениях, — порядка нескольких миллионов лет.

Звезды возникали в ходе эволюции галактик. Большинство астрономов считают, что это происходило в результате сгущения (конденсации) облаков диффузной материи, которые постепенно формировались внутри галактик. Одна из исходных предпосылок такой гипотезы состоит в том, что, как показывают наблюдения, «молодые» звезды всегда тесно связаны с газом и пылью. Эти звезды и диффузная материя концентрируются в спиральных ветвях галактик. Местами наиболее интенсивно звездообразования считаются массы холодного межзвездного вещества, которые называются газово-пылевыми комплексами.

Силы тяготения холодного газово-пылевого облака сжимают его, оно принимает шарообразную форму. При сжатии будут возрастать плотность и температура облака. Возникнет будущая, рождающаяся звезда (протозвезда). Температура ее поверхности пока еще мала, но протозвезда уже излучает в инфракрасном диапазоне.

Одно из основных отличий протозвезды от звезды заключается в том, что в протозвезде еще не происходят термоядерные реакции, т. е. в ней нет еще основного источника энергии обычных звезд. Стадия сжатия звезд, массы которых значительно больше массы Солнца, продолжается всего лишь сотни тысяч лет, а звезды, массы которых меньше солнечной, сжимаются сотни миллионов лет. Стадию сжатия сменяет стационарная стадия, сопровождающаяся постепенным «выгоранием» водорода. В стационарной стадии звезда проводит большую часть своей жизни. Именно в этой стадии эволюции находятся звезды, которые располагаются на главной последовательности диаграммы «спектр — светимость». Они находятся в стационарной стадии только несколько миллионов лет, а звезды, подобные Солнцу, — миллиарды лет.

Когда весь водород в центральной области звезды превратится в гелий, внутри звезды образуется гелиевое ядро. Теперь уже водород будет превращаться в гелий не в центре звезды, а в слое, прилегающем к очень горячему гелиевому ядру. Пока внутри гелиевого ядра нет источников энергии, оно будет постепенно сжиматься и при этом еще более разогреваться. Когда температура внутри звезды превысит 1,5*107К, гелий начнет превращаться в углерод (с последующим образованием все более тяжелых химических элементов). В результате обычная звезда постепенно превратится в красного гиганта или сверхгиганта.

Заключительный этап жизни звезды, как и вся ее эволюция, решающим образом зависит от массы звезды. Внешние слои звезд, подобных нашему Солнцу, постепенно расширяются и в конце концов совсем покидают ядро звезды. На месте гиганта остается маленький и горячий белый карлик. Белых карликов в мире звезд много. Это значит, что, по-видимому, многие звезды превращаются в белых карликов, которые затем постепенно остывают, становясь «потухшими звездами».

О структуре материи

Как целое не сводится к части или сумме частей, так и вопрос о структуре материи в целом не сводится к вопросу о строении отдельных, изучаемых естественными науками, видов материи. Это хорошо видно на примере классификации видов материи. Профессиональная узость мешает ученым осмыслить структуру материи и в том плане, что они, даже если объединят свои усилия, могут претендовать на создание только фрагментарной, мозаичной картины материи. Материя в целом, как целое им недоступна.

Таким образом, вопрос о структуре материи есть именно философский вопрос и он не может быть перепоручен ученым.

Материя как философская категория и просто как категория мышления связана с другими категориями и понятиями, включена в систему категорий. Это значит, что ее структура выражается в тех или иных категориях, понятиях. Иными словами, структуре материи как объективной реальности соответствует система субкатегорий, частных определений материи. Мы говорим о телах и частицах, об их целостности, структурированности, составленности из частей, об их качественной и количественной определенности, о различных совокупностях тел и частиц. Мы проводим различие между неорганическими телами и живыми организмами. И т.д. и т.п. Все это — отражение в категориях и понятиях реальной структуры материи.

Возникает вопрос: насколько адекватно эти категории и понятия отражают структуру материи. Если говорить об «элементной базе» материи, то, думается, на сегодняшний день человечество выработало достаточно категорий и понятий, выражающих ее. Вопрос, следовательно, в том, как из отдельных «элементов» «собрать» целое, как воссоздать структуру материи. Ведь эти «элементы» материи до сих пор рассматриваются философами рядоположенно, в отрыве друг от друга, в виде отдельных пар, групп категорий. Непосредственно к материи относят только «виды материи» (тела, частицы, поля). А вот категории «целое», «часть», «элемент», «структура», «система», «качество», «количество», «мера» и некоторые другие рассматриваются вне всякой связи с категорией материи, не осмысливаются как понятия, выражающие элементы структуры материи. Это существенно обедняет философское понятие материи, а вопрос о строении материи волей-неволей сводится к вопросу о классификации изучаемых отдельными науками, т.е. эмпирически наблюдаемых видов материи. Вообще получается «интересная» картина. С одной стороны, материя выглядит бесструктурной, диффузной (в философском смысле) категорией. С другой, категории и понятия, призванные выражать структуру материи, оказываются беспризорными, «висящими в воздухе», этакими безотносительными, независимыми философскими, логическими категориями.

Итак, ясно, что реальная структура материи должна выражаться в категориально-логической структуре материи, т.е. в системе субкатегорий материи.

Здесь мы подошли собственно к рассмотрению структуры материи. Напомним, что в первом разделе (п. 1.5) дано краткое описание системы категорий, в том числе краткое описание системы субкатегорий материи. Последнее и есть предлагаемая версия категориально-логической структуры материи. Она основана на общем подходе к категориям, изложенном в п. 1.4. Это, так сказать, абстрактный уровень ее обоснования. Теперь попытаемся дать конкретное обоснование версии.

 

 


Рекомендуемые страницы:

Поиск по сайту



poisk-ru.ru

Происхождение и развитие галактик и звезд

 
 
 
 
 
 
 

Происхождение и развитие галактик и звезд 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Содержание:

1. Введение.

2. Происхождение  и развитие звезд:

Межзвездный газ.

Межзвездная пыль.

Почему должны рождаться новые звезды.

Эволюция звезд.

3. Происхождение  и развитие галактик:

Взгляды различных ученых на процессы рождение и развитие галактик.

Современные представления  о процессах развития и происхождения  галактик.

4. Заключение.

5. Список используемой  литературы. 
 
 
 
 
 
 
 
 
 
 
 
 

Введение.

К началу нашего века границы разведанной Вселенной раздвинулись настолько, что

включили в  себя Галактику. Многие, если не все, думали тогда, что эта огромная

звездная система  и есть вся Вселенная в целом.

Но вот в 20-е  годы были построены новые крупные  телескопы, и перед астрономами

открылись совершенно неожиданные горизонты. Оказалось, что за пределами

Галактики мир  не кончается. Миллиарды звездных систем, галактик, похожих на

нашу и отличающихся от нее, рассеяны тут и там по просторам  Вселенной.

Фотографии галактик, сделанные с помощью самых  больших телескопов, поражают

красотой и  разнообразием форм: это и могучие  вихри звездных облаков, и

правильные шары, а иные звездные системы вообще не обнаруживают никаких

определенных  форм, они клочковаты и бесформенны. Все эти типы галактик 

спиральные, эллиптические, неправильные, — получившие названия по своему виду

на фотографиях, открыты американским астрономом Э. Хабблом в 20  30-е годы

нашего века.

Если бы мы могли  увидеть нашу Галактику издалека, то она предстала бы перед

нами совсем не такой, как на схематическом рисунке. Мы не увидели бы ни диска,

ни гало, ни, естественно, короны. С больших расстояний были бы видны лишь самые

яркие звезды. А  все они, как выяснилось, собраны  в широкие полосы, которые

дугами выходят  из центральной области Галактики. Ярчайшие звезды образуют ее

спиральный узор. Только этот узор и был бы различим издалека. Наша Галактика на

снимке, сделанном  астрономом из какого — то  звездного мира, выглядела бы очень

похожей на туманность Андромеды.

Исследования  последних лет показали, что многие крупные спиральные галактики

обладают   как и наша Галактика   протяженными и массивными невидимыми

коронами. Это  очень важно: ведь если так, то, значит, и вообще чуть ли не вся

масса Вселенной (или, во всяком случае, подавляющая  ее часть)   это загадочная,

невидимая, но тяготеющая  скрытая  масса

Многие, а может  быть, и почти все галактики  собраны в различные коллективы,

которые называют группами, скоплениями и сверхскоплениями, смотря по тому,

сколько их там, В группу может входить всего  три или четыре галактики, а в

сверхскопление   до тысячи или даже нескольких десятков тысяч. Наша Галактика,

туманность Андромеды  и еще более тысяч таких  же объектов в так называемое

Местное сверхскоплениях. Оно не имеет четко 

очерченной формы.

Небесные тела находятся в непрерывном движении и изменении. Когда и как именно

они произошли, наука стремится выяснить, изучая небесные тела и их системы.

Раздел астрономии, занимающийся проблемами происхождения  и эволюции небесных

тел, называется космогонией.

Современные научные космогонические гипотезы   результат физического,

математического и философского обобщения многочисленных наблюдательных данных.

В космогонических  гипотезах, присущих данной эпохе, в  значительной мере находит

свое отражение  общий уровень развития естествознания. Дальнейшее развитие

науки, обязательно  включающее в себя астрономические  наблюдения, подтверждает

или опровергает  эти гипотезы.  

Звезды рождаются    

Межзвездный газ.Для  того чтобы лучше понять процесс  рождения звезд, нужно

вначале изучить  пространство между звездами. Потребовалось, однако,

тысячелетнее  развитие науки, чтобы человечество осознало. Простой и вместе с

тем величественный факт, что звезды   это объекты, более или менее похожие на

солнце, но только стоящие от нас на несравненно  большие расстояния. Ньютон был

первым, кто правильно  оценил расстояния до звезд. Два столетия после великого

английского ученного почти всеми молчаливо принималось, что чудовищно больших

размеров пространство, в котором находятся звезды, есть абсолютная пустота.

Лишь отдельные  астрономы время от времени поднимали  вопрос о возможном

поглощении света  в межзвездной среде. Только в  самом начале ХХ столетия

немецкий астроном Гартман убедительно доказал, что  пространство между звездами

представляет  собой отнюдь не мифическую пустоту. Оно заполнено газом, правда с

очень малой, но вполне определенной плотностью. Это  выдающееся открытие, так же

как и многие другие, было сделано с помощью  спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем

анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно

часто эти линии  имеют сложную структуру, то есть состоят из нескольких близко

расположенных друг к другу компонентов. Каждая такая компонента возникает при

поглощении света звезды в каком-нибудь определенном облаке межзвездной среды,

причем облака движутся относительно друг друга со скоростью, близкой к

10км/сек. Это  и приводит благодаря эффекту  Доплера к незначительному смещению

длин волн линий  поглощения.

Химический состав межзвездного газа в первом приближении оказался довольно

близким к химическому  составу Солнца и звезд. Преобладающими элементами

являются водород  и гелий, между тем как остальные  элементы мы можем

рассматривать как  ПРИМЕСИ .   
 

Межзвездная пыль.В межзвездной среде есть и другая компонента. Речь идет о

межзвездной пыли. Еще в прошлом столетии дебатировался  вопрос о прозрачности

межзвездного  пространства. Только 1930 года с несомненностью было доказано, что

межзвездное пространство действительно не совсем прозрачно. Поглощающая свет

субстанция сосредоточенно в довольно тонком слое около галактической  плоскости.

Сильнее всего  поглощаются синие и фиолетовые лучи, между тем как поглощение в

красных лучах  сравнительно невелико.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение

света обусловлено  межзвездной пылью, то есть твердыми микроскопическими

частицами вещества, размерами меньше микрона. Эти пылинки  имеют сложный

химический состав. Установлено, что пылинки имеют  довольно вытянутую форму и в

какой-то степени  ориентируются , то есть направления их вытянутости имеют

тенденцию  выстраиваться  в данном облаке более или менее параллельно. По этой

причине проходящий через тонкую среду звездный свет становится частично

поляризованным.   

Почему должны рождаться новые звезды?

Значение газово-пылевых  комплексов в современной астрофизике  очень велико. Дело

в том, что уже  давно астрономы, в значительной степени интуитивно, связывали

образования конденсации  в межзвездной среде с важнейшим процессом образования

звезд из  диффузной  сравнительно разряженной газово-пылевой среды. Какие же

основания существуют для предположения о связи  между газово-пылевыми

комплексами и  процессом звездообразования? Прежде всего следует подчеркнуть,

что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что

звезды в Галактике  должны непрерывно (то есть буквально  на наших глазах )

образовываться  из какой-то качественно другой субстанции. Дело в том что к 1939

году было установлено, что источником звездной энергии является происходящий в

недрах звезд  термоядерный синтез. Грубо говоря, подавляющее большинство звезд

излучают потому, что в их недрах четыре протона  соединяются через ряд

промежуточных этапов в одну альфа- частицу. Так  как масса одного протона (в

атомных единицах ) равна 4,0039, то избыток массы, равный 0,007 атомной единицы

на протон, должен выделиться как энергия. Тем самым  определяется запас ядерной

энергии в звезде, которая постоянно тратиться  на излучение. В самом

благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не

более, чем на 100 миллионов лет, в то время как  реальных условиях эволюции

время жизни  звезды оказывается на порядок меньше этой явно завышенной оценки.

Но десяток  миллионов лет   ничтожный срок для эволюции нашей Галактики, возраст

который никак  не меньше чем 10 миллиардов лет. Возраст  массивных звезд уже

соизмерим с  возрастом человека на земле! Значит звезды ( по крайней мере,

массивные с  высокой светимостью) никак не могут  быть в Галактике  изначально ,

то есть с  момента ее образования. Оказывается, что ежегодно в Галактике 

умирает  по меньшей мере одна звезда. Значит, для того, чтобы  звездное пламя

не  выродилось , необходимо, чтобы столько же звезд в среднем образовывалось в

нашей Галактике каждый год. Для того, чтобы в течении длительного времени

(исчисляемого  миллиардами лет) Галактика сохраняла  бы неизменными свои основные

особенности (например, распределение звезд по классам, или, что практически

одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически

поддерживалось  динамическое равновесие межу рождающимися и  гибнущими

звездами. В этом отношение Галактика похожа на первобытный  лес, состоящий из

деревьев различных  видов и возрастов, причем возраст  деревьев меньше возраста

леса. Имеется, правда, одно важное различие между Галактикой и лесом. В

Галактике время  жизни звезды с массой меньше солнечной  превышает ее возраст.

Поэтому следует  ожидать постепенного увеличения звезд  со сравнительно небольшой

stud24.ru

Происхождение и развитие галактик и звезд

Введение.

К началу нашего века границы разведанной Вселенной раздвинулись настолько, что включили в себя Галактику. Многие, если не все, думали тогда, что эта огромная звездная система и есть вся Вселенная в целом.

Но вот в 20-е годы были построены новые крупные телескопы, и перед астрономами открылись совершенно неожиданные горизонты. Оказалось, что за пределами Галактики мир не кончается. Миллиарды звездных систем, галактик, похожих на нашу и отличающихся от нее, рассеяны тут и там по просторам Вселенной.

Фотографии галактик, сделанные с помощью самых больших телескопов, поражают красотой и разнообразием форм: это и могучие вихри звездных облаков, и правильные шары, а иные звездные системы вообще не обнаруживают никаких определенных форм, они клочковаты и бесформенны. Все эти типы галактик спиральные, эллиптические, неправильные, — получившие названия по своему виду на фотографиях, открыты американским астрономом Э. Хабблом в 20 30-е годы нашего века.

Если бы мы могли увидеть нашу Галактику издалека, то она предстала бы перед нами совсем не такой, как на схематическом рисунке. Мы не увидели бы ни диска, ни гало, ни, естественно, короны. С больших расстояний были бы видны лишь самые яркие звезды. А все они, как выяснилось, собраны в широкие полосы, которые дугами выходят из центральной области Галактики. Ярчайшие звезды образуют ее спиральный узор. Только этот узор и был бы различим издалека. Наша Галактика на снимке, сделанном астрономом из какого — то звездного мира, выглядела бы очень похожей на туманность Андромеды.

Исследования последних лет показали, что многие крупные спиральные галактики обладают как и наша Галактика протяженными и массивными невидимыми коронами. Это очень важно: ведь если так, то, значит, и вообще чуть ли не вся масса Вселенной (или, во всяком случае, подавляющая ее часть) это загадочная, невидимая, но тяготеющая скрытая масса

Многие, а может быть, и почти все галактики собраны в различные коллективы, которые называют группами, скоплениями и сверхскоплениями, смотря по тому, сколько их там, В группу может входить всего три или четыре галактики, а в сверхскопление до тысячи или даже нескольких десятков тысяч. Наша Галактика, туманность Андромеды и еще более тысяч таких же объектов в так называемое Местное сверхскоплениях. Оно не имеет четко очерченной формы.

Небесные тела находятся в непрерывном движении и изменении. Когда и как именно они произошли, наука стремится выяснить, изучая небесные тела и их системы. Раздел астрономии, занимающийся проблемами происхождения и эволюции небесных тел, называется космогонией.

Современные научные космогонические гипотезы результат физического, математического и философского обобщения многочисленных наблюдательных данных. В космогонических гипотезах, присущих данной эпохе, в значительной мере находит свое отражение общий уровень развития естествознания. Дальнейшее развитие науки, обязательно включающее в себя астрономические наблюдения, подтверждает или опровергает эти гипотезы.

Звезды рождаются.

Межзвездный газ.

Для того чтобы лучше понять процесс рождения звезд, нужно вначале изучить пространство между звездами. Потребовалось, однако, тысячелетнее развитие науки, чтобы человечество осознало. Простой и вместе с тем величественный факт, что звезды это объекты, более или менее похожие на солнце, но только стоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученного почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале ХХ столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда с очень малой, но вполне определенной плотностью. Это выдающееся открытие, так же как и многие другие, было сделано с помощью спектрального анализа.

Почти половину столетия межзвездный газ исследовался главным образом путем анализа образующихся в нем линий поглощения. Выяснилось, например, что довольно часто эти линии имеют сложную структуру, то есть состоят из нескольких близко расположенных друг к другу компонентов. Каждая такая компонента возникает при поглощении света звезды в каком-нибудь определенном облаке межзвездной среды, причем облака движутся относительно друг друга со скоростью, близкой к 10км/сек. Это и приводит благодаря эффекту Доплера к незначительному смещению длин волн линий поглощения.

Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как ПРИМЕСИ .

Межзвездная пыль.

В межзвездной среде есть и другая компонента. Речь идет о межзвездной пыли. Еще в прошлом столетии дебатировался вопрос о прозрачности межзвездного пространства. Только 1930 года с несомненностью было доказано, что межзвездное пространство действительно не совсем прозрачно. Поглощающая свет субстанция сосредоточенно в довольно тонком слое около галактической плоскости.

Сильнее всего поглощаются синие и фиолетовые лучи, между тем как поглощение в красных лучах сравнительно невелико.

Что же это за субстанция? Сейчас уже представляется доказанным, что поглощение света обусловлено межзвездной пылью, то есть твердыми микроскопическими частицами вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени ориентируются , то есть направления их вытянутости имеют тенденцию выстраиваться в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Почему должны рождаться новые звезды?

Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из диффузной сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразования? Прежде всего следует подчеркнуть, что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально на наших глазах ) образовываться из какой-то качественно другой субстанции. Дело в том что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющее большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа- частицу. Так как масса одного протона (в атомных единицах ) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратиться на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет ничтожный срок для эволюции нашей Галактики, возраст который никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человека на земле! Значит звезды ( по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике изначально , то есть с момента ее образования. Оказывается, что ежегодно в Галактике умирает по меньшей мере одна звезда. Значит, для того, чтобы звездное пламя не выродилось , необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемого миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что практически одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие межу рождающимися и гибнущими звездами. В этом отношение Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике

mirznanii.com

Происхождение галактик и звёзд. Строение нашей Галактики. Эволюция звёзд

. Синтез химических элементов в звёздах. Сверхновые и квазары

Существует точка зрения, что с самого начала протовещество, из которого впоследствии образовалась Вселенная, с гигантской скоростью начало расширяться. На начальной стадии это плотное вещество разлетелось, разбегалось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновении частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки – там в последствии и образовались звёзды и даже целые галактики.

Окружающие Солнце звёзды и само Солнце составляют малую часть гигантского скопления звёзд и туманностей, которую называют Галактикой. Галактика имеет довольно сложную структуру. В первом, самом грубом, приближении можно считать, что звёзды и туманности, из которых она состоит, заполняют объём, имеющий форму сильно сжатого эллипсоида вращения. На самом деле всё обстоит гораздо сложнее, и нарисованная картина является слишком грубой. В действительности разные типы звёзд по-разному концентрируется к центру Галактики и к её «экваториальной плоскости». Например, газовые туманности, а также очень горячие массивные звёзды сильно концентрируются к экваториальной плоскости Галактики. С другой стороны, звёзды и звёздные скопления некоторых типов почти никакой концентрации к экваториальной плоскости не обнаруживают, но зато характеризуются огромной концентрацией в центре. Существенная часть звёзд в Галактике находится в гигантском диске диаметром примерно 100 тыс. и толщиной около 1500 световых лет. В этом диске насчитывается более сотни миллиардов звёзд самых различных видов. Наше Солнце – одна из таких звёзд, находящихся на периферии Галактики вблизи её экваториальной плоскости. Галактика содержит и структурные детали гораздо больших масштабов.

Звёзды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего они участвуют во вращении Галактики вокруг оси, перпендикулярной её экваториальной плоскости. Различные участки Галактики имеют различные периоды вращения. Звёзды очень сильно удалены друг от друга. (одно столкновение в миллион лет). Число звёзд в Галактике порядка триллиона. Самые многочисленные из них – карлики с массами, примерно в 10 раз меньшими массы Солнца. Существуют также двойные и кратные звёзды, а также звёздные скопления –группы звёзд, связанных силами тяготения и движущиеся в пространстве как единое целое. В различных созвездиях обнаруживаются туманные пятна, которые в основном состоят из газа и пыли – туманности . Интересна небольшая диффузная туманность, названная Крабовидной. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения – пульсар . Но даже там, где не видно ни звёзд, ни туманностей, пространство не пусто. Оно заполнено очень разреженным межзвёздным газом и межзвёздной пылью. В межзвёздном пространстве существуют различные поля (гравитационное и магнитное). Галактику можно представить очень упрощённо в виде диска с ядром в центре и огромными спиральными ветвями, в основном содержащими наиболее горячие и яркие звёзды и массивные газовые облака. Диск со спиральными ветвями образует основу плоской подсистемы Галактики. А объекты, концентрирующиеся к ядру Галактики и лишь частично проникающие в диски, относятся к сферической подсистеме. Сама Галактика вращается вокруг своей центральной области. В центре Галактики сосредоточена небольшая часть звёзд. Поэтому при вращении Галактики с увеличением расстояния от центра изменяются и угловая (убывает), и линейные(возрастает) скорости вращения Галактики.

Галактики бывают эллиптические (эллипсоиды с разной степенью сжатости (красные гиганты)), спиральные (наша Галактика, Туманность Андромеды), неправильные (не имеют центральных ядер, в них не обнаружены закономерности).

В ходе структурообразования во Вселенной возникли звёзды, эти ядерные «костры», горение которых поддерживается протекающими в их недрах реакциями нуклеосинтеза. в отличие от первичного он получил название звёздного нуклеосинтеза . Разнообразие типов звёзд и соответственно реакций звёздного нуклеосинтеза, изменение условий протекания таких реакций со временем создало ситуацию, коренным образом отличную от существовавшей в эпоху первичного нуклеосинтеза. отсюда возникло убеждение, что элементы тяжелее гелия рождались (и продолжают рождаться) в недрах звёзд, что они – зола и шлаки звёздных костров. Как же звёздный нуклеосинтез сделал то, что оказалось не под силу первичному нуклеосинтезу – преодолел «щели масс»?

Идея механизма такого преодоления впервые была высказана английским астрофизиком Ф.Хойлом (р.1915). Хойл высказал идею: на определённых стадиях развития некоторых типов звёзд появляются условия для объединения трёх ядер гелия (трёх частиц) в ядро углерода 12 С. такая реакция решает проблему преодоления «щели масс», оставляя позади сразу оба барьера. Далее открываются возможности образования ещё более тяжёлых, чем углерод, ядер неона, кислорода, кремния и др.

Согласно современным представлениям, присутствующие в межзвёздной среде тяжёлые элементы появились в звёздах типа красных гигантов. Жёлтые карлики типа нашего Солнца поддерживают своё состояние главным образом в результате ядерных реакций, названных водородным циклом. Так что звёзды этого типа не создают элементов тяжелее гелия. Красные гиганты обладают массой, в несколько раз превышающей солнечную, водород в них выгорает очень быстро. В центре, где сосредоточен гелий, их температура достигает нескольких сотен миллионов градусов, что оказывается достаточным для протекания реакций углеродного цикла. В этом цикле три ядра гелия соединяются и образуют возбуждённое ядро углерода. Оно в свою очередь может присоединить ещё одно ядро гелия и образовать ядро кислорода, затем неона и так вплоть до кремния. Выгорающее ядро звезды сжимается и температура в нём поднимается до 3-10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа.

С 1963 года начались открытия звёздоподобных источников радиоизлучения – квазаров . Сейчас их открыто более тысячи. Самый яркий квазар, имеющий обозначение 3С 273, виден как звезда. В действительности этот квазар, находящийся от нас на расстоянии около 3 млрд. Световых лет, излучает больше энергии в оптическом диапозоне, чем самые яркие галактики. Этот квазар оказался одним из самых мощных источников рентгеновского излучения. Блеск квазара не остаётся постоянным, что позволяет оценить размеры квазара. Они превышают размеры одного светового года. Следовательно, квазар больше обычных звёзд, но гораздо меньше нашей галактики. Квазары не похожи на обычные звёзды своими массами. Массы квазаров достигают многих миллионов солнечных масс.

Происхождение и состав Солнечной системы. Исследования планет космическими аппаратами.

Два коренных вопроса планетологии: является ли образование планетных систем во Вселенной правилом или единственная известная человечеству Солнечная система появилась в результате редчайшего совпадения обстоятельств, что делает её уникальной? Каков механизм образования Солнечной системы? Доказательных ответов на эти вопросы пока нет.

Современная научная мысль решительно отвергает допущение о случайном образовании и исключительном характере события такой значимости, как возникновение сложнейшего сообщества звёзд и группы связанных с ними планет. В пользу такой точки зрения говорят известные на сегодняшний день факты, полученные при исследовании звёзд в близких к Солнцу галактических окрестностях. У большинства астрономов на этот счёт сложилось вполне определённое мнение: современная астрономия даёт серьёзные аргументы в пользу наличия планетных систем у многих звёзд, в пользу их типичности, а не исключительности.

За последние 50 лет регулярно поступают сведения, которые истолковываются как аргументы в пользу наличия планетных тел или предпосылок для их образования около большого числа звёзд, находящихся в радиусе примерно 20 парсек от Солнца. Особенно богатая информация начала поступать после запусков астрономических спутников, оснащённых разнообразными исследовательскими приборами высокой точности. Заметно усовершенствовались и наземные средства наблюдения, развиты принципиально новые методы обработки получаемых с их помощью данных.

Начиная с 1983 года американский спутник ИРАС, заслуги которого отмечались в связи с его вкладом в «горячую» модель образования галактик, обнаружил примерно у 10% звёзд, находящихся в окрестностях Солнца, избыточное инфракрасное излучение. По мнению специалистов, оно связано с присутствием вокруг таких звёзд пылевых дисков, содержащих мелкие твёрдые частицы. Детальные наземные исследования этих звёзд подтвердили такие предположения.

О механизме формирования планет, в частности в Солнечной системе, также нет общепризнанных заключений. Солнечная система, по оценкам, образовалась примерно 5 млрд. лет назад, причём Солнце – звезда второго (или ещё более позднего) поколения. Так что Солнечная система возникла на продуктах жизнедеятельности звёзд предыдущих поколений, скапливавшихся в газопылевых облаках. Это обстоятельство даёт основание назвать Солнечную систему малой частью звёздной пыли. О происхождении Солнечной системы и её исторического эволюции наука знает меньше, чем необходимо для построения теории планетообразования. От первых научных гипотез, выдвинутых примерно 250 лет назад, до наших дней предложено большое число различных моделей происхождения и развития Солнечной системы, но ни одна из них не удостоилась перевода в ранг общепризнанной теории. Большинство из выдвигавшихся ранее гипотез сегодня представляет лишь исторический интерес.

mirznanii.com

Происхождение и эволюция галактик и звезд — Мегаобучалка

При построении рассмотренной нами выше космологической модели Вселенной принималось, что вещество в ней распределено однородно и изотропно. Имеется в виду среднее по Метагалактике распределение вещества. В действительности в настоящее время значительная масса вещества сконденсирована в форме галактик и скоплений галактик. Возникают следующие вопросы: какие причины приводят к фрагментации первоначально однородно распределенного, расширяющегося вещества Вселенной и почему наиболее существенные свойства галактик — их формы, размеры и массы — именно таковы?

Впервые вопрос о фрагментации однородно распределенного вещества рассмотрел английский ученый Дж. Джинс в 1902 г. Он исходил из того, что если в однородной среде возникает по каким-либо причинам сгущение — неоднородность с размерами г, то она может либо продолжать уплотняться (расти) под действием собственного тяготения, либо рассасываться (затухать) под действием газового давления. Направление протекания процесса зависит от того, будет ли размер сгущения больше или меньше критического. Критический размер легко оценить, если

приравнять газовое давление в сгустке , давлению

силы тяжести

Из этого условия следует, что размер сгущения определяется следующим соотношением:

Сгущения определенной массы могут формироваться лишь при определенных соотношениях между величинами Т и р. Если, например, плотность догалактического вещества р 10-24 г/см3 (это средняя плотность Галактики), то сгущение массой m 1011 mc может образоваться лишь в случае, если температура Т 106 К. При меньшей температуре образуются сгущения меньшей массы.

Наряду с массой важнейшей характеристикой галактики является мера ее осевого вращения — вращательный момент на единицу массы. Мера вращения у эллиптических галактик гораздо меньше, чем у спиральных галактик. Очень медленное вращение эллиптических галактик не может объяснить их наблюдаемую эллиптичность, т. е. сплюснутость, подобно, например, тому, как действием центробежной силы можно объяснить сплюснутость земного шара у полюсов. По-видимому, сплюснутость эллиптических галактик объясняется самим характером звездных движений в таких галактиках. В противоположность этому влияние центробежной силы у сравнительно быстро вращающихся рукавов спиральных галактик весьма существенно. Есть среди части ученых мнение, что различия между эллиптическими и спиральными галактиками не являются эволюционным эффектом. Другими словами, галактики рождаются либо как спиральные, либо как эллиптические, и в процессе эволюции тип галактики сохраняется. Структура галактики определяется начальными условиями ее образования, например характером вращения того сгустка газа, из которого она образовалась.



В настоящее время имеются уже довольно хорошо разработанные модели превращения огромного облака газа, сжимающегося в результате действия закона всемирного тяготения сперва в протогалактику, а потом в галактику. В самом начале следует представить себе огромный газовый шар, сжимающийся по закону свободного падения к центру. Первоначальная температура этого газа могла быть достаточно высокой, быстро уменьшалась, причем из-за гравитационной неустойчивости образовывались больших размеров сгущения, эволюционировавшие в облака. Благодаря беспорядочным движениям, эти облака сталкивались, что вело к их дальнейшему уплотнению. На этом довольно раннем этапе из облаков стали образовываться звезды «первого поколения», состоящие в основном из водорода и гелия. Наиболее массивные из них успевали проэволюционировать задолго до того, как прекратилось сжатие протогалактик. Взрываясь как сверхновые, они обогащали межзвездную среду металлами. По этой причине звезды следующих поколений имели уже другой химический состав. Это привело, например, к тому, что звезды вблизи центра эллиптических галактик более богаты тяжелыми элементами, чем находящиеся на периферии, что как раз и наблюдается.

В спиральных протогалактиках звездообразование шло медленнее. Поэтому в них смог образоваться газовый диск довольно значительной массы. Этому способствовало также довольно быстрое вращение спиральных протогалактик, препятствующее оттоку всего газа в область ядра и превращению его там в звезды. Другими словами, вращение протогалактик уменьшает скорость звездообразования.

Таким образом, разные типы галактик происходят от прото-облаков с разными плотностями и разным разбросом скоростей внутренних движений. В частности, эллиптические галактики образовались из более плотных облаков газа, находящегося в состоянии довольно быстрого беспорядочного движения. В «бедных» разряженных скоплениях наблюдаются преимущественно спиральные галактики. Возраст галактик практически равен возрасту Вселенной.

Звезды могут образовываться в результате гравитационного сжатия неоднородностей в межзвездной среде. Межзвездная среда распределена очень неоднородно, она имеет клочковатую структуру. В некоторой области среды выполняется критерий Джинса и эти комплексы являются гравитационно неустойчивыми, они должны сжиматься. По мере сжатия критерий гравитационной неустойчивости Джинса начинает выполняться для неоднородностей внутри облака с меньшими массами, вплоть до солнечной. Массивное газопылевое облако начинает дробиться на менее массивные части, которые, сжимаясь, дают начало звездам.

Для того чтобы образовавшаяся неоднородность массой, равной массе звезды, — протозвезда — могла сжиматься дальше, необходимо, чтобы по мере сжатия из нее отводилось тепло, выделившееся при сжатии. Таким механизмом отвода тепла является инфракрасное излучение пыли и молекул межзвездного газа. Значит, протозвезды являются мощными источниками инфракрасного излучения. По мере того как протозвезда сжимается, плотность ее растет, растет ее непрозрачность к инфракрасному излучению.

Дальнейшее, более медленное сжатие происходит до тех пор, пока температура внутри звезды не повысится настолько, что становятся возможными термоядерные реакции синтеза гелия из водорода. Расчеты показывают, что сжатие протосолнца от радиуса R = 10Ro до R = 1R0 продолжалось около 20 млн лет. Более массивные протозвезды эволюционируют быстрее, менее массивные — медленнее.

Стабильное по излучению и свойствам состояние звезды продолжается до тех пор, пока в ее недрах не исчерпается ядерное горючее — водород. Ясно, что массивные звезды благодаря своей высокой светимости исчерпают свой водород быстрее, чем менее массивные.

По мере исчерпания водорода в центре звезды коэффициент непрозрачности вещества непрерывно уменьшается. Это приводит к непрерывной перестройке звезды, сопровождающейся сжатием ее ядра и ростом протяженности оболочки. Ядерные реакции синтеза гелия из водорода идут в узком слое, непосредственно окружающем ядро. По мере выгорания водорода в

слоевом источнике масса гелиевого ядра постепенно увеличивается. Это приводит к увеличению силы тяжести, дальнейшему сжатию ядра и увеличению его температуры. При этом растет светимость звезды. Энергия не успевает переноситься наружу излучением, наступает конвенция. Сжатие ядра и повышение температуры происходит до тех пор, пока в нем не начнутся термоядерные реакции синтеза более тяжелых химических элементов. Например, при температуре в сотни миллионов градусов происходит синтез ядер атома углерода при слиянии трех ядер атома гелия, а затем при еще более высоких температурах образуются кислород, неон и т. д. При этом выделяется большое количество энергии, способное остановить сжатие ядра. Реакции синтеза идут с выделением энергии вплоть до образования ядер атомов железа. Образование более тяжелых химических элементов требует затраты энергии и приводит к охлаждению звезды. После выгорания водорода в ядре звезда становится красным гигантом или сверхгигантом в зависимости от массы звезды.

Если масса звезды меньше 1,2 массы Солнца, то после исчерпания водорода в ядре оно начнет сжиматься. Сжатие ядра останавливается давлением вырожденного электронного газа, т. е. ядро звезды представляет собой звезду — белый карлик. В то же время оболочка звезды увеличивается в размерах до 10-100 радиусов Солнца, так что сама становится красным гигантом. Довольно быстро оболочка вообще отделяется от ядра и на месте звезды остается ядро — звезда белый карлик и расширяющаяся оболочка, т. е. феномен планетарной туманности. Затем за несколько тысяч лет расширяющаяся оболочка рассеивается в межзвездной среде, а белый карлик еще в течение сотен миллионов лет высвечивает тепловую энергию, запасенную им при сжатии.

Такая судьба ожидает и наше Солнце через 5 млрд лет. Структура его определяется давлением вырожденного электронного газа, а перенос энергии из центра определяется теплопроводностью.

Если же первоначальная масса ядра звезды превосходит 1,2 раза массы Солнца, но была меньше 2,4 массы Солнца, то в ней после исчерпания ядерного горючего происходит катастрофа в

виде вспышки сверхновой. Сила тяжести настолько велика, что даже давление вырожденного электронного газа не в состоянии ей противодействовать. Поэтому по мере сжатия ядра здесь происходит распад ядер тяжелых элементов на более простые и превращение всех частиц в нейтроны. Протоны, которые входят в состав атомных ядер, образовавшихся на предыдущей стадии эволюции звезды, в конце концов превращаются в нейтроны. При больших плотностях (109 кг/м3) из-за принципа запрета Паули в нейтронном газе будет также действовать специфическая сила отталкивания, и равновесие поддерживается давлением нейтронного газа. Подтверждением наличия нейтронных звезд во Вселенной являются пульсары (пульсирующие звезды, обнаруженные в 1967 г.).

Если масса ядра звезды превосходит 2,5-3 масс Солнца, то ее неограниченное сжатие под давлением силы гравитации уже ничем не остановить. Она превращается в черную дыру. Скорость, необходимая для удаления с этой звезды, становится больше скорости света. Основываясь на законе всемирного тяготения и конечности скорости распространения света, возможность существования черных дыр предсказал еще в XVIII в. Лаплас. Звезда массой, равной солнечной, при обращении в черную дыру имела бы радиус 3 км. Теоретические оценки показывают, что число черных дыр в Галактике может достигать сотен миллионов. Черную дыру можно обнаружить, если она является компонентом двойной звезды — она может быть мощным источником рентгеновского излучения. Примером такого источника можно назвать мощный рентгеновский источник Лебедь Х-1.

Название «черная дыра» связано с тем, что могучее поле тяготения сжавшейся звезды не выпускает за ее пределы никакое излучение (свет, рентгеновское излучение и т. д.). Поэтому черную дыру нельзя увидеть ни в каком диапазоне электромагнитных волн. В случае тесной двойной звезды гравитационное воздействие черной дыры притягивает газ с поверхности обычной звезды, образуя диск вокруг нее. Температура газа в этом вращающемся диске может достичь 107 К. При температуре в миллионы Кельвинов газ будет излучать в рентгеновском диа-

пазоне. И по нему можно определить наличие в данном месте черной дыры.

С эволюцией звезд тесно связан вопрос о происхождении химических элементов. Если водород и гелий являются элементами, которые остались от ранних стадий эволюции расширяющейся Вселенной, то более тяжелые химические элементы могли образоваться только в недрах звезд при термоядерных реакциях. Внутри звезд в ходе термоядерных реакций может образоваться до 30 химических элементов.

В конце эволюции в зависимости от массы звезда либо взрывается, либо сбрасывает более спокойно вещество, уже обогащенное тяжелыми элементами. При этом образуются остальные элементы периодической системы. Из обогащенной тяжелыми элементами межзвездной среды образуются звезды следующих поколений. Например, Солнце — звезда второго поколения, образовавшаяся из вещества, уже однажды побывавшего в недрах звезд и обогащенного тяжелыми элементами. Вот почему о возрасте звезд можно судить по их химическому составу, определенному методом спектрального анализа.

Дальнейшее развитие науки покажет, какие из сегодняшних представлений о происхождении галактик и звезд окажутся правильными. Но уже теперь нет сомнения в том, что звезды, во-первых, подчиняясь законам природы, рождаются, живут и умирают, а не есть однажды созданные и вечно неизменные объекты Вселенной, и, во-вторых, звезды рождаются группами, причем процесс звездообразования продолжается в настоящее время.

13.2. Происхождение планет Солнечной системы

Все у нас, Луцилий, чужое, одно лишь время нагие. Только время ускользающее и текучее дала нам во владенье природа, но и его кто хочет, тот и отнимет.

Сенека

Для изучения вопросов происхождения небесных тел важным является определение их возраста. Определение возраста

земной коры основано на исследовании содержания в ней радиоактивных элементов (урана, тория и др.), а также радиоактивных изотопов таких элементов, как калий, аргон и др. Как известно, радиоактивные элементы непрерывно распадаются, причем процесс распада совершенно не зависит от внешних воздействий. При радиоактивном распаде образуются изотопы соседних элементов периодической системы Менделеева. Эти изотопы сами нередко оказываются радиоактивными, а значит, и они распадаются. Распад заканчивается, когда атомы радиоактивных элементов превращаются в нерадиоактивные атомы химических элементов и их изотопы. Например, распад урана (238U) завершается образованием нерадиоактивного изотопа свинца (206РЬ). Промежуток времени (Т), по истечении которого остается половина начального количества радиоактивных атомов, характеризуется скоростью распада и называется периодом полураспада. Для определения возраста земной коры используются медленно распадающиеся изотопы, например урана (Т 4,5-109 лет), радиоактивный изотоп калия 40К (Т 1,3109 лет) и др. Чтобы определить возраст земной коры, сравнивают содержание радиоактивных элементов и продуктов их распада в многочисленных пробах, взятых для анализа. Такое сравнение показывает, что возраст земной коры около 4,5 млрд лет. Примерно таков же возраст Земли как оформившейся планеты. К 3,5-4,5 млрд лет близок возраст лунных пород и метеоритов. Солнце, конечно, не может быть моложе Земли и Луны. Скорее всего возраст Солнца (желтой звезды) — 5 млрд лет. Сопоставление возраста Солнечной системы с возрастом Метагалактики (будем считать его равным 15 млрд лет) показывает, что Солнце нельзя отнести к звездам «первого поколения». Скорее всего в состав его и планет вошел газ, уже побывавший в недрах более старых звезд. На ранних стадиях расширения Метагалактики, как вы уже знаете, вообще не было тяжелых химических элементов, которые впоследствии стали центрами конденсации твердых частиц, необходимых для формирования планет.

Кроме этого факта гипотеза, объясняющая происхождение, развитие Солнечной системы, должна дать ответы и объяснить

следующие основные закономерности, наблюдаемые в строении, движении, свойствах Солнечной системы:

1. Орбиты всех планет (кроме орбиты Плутона) лежат практически в одной плоскости, почти совпадающей с плоскостью солнечного экватора.

2. Все планеты обращаются вокруг Солнца по почти круговым орбитам в одном и том же направлении, совпадающем с направлением вращения Солнца вокруг своей оси.

3. Направление осевого вращения планет (за исключением Венеры и Урана) совпадает с направлением их обращения вокруг Солнца.

4. Средние расстояния планет от Солнца (за исключением Нептуна и Плутона) подчиняются определенному закону (правилу Тициуса—Воде).

5. Суммарная масса планет в 750 раз меньше массы Солнца (почти 99,9% массы Солнечной системы приходится на долю Солнца), однако на их долю приходится 98% суммарного момента количества движения всей Солнечной системы.

6. Планеты делятся на две группы, резко различающиеся между собой по строению, физическим свойствам, — планеты земной группы и планеты-гиганты.

7. Подавляющее число спутников обращается вокруг планет практически по круговым орбитам, лежащим в большинстве случаев в плоскости экватора планеты, причем (за несколькими исключениями) направление этого движения совпадает с направлением осевого вращения планет.

История науки знает множество гипотез о происхождении Солнечной системы. Причем эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение первых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел.

Немецкий философ И. Кант в своей книге «Всеобщая естественная история и теория неба» (1755 г.) развил гипотезу, согласно которой в начале мировое пространство было заполнено материей, находившейся в состоянии первозданного хаоса. Под действием двух сил—притяжения и отталкивания—материя со временем переходила в более разнообразные формы. Элементы, имеющие большую плотность, по закону всемирного тяготения притягивали менее плотные, вследствие этого образовались отдельные сгустки материи. Под действием же сил отталкивания (которые якобы особенно эффективны, когда вещество находится в распыленном состоянии) прямолинейное движение частиц к центру тяготения заменялось кругообразным. Вследствие столкновения частиц вокруг отдельных сгустков и формировались планетные системы. Все это представлялось Канту настолько очевидным, что он не удержался от замечания, ставшего как бы символом естествознания: «Дайте мне материю, и я построю из нее мир, т. е. дайте мне материю, и я покажу всем, как из нее должен образоваться мир…»

Совершенно другая гипотеза о происхождении планет была изложена в книге П. Лапласа «Изложение системы мира» (1769 г.). По Лапласу, на ранней стадии своего развития Солнце представляло собой огромную, медленно вращающуюся туманность. Под действием силы тяжести протосолнце сжималось, поэтому оно принимало сплюснутую форму. И как только на экваторе сила тяжести уравновешивалась центробежной силой инерции, от протосолнца отделялось гигантское кольцо, которое в дальнейшем охлаждалось и разрывалось на отдельные сгустки. Из них и формировались планеты. Такой отрыв колец от протосолнца, по Лапласу, происходил несколько раз. Аналогичным путем образовались и спутники планет. Гипотеза Лапласа, бывшая весьма популярной на протяжении почти ста лет, оказывалась не в состоянии объяснить перераспределение момента количества движения между Солнцем и планетами. Расчет показывает, что если бы все планеты упали на Солнце (т. е. вернули ему потерянный им момент количества движения), то скорость его вращения была бы недостаточной для того, чтобы могло проис-

ходить отделение колец. Кроме того, для этой и других гипотез, по которым планеты и их спутники образуются из горячего газа, камнем преткновения является еще следующее: из горячего газа планета сформироваться не может, так как этот газ очень быстро расширяется и рассеивается в пространстве.

В 20-е годы XX в. английский астроном Д. Джинс разработал приливную теорию происхождения Солнечной системы. По этой теории в результате случайного сближения Солнца с какой-то звездой на Солнце образовалась гигантская приливная волна, приведшая к тому, что из двух противоположных точек его поверхности началось мощное извержение струй газа. Эти газовые массы очень быстро сгущались в облака, в которых росли планетезимали — небольшие твердые тела, из которых в дальнейшем сформировались планеты.

В 30-х годах было высказано предположение (Г. Рессел), что в прошлом Солнце было двойной звездой. Один из компонентов был разорван встречной звездой и образовал облако, из которого позже сформировались планеты. В дальнейшем эту гипотезу видоизменили (Ф. Хойл в 1944 г.). Было выдвинуто предположение, что один из компонентов вспыхнул как сверхновая, сбросил газовую оболочку. Звезды разошлись, а из газовой оболочки образовалась планетная система.

Большую роль в разработке установившихся в настоящее время взглядов на происхождение планетной системы сыграли работы нашего соотечественника О. Ю. Шмидта. В основе теории О. Ю. Шмидта лежат два предположения: планеты сформировались из холодного газопылевого облака; это облако было захвачено Солнцем при его обращении вокруг центра Галактики. На основе этих предположений Шмидту удалось объяснить некоторые закономерности в строении Солнечной системы — распределение планет по расстояниям от Солнца, вращение и др. Гипотез было много, но если каждая из них хорошо объясняла часть исследований, то другую часть не объясняла (рис. 13.1).

При разработке космогонической гипотезы прежде всего необходимо решить вопрос: откуда взялось вещество, из кото-

л

Рис. 13.1. Образование планет по гипотезе О. Ю. Шмидта

рого со временем сформировались планеты? Здесь возможны три варианта:

1. Планеты образуются из того же газопылевого облака, что
и Солнце (И. Кант).

2. Облако, из которого образовались планеты, захва
чено Солнцем при его обращении вокруг центра Галактики
(О. Ю. Шмидт).

3. Это облако отделилось от Солнца в процессе его эволюции
(П. Лаплас, Д. Джинс и др.).

Общую схему развития нашей планетной системы можно описать следующим образом.

Около 5 млрд лет назад в протяженном газопылевом облаке, пронизанном магнитными силовыми линиями, образовалось центральное сгущение — протосолнце, которое медленно сжималось. Другая часть облака, массой в 10 раз меньшей, медленно вращалась вокруг него. В результате столкновения атомов, молекул и пылинок туманность постепенно сплющивалась и разогревалась. Так вокруг Солнца образовался протяженный газопылевой диск. Его магнитное поле, «наматываясь» на про-

тосолнце, способствовало передаче момента внешним слоям диска.

По одному из вариантов эволюции протопланетного облака, рассмотренному В. С. Сафроновым, вначале в этом облаке произошло деление компонентов — газа и пыли. Оседание пыли к центральной плоскости произошло примерно за 1000 оборотов облака вокруг Солнца. Одновременно протекал процесс роста пылинок до к 1 см.

Под действием светового давления легкие химические элементы водород и гелий «выметались» из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Этот механизм торможения «работает» даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы. Таким образом, вблизи экваториальной плоскости Солнца образовался слой пыли повышенной плотности. Как только плотность этого слоя достигла критического значения, в нем возникла гравитационная неустойчивость. Вначале образовались кольца, которые быстро распались на отдельные сгущения. Их исходные размеры и массы на расстоянии в одну астрономическую единицу от Солнца достигали 40 км и 5 • 1013 кг, а на расстоянии Юпитера — соответственно 105 км и 1019кг. За счет собственной тяжести происходило дальнейшее сжатие сгустков, их уплотнение, рост больших и разрушение малых. Превращение сгущенной пыли в отдельные твердые тела продолжалось всего 10 000 лет на расстоянии в 1 а.е. и около 1 млн лет на расстоянии Юпитера от Солнца.

Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел. Расчеты показывают, что эффективность взаимных столкновений пропорциональна четвертой степени радиуса сгущения (плане-тезимали). Это привело к быстрому росту размеров наибольших из них. В результате столкновений их орбиты приближались

к круговым, а сами они превращались в зародыши планет. Со временем выживали лишь те из них, орбиты которых с учетом их взаимного притяжения оказались устойчивыми.

Подобно планетам земной группы, формировались зародыши планет-гигантов — Юпитера и Сатурна, хотя время их конденсации было в несколько раз большим. В данном случае, как только масса протопланеты достигала величины двух-трех масс Земли, начиналась интенсивная аккреция газа, входящего в протопланетное облако.

Чтобы согласовать расчеты с наблюдениями, приходится ввести допущение, что в процессе роста планет-гигантов значительное количество твердого вещества было выброшено из Солнечной системы. Это привело к образованию на ее периферии облака комет, которое частично сохранилось и до наших дней.

Направление и скорость вращения планеты вокруг своей оси устанавливаются статистически как суммарный результат объединения многих планетезималей и выпадения на зародыш планеты тел из «спутникового роя», окружающего каждую планету на раннем этапе ее формирования. Как оказалось, по наклону оси вращения планеты к плоскости эклиптики можно оценить массу самых больших тел, выпадавших на планету. В частности, для нашей планеты эти массы не превышали 0,001 массы Земли. То, что ось вращения Урана наклонена к плоскости ее орбиты под углом 98°, связано с влиянием Юпитера и Сатурна. Как только массы этих планет возросли до двух-трех масс Земли, они своим притяжением вносили возмущения в движение других планетезималей, придавая им большие скорости, достаточные для того, чтобы вылетать за пределы Солнечной системы. Случайное столкновение этих тел с протоураном и привело к упомянутой аномалии в его вращении вокруг своей оси. Массы наибольших тел, выпадавших на Уран, достигали величины 0,07 массы этой планеты.

Зародыши планет-гигантов не только препятствовали формированию планеты в зоне астероидов между Марсом и Юпитером, но привели и к значительному уменьшению конечной массы планеты Уран.

Несмотря на сходство образования и состава исходного материала планет земной группы, в настоящий момент заметно различие в достигнутом уровне развития планет. На других планетах отсутствуют не только признаки жизни, но даже такие химические соединения, которые в ходе дальнейшей эволюции могли бы привести к появлению примитивных органических форм. Земля же обладает богатым, в высшей степени развитым органическим миром.

Сравнение физических характеристик планет земной группы позволило выявить ряд общих закономерностей их происхождения и последующей эволюции. В раннюю историю своего существования все планеты, как Земля, пережили три общие для них фазы развития:

1) фазу аккреции; 2) фазу расплавления внешней среды (а возможно, и недр) и 3) лунную фазу (стадию первичной коры). Совокупность этих фаз составляет раннюю историю планет. В раннюю историю Земля в своем развитии не отличалась от других планет. Во все последующее время до современной эпохи включительно, т. е. на протяжении 3,5-4,0 млрд лет, все планеты, за исключением Земли, развивались более или менее однотипно, хотя степень активности как внутренних, так и внешних планетных процессов была разной. Чем большую массу имеет планета, тем большее количество радиогенной и гравитационной энергии образуется в ее недрах. Соответственно и более активно протекают у планеты эндогенные процессы — вулканизм и тектонические движения. У небесных тел (Луны и Меркурия) вулканизм прекратился уже более 3 млрд лет назад. На Марсе он до недавнего времени был весьма активным. На Венере (по косвенным данным) и на Земле интенсивный вулканизм продолжался на протяжении всей их истории, вплоть до настоящего времени.

К числу общих закономерностей развития планет земной группы относятся следующие:

1. Все планеты произошли из единого протопланетного газопылевого облака (туманности) в результате его конденсации и аккреции образовавшихся сгустков материала и рассеянного

вещества. Более крупные скопления росли быстрее за счет присоединения к себе меньших агрегатов и рассеянного материала и превращались в зародыши планет — планетезимали.

2. В конце стадии аккреции, т. е. приблизительно 4,5 млрд лет назад, под влиянием быстрого накопления тепловой энергии за счет трансформированной метеоритной кинетической энергии внешняя оболочка планет претерпела полное расплавление.

3. В результате последующего остывания внешних слоев литосферы образовалась кора. В ее состав вошли более легкие компоненты основной магмы. Более тяжелые, благодаря гравитационной дифференциации, сконцентрировались ниже коры, образовав мантию планеты. На этот же период приходится расплавление и центральной области планеты за счет накопления радиогенной и гравитационной энергии. Таким образом, на раннем этапе существования планет произошла дифференциация их вещества на ядро, мантию и кору.

4. Индивидуально происходило развитие внешней области планет. Формирование природной обстановки происходило и происходит под влиянием климатического фактора, но степень его полноты весьма неодинаковая на разных планетах, а отсюда и неодинаков эффект его действия. Важнейшим условием здесь является наличие или отсутствие у планеты атмосферы и гидросферы. Причем определяющим следует признать не сам факт их наличия или отсутствия, а определенное сочетание их параметров. Для атмосферы это будут химический состав, плотность, температурный режим, циркуляция и т. д.; для гидросферы — общая масса воды и ее фазовое состояние — твердое, жидкое или газообразное. Из них наибольшей активностью обладает вода в жидкой фазе.

5. Вследствие полного отсутствия воды на безатмосферных Луне и Меркурии или наличия ее в малом количестве и не в жидкой фазе на Марсе и Венере на этих планетах экзогенные процессы не могут подавить морфологический эффект метеоритной бомбардировки, поэтому кратерный тип рельефа безраздельно господствует на Луне, Меркурии, Венере и преобладает на Марсе. Марс в прошлом имел более теплый и влажный климат,

жидкую воду и относительно высокую активность экзогенных процессов, действие которых выразилось в существенной переработке первичного рельефа ударных кратеров.

6. С циркуляцией воды во внешней оболочке Земли связано функционирование на нашей планете мощного комплекса экзогенных процессов, оказывающих огромное влияние на другие компоненты — литосферу, органический мир, вовлечение их в глобальные круговороты.

megaobuchalka.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *