Как устроена атомная подлодка
Принцип действия субмарины
Система погружения и всплытия подводной лодки включает в себя балластные и вспомогательные цистерны, а также соединительные трубопроводы и арматуру. Основной элемент здесь – это цистерны главного балласта, за счет заполнения водой которых погашается основной запас плавучести ПЛ. Все цистерны входят в носовую, кормовую и среднюю группы. Их можно заполнять и продувать по очереди или одновременно.

У подлодки есть дифферентные цистерны, необходимые для компенсации продольного смещения грузов. Балласт между дифферентными цистернами передувается при помощи сжатого воздуха или же перекачивается с помощью специальных помп. Дифферентовка – именно так называется прием, целью которого является «уравновешивание» погруженной ПЛ.

Атомные подлодки делят на поколения. Для первого (50-е) характерна относительно высокая шумность и несовершенство гидроакустических систем. Второе поколение строили в 60-е – 70-е годы: форма корпуса была оптимизирована, чтобы увеличить скорость. Лодки третьего больше, на них также появилось оборудование для радиоэлектронной борьбы. Для АПЛ четвертого поколения характерны беспрецедентно малый уровень шума и продвинутая электроника. Облик лодок пятого поколения прорабатывается в наши дни.
Важный компонент любой субмарины – воздушная система. Погружение, всплытие, удаление отходов – все это делается при помощи сжатого воздуха. Последний хранят под высоким давлением на борту ПЛ: так он занимает меньше места и позволяет аккумулировать больше энергии. Воздух высокого давления находится в специальных баллонах: как правило, за его количеством следит старший механик. Пополняются запасы сжатого воздуха при всплытии. Это долгая и трудоемкая процедура, требующая особого внимания. Чтобы экипажу лодки было чем дышать, на борту субмарины размещены установки регенерации воздуха, позволяющие получать кислород из забортной воды.
АПЛ: какие они бывают
Атомная лодка имеет ядерную силовую установку (откуда, собственно, и пошло название). В наше время многие страны также эксплуатируют дизель-электрические подлодки (ПЛ). Уровень автономности атомных субмарин намного выше, и они могут выполнять более широкий круг задач. Американцы и англичане вообще прекратили использовать неатомные подлодки, российский же подводный флот имеет смешанный состав. Вообще, только пять стран имеют атомные подлодки. Кроме США и РФ в «клуб избранных» входят Франция, Англия и Китай. Остальные морские державы используют дизель-электрические субмарины.
Будущее российского подводного флота связано с двумя новыми атомными субмаринами. Речь идет о многоцелевых лодках проекта 885 «Ясень» и ракетных подводных крейсерах стратегического назначения 955 «Борей». Лодок проекта 885 построят восемь единиц, а число «Бореев» достигнет семи. Российский подводный флот нельзя будет сравнить с американским (США будут иметь десятки новых субмарин), но он будет занимать вторую строчку мирового рейтинга.

Русские и американские лодки отличаются по своей архитектуре. США делают свои АПЛ однокорпусными (корпус и противостоит давлению, и имеет обтекаемую форму), а Россия – двухкорпусными: в этом случае есть внутренний грубый прочный корпус и внешний обтекаемый легкий. На атомных подлодках проекта 949А «Антей», к числу которых относился и печально известный «Курск», расстояние между корпусами составляет 3,5 м. Считается, что двухкорпусные лодки более живучи, в то время как однокорпусные при прочих равных имеют меньший вес. У однокорпусных лодок цистерны главного балласта, обеспечивающие всплытие и погружение, находятся внутри прочного корпуса, а у двухкорпусных – внутри легкого внешнего. Каждая отечественная субмарина должна выжить, если любой отсек будет полностью затоплен водой – это одно из главных требований для подлодок.
В целом, наблюдается тенденция к переходу на однокорпусные АПЛ, так как новейшая сталь, из которой выполнены корпуса американских лодок, позволяет выдерживать колоссальные нагрузки на глубине и обеспечивает субмарине высокий уровень живучести. Речь, в частности, идет о высокопрочной стали марки HY-80/100 с пределом текучести 56-84 кгс/мм. Очевидно, в будущем применят еще более совершенные материалы.
Существуют также лодки с корпусом смешанного типа (когда легкий корпус перекрывает основной лишь частично) и многокорпусные (несколько прочных корпусов внутри легкого). К последним относится отечественный подводный ракетный крейсер проекта 941 – самая большая атомная подлодка в мире. Внутри ее легкого корпуса находятся пять прочных корпусов, два из которых являются основными. Для изготовления прочных корпусов использовали титановые сплавы, а для легкого – стальной. Его покрывает нерезонансное противолокационное звукоизолирующее резиновое покрытие, весящее 800 тонн. Одно это покрытие весит больше, чем американская атомная подлодка NR-1. Проект 941 – воистину гигантская субмарина. Длина ее составляет 172, а ширина – 23 м. На борту несут службу 160 человек.
Можно видеть, насколько различаются атомные подлодки и сколь отличным является их «содержание». Теперь рассмотрим более наглядно несколько отечественных ПЛ: лодки проекта 971, 949А и 955. Всё это – мощные и современные субмарины, несущие службу на флоте РФ. Лодки принадлежат к трем разным типам АПЛ, о которых мы говорили выше:
Атомные подлодки делят по назначению:
· РПКСН (Ракетный подводный крейсер стратегического назначения). Будучи элементом ядерной триады, эти субмарины несут на борту баллистические ракеты с ядерными боеголовками. Главные цели таких кораблей – военные базы и города противника. В число РПКСН входит новая российская АПЛ 955 «Борей». В Америке этот тип субмарин называют SSBN (Ship Submarine Ballistic Nuclear): сюда относится самая мощная из таких ПЛ – лодка типа «Огайо». Чтобы вместить на борту весь смертоносный арсенал, РПКСН проектируют с учетом требований большого внутреннего объема. Их длина часто превышает 170 м – это заметно больше длины многоцелевых подлодок.

ЛАРК К-186 «Омск» пр.949А OSCAR-II с открытыми крышками пусковых установок ракетного комплекса «Гранит» Лодки проекта во Флоте имеют неофициальное название «Батон» — за форму корпуса и внушительность размеров.
· ПЛАТ (Подводная лодка атомная торпедная). Такие лодки еще называют многоцелевыми. Их предназначение: уничтожение кораблей, других подлодок, тактических целей на земле и сбор разведданных. Они меньше РПКСН и имеют лучшую скорость и подвижность. ПЛАТ могут использовать торпеды или высокоточные крылатые ракеты. К числу таких АПЛ относятся американский «Лос-Анджелес» или советский/российский МПЛАТРК проекта 971 «Щука-Б».

Подводная лодка проекта 941 «Акула»
Американский «Сивулф» считается самой совершенной многоцелевой атомной подводной лодкой. Ее главная особенность – высочайший уровень скрытности и смертоносное вооружение на борту. Одна такая субмарина несет до 50 ракет «Гарпун» или «Томагавк». Также имеются торпеды. Из-за большой дороговизны флот США получил только три таких подлодки.


Подводная лодка проекта 941 «Акула»
· ПЛАРК (Подводная лодка атомная с ракетами крылатыми). Это самая малочисленная группа современных АПЛ. Сюда входят российский 949А «Антей» и некоторые переоборудованные в носители крылатых ракет американские «Огайо». Концепция ПЛАРК перекликается с многоцелевыми АПЛ. Субмарины типа ПЛАРК, правда, крупней – они представляют собой большие плавучие подводные платформы с высокоточным оружием. В советском/российском флоте эти лодки также именуют «убийцами авианосцев».

Внутри подводной лодки
Детально рассмотреть конструкцию всех основных типов АПЛ сложно, но проанализировать схему одной из таких лодок вполне возможно. Ею станет субмарина проекта 949А «Антей», знаковая (во всех смыслах) для отечественного флота. Для повышения живучести создатели продублировали многие важные компоненты этой АПЛ. Такие лодки получили по паре реакторов, турбин и винтов. Выход из строя одного из них, согласно задумке, не должен стать для лодки смертельным. Отсеки субмарины разделяют межотсечные переборки: они рассчитаны на давление в 10 атмосфер и сообщаются люками, которые можно герметизировать, если это необходимо. Не все отечественные атомные субмарины имеют так много отсеков. Многоцелевая АПЛ проекта 971, например, разделена на шесть отсеков, а новый РПКСН проекта 955 – на восемь.

Подводная лодка «Курск»
Именно к лодкам проекта 949А относится печально известный «Курск». Эта субмарина погибла в Баренцевом море 12 августа 2000 года. Жертвами катастрофы стали все 118 членов экипажа, находившиеся на ее борту. Выдвигалось много версий происшедшего: самой вероятной из всех является взрыв хранившейся в первом отсеке торпеды калибра 650 мм. Согласно официальной версии, трагедия произошла из-за утечки компонента топлива торпеды, а именно пероксида водорода.
АПЛ проекта 949А имеет весьма совершенную (по меркам 80-х) аппарату, включающую гидроакустическую систему МГК-540 «Скат-3» и множество других систем. Лодка также оснащена автоматизированной, имеющей повышенную точность, увеличенный радиус действия и большой объем обрабатываемой информации навигационным комплексом «Симфония-У». Большая часть информации обо всех этих комплексах держится в тайне.
Отсеки АПЛ проекта 949А «Антей»:
Первый отсек:
Его еще называют носовым или торпедным. Именно здесь расположены торпедные аппараты. Лодка имеет два торпедных аппарата 650-мм и четыре 533-мм, а всего на борту АПЛ находится 28 торпед. Первый отсек состоит из трех палуб. Боевой запас хранится на предназначенных для этого стеллажах, а торпеды подаются в аппарат с помощью специального механизма. Здесь также находятся аккумуляторные батареи, которые в целях безопасности отделены от торпед специальными настилами. В первом отсеке обычно служат пять членов экипажа.

Второй отсек:
Этот отсек на субмаринах проектов 949А и 955 (и не только на них) исполняет роль «мозга лодки». Именно здесь расположен центральный пульт управления, и именно отсюда производится управление субмариной. Здесь находятся пульты гидроакустических систем, регуляторы микроклимата и навигационное спутниковое оборудование. Служат в отсеке 30 членов экипажа. Из него можно попасть в рубку АПЛ, предназначенную для наблюдения за поверхностью моря. Там же находятся выдвижные устройства: перископы, антенны и радары.

АПЛ проекта 955
Третий отсек:
Третьим является радиоэлектронный отсек. Здесь, в частности, находятся многопрофильные антенны связи и множество других систем. Аппаратура этого отсека позволяет принимать целеуказания, в том числе из космоса. После обработки полученная информация вводится в корабельную боевую информационно-управляющую систему. Добавим, что подводная лодка редко выходит на связь, чтобы не быть демаскированной.
Четвертый отсек:
Данный отсек – жилой. Тут экипаж не только спит, но и проводит свободное время. Имеются сауна, спортзал, душевые и общее помещение для совместного отдыха. В отсеке есть комната, позволяющая снять эмоциональную нагрузку – для этого, например, есть аквариум с рыбками. Кроме этого, в четвертом отсеке расположен камбуз, или, говоря простым языком, кухня АПЛ.

АПЛ с крылатыми ракетами. Проект 670 «Скат» (Charlie-I class)
Пятый отсек:
Здесь находится вырабатывающий энергию дизель-генератор. Тут же можно видеть электролизную установку для регенерации воздуха, компрессоры высокого давления, щит берегового питания, запасы дизтоплива и масла.
5-бис:
Это помещение нужно для деконтаминации членов экипажа, которые работали в отсеке с реакторами. Речь идет об удалении радиоактивных веществ с поверхностей и снижении уровня загрязнения радиоактивными веществами. Из-за того, что пятых отсека два, нередко происходит путаница: одни источники утверждают, что на АПЛ десять отсеков, другие говорят о девяти. Даже несмотря на то, что последним отсеком является девятый, всего на АПЛ (с учетом 5-бис) их имеется десять.
Шестой отсек:
Это отсек, можно сказать, находится в самом центре АПЛ. Он имеет особую важность, ведь именно здесь находятся два ядерных реактора ОК-650В мощностью по 190 МВт. Реактор относится к серии ОК-650 – это серия водо-водяных ядерных реакторов на тепловых нейтронах. Роль ядерного топлива исполняет высокообогащенная по 235-у изотопу двуокись урана. Отсек имеет объем 641 м³. Над реактором находятся два коридора, позволяющие попасть в другие части АПЛ.
Седьмой отсек:
Его также называют турбинным. Объем этого отсека составляет 1116 м³. Это помещение предназначено для главного распределительного щита; электростанции; пульта аварийного управления главной энергетической установкой; а также ряда других устройств, обеспечивающих движение подводной лодки.
Восьмой отсек:
Данный отсек очень похож на седьмой, и его тоже называют турбинным. Объем составляет 1072 м³. Здесь можно видеть электростанцию; турбины, которые приводят в движение винты АПЛ; турбогенератор, обеспечивающий лодку электроэнергией, и водоопреснительные установки.
Девятый отсек:
Это чрезвычайно малый отсек-убежище, объемом 542 м³, имеющий аварийный люк. Данный отсек в теории позволит выжить членам экипажа в случае катастрофы. Здесь есть шесть надувных плотов (каждый рассчитан на 20 человек), 120 противогазов и спасательные комплекты для индивидуального всплытия. Кроме этого, в отсеке расположены: гидравлика рулевой системы; компрессор воздуха высокого давления; станция управления электродвигателями; токарный станок; боевой пост резервного управления рулями; душевая и запас продуктов на шесть дней.
Вооружение
Отдельно рассмотрим вооружение АПЛ проекта 949А. Кроме торпед (о которых мы уже говорили) лодка несет 24 крылатые противокорабельные ракеты П-700 «Гранит». Это ракеты дальнего действия, которые могут пролететь по комбинированной траектории до 625 км. Для наведения на цель П-700 имеет активную радиолокационную головку наведения.

Ракета П-700 Гранит
Ракеты находятся в специальных контейнерах между легкими и прочными корпусами АПЛ. Их расположение примерно соответствует центральным отсекам лодки: контейнеры с ракетами идут по обе стороны субмарины, по 12 на каждой из сторон. Все они повернуты вперед от вертикали на угол 40-45°. Каждый из таких контейнеров имеет специальную крышку, выдвигающуюся при ракетном запуске.
Крылатые ракеты П-700 «Гранит» – основа арсенала лодки проекта 949А. Между тем реального опыта по применению этих ракет в бою нет, так что о боевой эффективности комплекса судить сложно. Испытания показали, что из-за скорости ракеты (1,5-2,5 М) перехватить ее очень тяжело. Однако не все так однозначно. Над сушей ракета не способна лететь на малой высоте, и поэтому представляет собой легкую мишень для средств противовоздушной обороны противника. На море показатели эффективности выше, но, стоит сказать, что американское авианосное соединение (а именно для борьбы с ними создавалась ракета) имеет отличное прикрытие ПВО.
Подобная компоновка вооружения не характерна для атомных субмарин. На американской лодке «Огайо», например, баллистические или крылатые ракеты располагаются в шахтах, идущих в два продольных ряда за ограждением выдвижных устройств. А вот многоцелевой «Сивулф» запускает крылатые ракеты из торпедных аппаратов. Точно так же запускаются крылатые ракеты с борта отечественной МПЛАТРК проекта 971 «Щука-Б». Конечно, все эти субмарины несут и различные торпеды. Последние используются для поражения подлодок и надводных кораблей.
tehnowar.ru
Атомные установки подлодок | Военное оружие и армии Мира
На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.
После того как в 1930-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра «паровых» субмарин завершилась навсегда. Но прошло всего полтора десятилетия, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный.
ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ
В основе работы ядерной энергетической установки лежит управляемая цепная ядерная реакция. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием элементарных частиц — нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. При делении ядер образуются новые, более легкие ядра — осколки деления, испускаются нейтроны и освобождается большое количество энергии. Так, деление каждого ядра урана-235 сопровождается освобождением приблизительно 200 мегаэлектроновольт энергии. Из них примерно 83 % приходится на долю кинетической энергии осколков деления, которая в результате торможения осколков преобразуется в основном в тепловую энергию. Остальные 17 % ядерной энергии освобождаются в виде энергии свободных нейтронов и различных видов радиоактивного излучения. Вновь образованные нейтроны в свою очередь участвуют в делении других ядер.
ПЕРВЫЕ ШАГИ
Проработка вопросов создания ядерных силовых установок для подводных лодок началась в США в 1944 году, а уже через четыре года первая из них была спроектирована. Там же в июне 1952 года состоялась закладка первой атомной подводной лодки, получившей имя «Наутилус». На первый взгляд она была само воплощение человеческой мечты об истинной подводной лодке. Действительно, где, как только не в мечтах, можно было себе представить подводный корабль длиной почти 100 м способный более месяца, не всплывая, ходить скоростью более 20 узлов. Но, как это часто бывает, ощутимый качественный скачок в одной области технического прогресса повлек за собой целый букет сопутствующих проблем в смежных. Применительно к атомным силовым установкам — это прежде всего вопросы, связанные с ядерной безопасностью их эксплуатации и последующей утилизацией. Но в начале 1950-х годов об этом просто никто не задумывался.
ОБЩАЯ КОНСТРУКЦИЯ
Основной элемент ядерных энергетических установок — ядерный реактор — специальное устройство, в котором происходит управляемая цепная ядерная реакция. В его состав входят активная зона, отражатель нейтронов, стержни управления и защиты, биологическая защита реактора. Активная зона реактора содержит в себе ядерное горючее и замедлитель нейтронов. В ней протекает управляемая реакция цепного деления ядерного горючего. Ядерное топливо размещается внутри так называемых тепловыделяющих элементов (ТВЭЛ), которые имеют форму цилиндров, стержней, пластин или трубчатых конструкций. Эти элементы образуют решетку, свободное пространство которой заполняется замедлителем. Основными материалами для оболочек тепловыделяющих элементов служат алюминий и цирконий. Нержавеющая сталь применяется в ограниченных количествах и только в реакторах на обогащенном уране, так как сильно поглощает тепловые нейтроны. Для отвода тепла через активную зону прокачивается жидкий теплоноситель.
В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).
Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.
ОСНОВНЫЕ РАЗНОВИДНОСТИ
«Наутилус» имел силовую установку с водо-водяным реактором под давлением. Такие реакторы применены и на подавляющем большинстве других атомных субмарин.
В современных атомных установках ядерная энергия превращается в механическую только посредством тепловых циклов. Во всех механических установках атомных подводных лодок рабочим телом цикла является пар. Паровой цикл с промежуточным теплоносителем, передающим теплоту из активной зоны рабочему телу в парогенераторах, приводит к двухконтурной тепловой схеме энергетической установки. Такая тепловая схема с водо-водяным реактором получила самое широкое распространение на атомных подводных лодках. Первому контуру необходима защита, так как при прокачке теплоносителя через активную зону реактора содержащийся в воде кислород становится радиоактивным. Весь второй контур нерадиоактивен.
Для того чтобы получить во втором контуре пар заданных параметров, вода первого контура должна иметь достаточно высокую температуру, превышающую таковую производимого пара. Для исключения вскипания воды в первом контуре в нем необходимо поддерживать соответствующее избыточное давление, обеспечивающее так называемый «недогрев до кипения». Так, в первом контуре зарубежных корабельных ядерных силовых установок поддерживается давление 140-180 атмосфер, которое позволяет нагревать воду контура до 250-280° С. При этом во втором контуре генерируется насыщенный пар давлением 15-20 атмосфер при температуре 200-250° С. На советских подводных лодках первого поколения температура воды в первом контуре составляла 200° С, а параметры пара — 36 атмосфер и 335° С.
С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ
В 1957 году в состав ВМС США вошла вторая атомная подводная лодка «Сивулф». Ее принципиальное отличие от «Наутилуса» заключалось в ядерной силовой установке, где применялся реактор с натрием в качестве теплоносителя. Теоретически это должно было снизить удельную массу установки за счет снижения веса биологической защиты, а главное — повышения параметров пара. Температура плавления натрия, составляющая всего 98° С, и высокая температура кипения — более 800° С, а также отличная теплопроводность, в которой натрий уступает только серебру, меди, золоту и алюминию, делает его очень привлекательным для использования в качестве теплоносителя. Нагревая жидкий натрий в реакторе до высокой температуры, при относительно небольшом давлении в первом контуре — порядка 6 атмосфер, во втором контуре получали пар давлением 40-48 атмосфер с температурой перегрева 410-420°С.
Практика показала, что, несмотря на все преимущества, ядерный реактор с жидкометаллическим теплоносителем обладает рядом существенных недостатков. Чтобы сохранить натрий в расплавленном состоянии, в том числе и в период бездействия установки, на корабле необходимо иметь специальную постоянно действующую систему подогрева жидкометаллического теплоносителя и обеспечения его циркуляции. В противном случае натрий и сплав промежуточного контура «замерзнут» и энергетическая установка будет выведена из строя. В ходе эксплуатации «Сивулфа» обнаружилось, что жидкий натрий химически чрезмерно агрессивен, в результате чего трубопроводы первого контура и парогенератор быстро коррозировали, вплоть до появления свищей. А это очень опасно, так как натрий или его сплав с калием бурно реагируют с водой вплоть до теплового взрыва. Утечка радиоактивного натрия из контура вынудила сначала отключить пароперегревательные секции парогенератора, что привело к снижению мощности установки до 80 %, а потом, через год с небольшим после вступления в строй, и вообще вывести корабль из состава флота. Опыт «Сивулфа» заставил американских военных моряков окончательно сделать выбор в пользу водо-водяных реакторов. А вот в СССР эксперименты с жидкометаллическим теплоносителем продолжались гораздо дольше. Вместо натрия применялся сплав свинца с висмутом — гораздо менее пожаро- и взрывоопасный. В 1963 году вступает в строй подлодка проекта 645 с таким реактором (по сути — модификация первых советских атомных субмарин проекта 627, на которых применялись водо-водяные реакторы).
А в 1970-е годы состав флота пополнили семь подлодок проекта 705 с ядерной силовой установкой на жидкометаллическим носителе и титановым корпусом. Эти субмарины обладали уникальными характеристиками — они могли развивать скорость до 41 узла и погружаться на глубину 700 м. Но эксплуатация их была чрезвычайно дорогой, из-за чего лодки этого проекта прозвали «золотыми рыбками». В дальнейшем ни в СССР, ни в других странах реакторы с жидкометаллическим теплоносителем не применялись, а повсеместно принятыми стали водо-водяные реакторы.
Оставить эмоциюНравится Тронуло Ха-Ха Ого Печаль Злюсь
3503warfor.me
Как спасать атомные подводные лодки? » Военное обозрение
В военной сфере не только уставы писаны кровью, но и многие технические новации обязаны своим рождением трагическим событиям. Не так давно была завершена разработка уникального для отечественного кораблестроения комплекса — необходимость его создания стала очевидна морякам и инженерам после серии катастроф в подводном флоте.
Седьмого апреля 1970 года, завершив боевую службу в Средиземном море и выйдя в Атлантику, советская АПЛ К-8 проекта 627А взяла курс на свою северную базу. Неожиданно в ее третьем отсеке произошло возгорание химических патронов регенерации, предназначенных для очистки корабельной атмосферы. Потребовалось совсем немного времени, чтобы возгорание переросло в полномасштабный пожар. Как положено, сработала аварийная защита реакторов, остановились турбины. Резервный дизель-генератор запустить не удалось, и АПЛ осталась без электроэнергии, что существенно осложнило борьбу за живучесть, которая тем не менее продолжалась более трех суток. Продув балластные цистерны, лодка всплыла на поверхность. А пожар тем временем распространялся по кораблю. В двух кормовых отсеках прогорели забортные сальники (уплотнения выводимых из прочного корпуса лодки кабелей). В отсеки начала поступать вода, что привело к возникновению нарастающего отрицательного дифферента (наклона на корму). Через двое суток иссяк запас воздуха высокого давления, и сдерживать поступление воды в отсеки стало нечем. Корабль был обречен, надо было спасать экипаж. Подошедшие надводные корабли сняли часть моряков. А из центра продолжали поступать категорические приказы — до последнего бороться за спасение корабля. Утром 12 апреля процесс нарастания дифферента получил лавинообразный характер, и лодка, приняв почти вертикальное положение кормой вниз, стремительно пошла на дно, унеся с собой жизни 52 моряков.
Через 16 лет после этой трагедии вновь в водах Атлантики терпела бедствие другая советская АПЛ. Теперь это была К-219, стратегическая лодка, несущая в своих шахтах 16 баллистических ракет с ядерными зарядами. 16 октября 1986 года в находящейся на боевом дежурстве лодке возник пожар в ракетном отсеке. Причина пожара — разрушение ракеты с последующим нарушением герметичности шахты и попаданием в отсек компонентов ракетного топлива. Далее развитие катастрофы проходило по уже знакомому сценарию: распространение пожара по отсекам, прогорание забортных сальников, поступление в отсеки воды и, как следствие, нарастающий дифферент, приведший к утрате лодкой продольной остойчивости. После 15-часовой упорной, но безрезультатной борьбы за спасение корабля произошло его стремительное затопление. На этот раз учли печальный опыт К-8 и б? льшую часть экипажа своевременно переправили на подошедшие суда. На лодке оставались лишь девять человек во главе с командиром корабля. Пятерым из них удалось спастись, четверо вместе с АПЛ покоятся на дне океана на глубине около 5000 м.

К-8
Советская атомная подводная лодка проекта 627А «Кит». Вступила в состав Северного флота 31 августа 1960 года. Погибла в Бискайском заливе 12 апреля 1970 года.

К-219
На лодке произошел взрыв баллистической ракеты в одной из шахт. Через три дня, 6 октября 1986 года, лодка затонула в Атлантическом океане на глубине 5500 м. Б? льшая часть экипажа была спасена.

К-278 «Комсомолец»
Единственная лодка проекта 685 «Плавник». Ей принадлежит абсолютный рекорд по глубине погружения среди подводных лодок — 1027 м. Погибла в результате пожара в Норвежском море 7 апреля 1989 года.
Не прошло и трех лет, как советский ВМФ потрясла новая трагедия — гибель АПЛ «Комсомолец». Этот уникальный корабль, построенный по разработанному ЦКБ «Рубин» проекту 685 (шифр «Плавник»), вошел в Книгу рекордов Гиннесса после установления в 1985 году мирового рекорда глубины погружения для боевых ПЛ (1027 м). 7 апреля 1989 года в 11 часов, когда АПЛ, находясь на глубине 400 м, возвращалась из своего уже пятого автономного плавания, в ее кормовом 7-м отсеке возник пожар. Уже через 11 минут лодка, выполнив аварийное всплытие, оказалась на поверхности штормового Норвежского моря. Началась отчаянная борьба за спасение корабля. И опять, как и в уже описанных случаях, поступление воды в кормовые отсеки привело к возникновению отрицательного дифферента.
Об осадке и посадке
Здесь необходимо пояснить, почему этот процесс так опасен именно для подводных лодок. Одна из важнейших характеристик любых водоизмещающих судов — остойчивость, рассматриваемая как способность судна, выведенного внешним воздействием из положения равновесия, возвращаться в него после прекращения этого воздействия. Различают поперечную и продольную остойчивости, то есть способность к восстановлению равновесия после возникновения соответственно крена или дифферента. Подводная лодка, веретенообразный корпус которой имеет длину, существенно превышающую ширину, особенно чувствительна к дифферентам — отклонениям от горизонтального положения в продольном направлении. Когда лодка в движении, возникающие по тем или иным причинам дифференты погашаются действием ее горизонтальных гидродинамических рулей. Но на лодке, не имеющей хода, гидродинамические рули, естественно, не работают. Бороться с дифферентами можно лишь перемещением весовых нагрузок внутри корабля относительно его центра тяжести, уменьшая их со стороны, куда происходит наклонение, или увеличивая с обратной стороны, чтобы выровнять лодку. Реально эта процедура заключается в продувке одних и заполнению водой других балластных цистерн, размещенных в носу, корме и вдоль бортов АПЛ. Естественно, с какой бы стороны от центра тяжести ни увеличивался вес, это приводит к увеличению осадки корабля — третьему (наряду с креном и дифферентом) параметру, определяющему посадку корабля в море. Посадку, которую имеет исправный корабль на спокойной воде, называют равновесной. При этом полностью отсутствуют крен и дифферент, а осадка такова, что корабль погружен в воду по конструктивную (расчетную) ватерлинию. Когда ПЛ оказывается в надводном положении в штормовом море, волны, раскачивая ее, непрерывно изменяют все три параметра, определяющие посадку. Если ПЛ находится в нормальном (неповрежденном) состоянии и обладает необходимой остойчивостью, ее качания происходят относительно равновесного положения и не представляют опасности, если, конечно, не превысят критических значений. Совсем иная ситуация, когда в результате аварии и полученных повреждений ПЛ в надводном положении имеет посадку, отличную от равновесной, то есть когда даже при отсутствии морского волнения углы крена и дифферента корабля не равны нулю, а его осадка — не по конструктивную ватерлинию. Это обстоятельство необходимо непрерывно учитывать в ходе борьбы за живучесть аварийной ПЛ. Борясь с огнем путем затопления аварийных отсеков, выравнивая возникший крен или дифферент методом продувки балластных цистерн (особенно расположенных в носу или в корме лодки), следует представлять, как эти меры отражаются на изменении дифферента. Сделать это совсем непросто, поскольку субъективное восприятие может подвести, а объективной информации о реальном пространственном положении лодки получить неоткуда.
При катастрофе «Комсомольца» практически вся борьба за спасение АПЛ проходила в надводном положении и продолжалась без малого шесть часов. Пожар, распространившийся на три кормовых отсека, удалось укротить. Но в борьбе с огнем был допущен ряд ошибок, приведших к постепенному, но неуклонному нарастанию отрицательного дифферента. Менее чем за час до гибели АПЛ ее корма просела в воду настолько, что достаточно высокий кормовой стабилизатор скрылся под водой. К этому времени величина продольной остойчивости лодки оставалась столь малой, что дальнейший быстрый рост дифферента и близкий трагический исход был очевиден. Это подтверждалось снимками, сделанными с самолета-спасателя, прибывшего из Североморска. В 17:08 лодка с дифферентом на корму в 80° (то есть почти вертикально) ушла под воду. Экипаж, находившийся на верхней палубе, оказался в ледяной воде. Из 69 моряков в живых осталось 27.
Итак, все три катастрофы, начавшись с пожара, заканчивались гибелью АПЛ в результате потери продольной остойчивости и мгновенного затопления. Это было отмечено в документах правительственной комиссии, работающей над установлением причин гибели «Комсомольца». Комиссия поручила одному из предприятий Министерства судостроения разработать комплекс аппаратных средств, предназначенных для объективного контроля параметров посадки АПЛ в аварийной ситуации. Результаты разработки планировалось использовать в проектах АПЛ следующего поколения.
Математика стихии
Техническое задание подготовило одно из ЦКБ, проектировавших АПЛ. Опытно-конструкторская работа (ОКР) началась в 1993 году. Очень скоро стало ясно, что основная проблема заключается в отсутствии алгоритма, с помощью которого можно было бы определять параметры посадки корабля в условиях носящего случайный характер морского волнения. Поэтому именно с поиска алгоритма начиналась ОКР. К его разработке привлекались специалисты многих ведущих научных и проектных организаций судостроения и ВМФ. Совместно с ними были созданы и апробированы методами математического моделирования и экспериментально три варианта алгоритма. Один из них (алгоритм профессора Севастопольского приборостроительного института Ю.И. Нечаева) получил одобрение заказчика разработки — ЦНИИ кораблестроения — и был принят для использования в ОКР.
Алгоритм Нечаева разрабатывался путем анализа материалов экспериментов, проводимых с использованием радиоуправляемых моделей различных типов морских судов на естественном волнении. Затем он был апробирован на одном из кораблей Черноморского флота и на судах транспортного флота.
Принцип действия разработанного в соответствии с этим алгоритмом КПОРП основан на непрерывном контроле текущих значений трех параметров посадки корабля: углов крена и дифферента, а также осадки. Все эти параметры для аварийного корабля, находящегося в условиях морского волнения, носят случайный характер. Накопленные за определенный период данные по каждому из параметров проходят осреднения по времени, а затем полученные результаты дополняют вычисляемыми в соответствии с принятым алгоритмом поправками.

Подводный флот России обновляется, вводятся в строй новые корабли новых проектов (на фото АПЛ «Северодвинск» проекта 885 «Ясень»). Вполне возможно, что на лодках грядущих поколений будут воплощены в жизнь разработки, которые помогут избежать трагедий на море, вроде тех, о которых рассказано в этой статье.

Чувствительные трубки
Реализация принятого КПОРП алгоритма ведется с помощью комплекта датчиков текущих значений крена, дифферента и осадки. Для измерений углов крена и дифферента были разработаны два максимально унифицированных друг с другом датчика, один из которых (кренометр) размещен в плоскости мидель-шпангоута (среднее поперечное сечение корпуса АПЛ), а второй (дифферентометр) — в диаметральной плоскости корабля. Принцип действия датчика основан на контроле давления или разрежения, возникающего во внутренней полости высокочувствительной мембранной коробки в результате наклонения связанной с этой полостью трубки, заполненной специальной незамерзающей жидкостью определенной плотности. Когда при крене (дифференте) корабля конец трубки оказывается выше мембранной коробки, в полости коробки возникает некоторое избыточное давление, пропорциональное длине трубки, помноженной на синус угла наклона, и удельному весу заполняющей трубку жидкости. При наклоне в противоположную сторону конец трубки опускается относительно мембранной коробки, отчего в ней возникает разрежение, пропорциональное тем же величинам. Для герметизации заполненной жидкостью полости, а также для компенсации теплового расширения жидкости служит эластичная диафрагма практически нулевой жесткости, установленная на конце трубки, противоположном мембранной коробке. Она же служит для компенсации колебаний давления воздуха в отсеке, одинаково воздействующего как снаружи на мембранную коробку, так и на эластичную диафрагму. При возникновении (вследствие наклонов) давления или разрежения в полости мембранной коробки она упруго прогибается, и ее центр перемещает в ту или иную сторону сердечник электрического преобразователя, на выходе которого возникает сигнал соответствующей полярности. Датчики крена и дифферента отличаются друг от друга лишь одним базовым размером — длиной заполненной жидкостью трубки, которая обратно пропорциональна синусу предельного значения контролируемого угла. В связи с тем, что предельные значения углов дифферента существенно меньше, чем крена, для получения одинакового сигнала на выходе обоих датчиков трубка датчика дифферента должна быть длиннее.
Измерение осадки осуществляется парой датчиков перепадов давления, динамическая полость которых связана с забортным пространством под днищем АПЛ, а статическая — с атмосферой. Используют два однотипных датчика перепада давления с разными пределами измерения, размещенные в одной плоскости и на одной вертикали, но в разных уровнях. В зависимости от фактического значения текущей осадки показания снимают с одного из датчиков (верхнего или нижнего), достигая требуемой точности измерения. При пересчете гидростатического давления в осадку в связанной с корпусом корабля системе координат учитываются текущие значения углов крена и дифферента.
В комплект приборов также входят блок вторичных преобразователей вышеназванных датчиков и информационно-вычислительный блок (ИВБ), представляющий собой мини-ЭВМ. Выходные данные поступают в ИВБ, который реализует введенный в его память алгоритм, а также обеспечивает внесение поправок в значения измеряемых параметров.
Образец КПОРП был изготовлен и прошел под наблюдением межведомственной комиссии многоэтапный цикл испытаний, включая проверки устойчивости ко всем видам механических и климатических воздействий, а также испытания на стенде многомерной угловой качки. При этом проверялась работоспособность КПОРП при раздельном и одновременном воздействии двух видов качки с заданием углов крена и дифферента, имитирующих аварийное положение корабля. Результаты испытаний подтвердили полное соответствие КПОРП требованиям ТЗ как по точности определения равновесных параметров посадки, так и по устойчивости ко всем видам корабельных воздействий.
Игра давлений
Вести постоянный автоматический контроль за посадкой подводного корабля помог комплекс оригинальных технических решений. Система датчиков реагирует на изменение давлений жидкости и воздуха.

Принцип действия кренометра и дифферентометра основан на контроле давления, возникающего в мембранной коробке в результате наклонения заполненной жидкостью трубки.

Измерение осадки осуществляется парой датчиков перепадов давления, связанных с забортным пространством и атмосферой.
topwar.ru
Как работает двигатель подводной лодки? |
В настоящее время большинство современных подводных лодок являются ядерными или дизельными электростанциями, которые используются на подводных лодках во время Первой и Второй мировых войн.
Дизель Электрические лодки используют дизель-генераторы для подзарядки своих массивных батарей. В Первой мировой и Второй Мировой Войнах подводные лодки не были истинными подводными кораблями, как мы их определяем сегодня — это низкопрофильные надводные суда с ограниченной подводной работоспособностью. С появлением корпусов слезной и сигарной форм, а также значительно улучшенной технологии батарей, DE теперь может оставаться под водой в течение нескольких недель. Тем не менее, они все еще ограничены в скорости, и у них нет выбора, кроме как подойти к глубине перископа и трубке, чтобы перезарядить свои батареи. Пока они работают от батареи, они очень тихие, но после снорклинга они очень шумные. В первые дни программы ядерной энергетики для военно-морского флота были горячие споры о стоимости ядерной энергии против дизельных электрических технологий. Был задуман тест, в котором одна атомная подводная лодка была оснащена несколькими судами DE. Каждый раз, когда им приходилось заниматься подводным плаванием и подзаряжать их, они становились сидевшими уток. С того времени флот был почти исключительно ядерным с подводными лодками, только имея 3 флота в флоте, и в основном для учебных целей, известных как «B Girls» — USS Barbel (SS-580), USS Blueback (SS- 581) и USS Bonefish (SS-582). С тех пор они были выведены из эксплуатации, и нынешний подводный флот ВМС США — все ядерные.
Основные операции и теория оставались неизменными на протяжении десятилетий — улучшилась только технология. По существу, дизельные двигатели, которые могут генерировать электричество, перезаряжают батареи лодки, а электричество постоянного тока от батарей питает электрический двигатель, подсоединенный к главному валу гребного винта.
Ядерные подводные лодки, настоящие подводные лодки по всем определениям, ограничены только их экипажами. Без необходимости пополнения экипажа лодка могла оставаться в море на неопределенное время в течение многих лет, пока не возникнет необходимость в заправке реактора. У атомных подводных лодок также есть дизель-генератор, батареи и резервный электродвигатель, если основные двигатели не работают или имеют проблемы. Хотя скорость довольно медленная, это хоть что-то.
Реакторная технология довольно проста — реактор вырабатывает тепло, и находящийся под ней охлаждаемый (американский) сжатый металл (русский), протекающий по нему, передается в парогенератор, который представляет собой не что иное, как большую камеру, в которой хладоагент протекает через трубу И вода из вторичной подачи воды закачивается в камеру и на трубы горячего теплоносителя, мгновенно высвечивая ее в пар. Пар под давлением затем используется для питания турбогенераторов, которые, в свою очередь, соединены с редукторами, соединенными с главным валом гребного винта. После того, как пар используется, он переходит в конденсатор, который возвращает его в воду, и он снова закачивается обратно в паровую камеру, чтобы снова запустить непрерывный цикл.
Военно-морские силы США имеют прекрасную запись, используя реакторы с водой под давлением, так как они были введены в флот адмиралом Хайманом Г. Риковером в начале 50-х годов с Наутилуса. В течение многих лет россияне обычно использовали различные охлаждающие жидкости реактора со смешанными результатами, такими как жидкий никель или жидкий натрий.
Если вы хотите увидеть основную схему работы на атомной лодке, вы можете увидеть диаграмму в одной из старых брошюр Welcome Aboard, которые у меня есть на моем собственном сайте, где есть фотографии и другие предметы из моих дней подводной лодки. Обратите внимание, что даже если это базовая диаграмма, все корабли или подводные лодки по всему миру, работающие на атомном топливе, используют один и тот же основной принцип — единственное различие заключается в конструкции машин и реактора.
Похожие
otvetopedia.ru
Двигатель подводной лодки, атомный реактор, гребной винт
Самые первые экземпляры подводных судов приводились в движение исключительно мускульной силой. Когда в 1776 г. сержант Ли на «Аме- рикен Тертл» пытался потопить британский фрегат «Игл», ему приходилось вращать гребной винт вручную. Потопивший «Хаусэтоник» 17 февраля 1864 г. «Дейвид» также приводился в движение вручную, только двигатель подводной лодки был сравнительно более мощной — восемь человек. Впрочем, на других опытных образцах того же «Дейвида» уже устанавливался паровой двигатель — например, на том, который 5 октября 1863 г. под командой лейтенанта Гласела поразил шестовой торпедой федеральный линейный корабль «Айронсайдз».
Двигатель подводной лодки, атомный реактор, гребной винт
Впрочем и «Тертл», и «Дейвида» следует считать скорее не подводными лодками, а полупогружными судами: они вынуждены были оставаться у самой поверхности, так как иначе было никак не обеспечить поступление воздуха для работы двигателя и экипажу для дыхания. Впрочем, к 1860 г. уже появился электромотор, который не требовал воздуха для сгорания и не вырабатывал выхлопных газов. Такой мотор использовался на многих первых опытных образцах как для надводного, так и для подводного хода и до сих пор используется на многих подводных лодках как источник энергии как в том, так и в другом положении — даже на атомных подводных лодках.
Также проводились эксперименты с пароаккумулирующими двигателями: запас пара набирался в надводном положении и расходовался после погружения, как на подводных лодках типа «Норденфельт». Но дальнейшего развития эти эксперименты не получили.
Когда Лобеф проектировал «Нарвал», он снабдил свою лодку двумя типами двигателей: поршневой паровой двигатель для надводного хода и питающийся от аккумуляторов электромотор для подводного.
При подводном ходе, со времен «Нарвала» до наших дней (если речь пойдет о неатомных субмаринах), электромотор питается током напрямую от аккумуляторных батарей. Несмотря на все технические ухищрения, батареи эти имеют ограниченную емкость и нуждаются в частой перезарядке. Насколько часто необходима такая перезарядка, зависит от конкретного режима эксплуатации подводного судна; в боевой обстановке это может требоваться ежедневно. Для перезарядки аккумуляторов используются двигатели надводного хода, которые играют роль генераторов и вырабатывают электрический ток. Таким образом, подводная лодка становится независимой боевой единицей и может достаточно долгое время действовать вдали от базы, — настолько долгое, насколько позволяет запас топлива на борту. Таким образом, двигательная установка подводной лодки состоит из теплового двигателя (парового или дизельного), передаточного механизма, электромотора и генератора, передаточного механизма, вала, передающего вращательный момент на винт.
При обычном надводном ходе работают оба передаточных механизма и электромотор бездействует. При погружении тепловой двигатель отключается и вращать гребной винт начинает электромотор. При перезарядке батарей отключается передаточный механизм «электромотор — гребной вал», то есть аккумуляторы перезаряжаются от работы дизелей.
Кроме главных гребных двигателей (как правило, весьма мощных), на некоторых подводных лодках устанавливался еще один, гораздо менее мощный, двигатель (электродвигатель экономичного хода) — специально для эксплуатации на малых скоростях, например на итальянских субмаринах типов «Балилья» (1928) и «Сен Бон» (1941), а также на некоторых типах подводных лодок других ВМФ.
Первые подводные лодки, постройки 1900-1905 гг., оснащались только одним тепловым двигателем, одним электромотором и одним гребных винтом, последний при этом помещался на самом «хвосте» лодки, коаксиально с корпусом. Примерно с 1905 г. конструкторы начали устанавливать на подводные лодки по два тепловых двигателя, два электромотора и два гребных винта (расположенных симметрично под корпусом). В результате такой модификации руль также переместился под корпус, за пропеллеры — как у надводных кораблей.
Проведенные после второй мировой войны гидродинамические исследования привели к тому, что на подводных лодках снова стали устанавливать один гребной винт, — причем как на очень больших атомных подводных лодках с баллистическими ракетами на борту (американские «Огайо», 1982-1983 гг.), так и на самого скромного размера дизельных (например, немецкие — «и-1»-«1)-30», 1966-1975 гг.) и многие другие.
К очень редким конструкторским решениям относятся случаи, когда на подводных лодках устанавливались три гребных винта, — например, так было сделано у итальянской «Фока» (1909), а также у строившихся в 1955-1972 гг. русских подводных лодках типов «Гольф», «Танго», «Фокстрот» и «Зулу», оснащавшихся тремя дизельными двигателями и тремя электромоторами. Уникальным экземпляром была японская экспериментальная субмарина «№ 44» водоизмещением 1390/2 430 т, принятая на вооружение в 1924 г. — на ней устанавливались четыре винта; впрочем, в 1932 г. два гребных винта вместе с соответствующими моторами были демонтированы, и у «№ 44» осталась самая обычная двигательная установка на два гребных винта.
У двигательных установок современных неатомных подводных лодок с одним гребным винтом принцип действия несколько иной, чем описан выше: гребной винт вращается электромотором и при надводном и при подводном ходе. На поверхности ток обеспечивается генераторами, работающими от теплового двигателя под водой, — обычными аккумуляторами. При такой конструктивной схеме передаточные механизмы — сложные, дорогие и тяжелые — не требуются вовсе. Впервые подобная двигательная установка — называемая дизель-электрической — стала применяться еще в 1941-1942 гг. на субмаринах американского ВМФ (с двумя гребными винтами) с целью увеличить энерговооруженность и поставить четыре мотора вместо двух. Например, на лодках типов «Гэтоу» и «Балао» (1942-1943) устанавливались четыре тепловых двигателя, питавшие четыре генератора, а те обеспечивали ток электромоторам, вращавшим два гребных винта.
Последним словом в развитии двигательных установок подводного флота стало появление на борту субмарин атомного реактора. При этом, если исключить центральное звено, сама по себе двигательная установка — это обычная паровая турбина, передающая вращательный момент на гребной вал посредством зубчатых муфт и редукторов. Принципиальное отличие заключается только в том, что вырабатывают пар не паровые котлы, а атомный реактор, при этом хладагент циркулирует между теплообменниками там, где вырабатывается пар.
Парадоксально, но прогресс в этой области означал то, что история замкнула полный круг: на ультрасовременных субмаринах типа «Огайо* (1982-1983) стоит принципиально точно такая же паровая двигательная установка, как на «Нарвале» Лобефа 1900 г. или на подводных лодках Норденфельта 1885-1888 гг.
Ранее уже говорилось, что первой настоящей подводной лодкой следует считать «Нарвал», так как он мог свободно управляться как при надводном, так и подводном ходе; а все ранние прототипы следует именовать «полупогружными судами», так как ни о каком настоящем подводном управлении в связи с ними говорить не приходится.
Ультрасовременные же атомные субмарины вообще не рассчитаны на применение в надводном режиме — ни в мирное, ни в военное время; они могут оставаться под водой до девяноста дней, перемещаясь с большой скоростью, и не обнаруживаются обычными радарами (сыгравшими такую фатальную роль в судьбе немецких подводных лодок во второй мировой войне).
Единственной системой, способной обнаруживать атомные субмарины, является сонар; но система эта очень сложная и дорогая и имеет ограниченный радиус действия.flotil.ru
Атомные подводные лодки это что такое Атомные подводные лодки: определение — История.НЭС
Атомные подводные лодки
Наутилус» – название первой в мире атомной подводной лодки сегодня известно всем военно-морским специалистам. Строительство силовой установки для нее («Марк-2») атомная промышленность США начала в 1954 году и завершила к концу декабря. С 17 января 1955 года «Наутилус» в течение шести дней проходил в море сложные, продолжительные испытания на больших скоростях, во время которых погружался свыше пятидесяти раз. За 84 часа лодка преодолела в подводном положении расстояние около 13 тысяч миль, превысив в десять раз рекорд дальности плавания в подводном положении и показав рекордную среднюю скорость в 16 узлов. Советский Союз спустил на воду атомную субмарину значительно позже. Советские конструкторы предложили заложить подобный корабль еще в конце 1940-х. Но курировавший советскую атомную промышленность Берия решил по-другому: сначала бомба, потом все остальное. Сталин поддержал его. Средств на две ядерные программы у страны не было. Решение о разработке атомной подводной лодки в СССР было принято лишь в сентябре 1952 года. Закладка опытной торпедной АПЛ (проекта 627) состоялась в Северодвинске 15 сентября 1955 года. В это время в Вашингтоне уже готовилась программа создания атомных подводных лодок с баллистическими ракетами (ПЛАРБ). Строилась советская субмарина – «Ленинский комсомол» – также дольше американской, она вступила в строй лишь в 1958 году. В Северодвинске в 1958—1964 годах, кроме опытной АПЛ, было построено и передано флоту 12 серийных многоцелевых АПЛ проекта 627А («Кит» по классификации НАТО). Как свидетельствуют специалисты, первые советские атомные лодки, имея вдвое более мощную ядерную энергетическую установку и лучшие скоростные качества, чем у американских АПЛ, значительно уступали им в скрытности. Советские конструкторы, в отличие от американских, решили первые АПЛ строить с двумя энергетическими установками. Они имели два реактора и являлись двухвальными, так как их предполагалось использовать на Севере. Так или иначе, гонка подводных ядерных вооружений перешла в практическую плоскость. Здесь уместно сделать одно отступление. В конечном счете строительство стратегического флота СССР и США свелось к следующей формуле – создание атомных подводных лодок и установка на них баллистических и крылатых ракет. СССР форсировал строительство атомных подлодок. И все же отставание от Соединенных Штатов в начале 1960-х было значительным. В ноябре 1960 года на патрулирование в океан вышла первая американская ПЛАРБ «Джордж Вашингтон». Она несла на своем борту 16 баллистических ракет «Поларис A1» с дальностью стрельбы 2200 километров. К середине 1965 года в составе ВМС США было около тридцати ПЛАРБ типа «Джордж Вашингтон», «Итен Аллен» и «Лафайетт», на вооружении которых находились ракеты «Поларис» трех модификаций. До 1976 года США господствовали в области морских стратегических вооружений, имея преимущество в количестве и качестве АПЛ, в баллистических ракетах для них. Владимир Здорнов в журнале «Техника и вооружение» пишет: «Ответные шаги делает Советский Союз, предпринимая настойчивые усилия к достижению паритета на море в стратегическом звене. В 1967-м судостроительная промышленность передала флоту головные АПЛ нового поколения трех классов (стратегическую, ударную, многоцелевую). Особенно ярко усилия советских конструкторов и судостроителей воплотились в создании ракетного подводного крейсера стратегического назначения (РПКСН) проекта 667А («Навага») – головной корабль в состав флота вступил в том же 1967-м. Он нес на борту 16 ракет РСМ-25, а потому стал на то время самым крупным (водоизмещение порядка 10 тысяч тонн) из отечественных субмарин. Его навигационные средства обеспечивали уверенное плавание и применение ракет в приполюсных районах. Новый ракетный комплекс Д-5, установленный на крейсере, по сути представлял из себя новое поколение морского баллистического ракетного оружия. Он обеспечивал автоматическую предстартовую подготовку ракет, а данные для стрельбы вырабатывались специализированной ЭВМ. Ракета поражала цели на расстоянии 2500 километров. СССР начал догонять США. И тогда ответный шаг делает Вашингтон. В состав ВМС в начале семидесятых годов стали поступать новые подводные атомные лодки с баллистическими ракетами типа «Лафайет» и «Джеймс Медисон», вооруженные ракетами «Посейдон» с разделяющимися головными частями, дальность стрельбы которыми достигала 4600 километров, а головная часть обладала уже 14 боезарядами по 40 Кт, ПЛАРБ прежних серий «Джордж Вашингтон» и «Итен Аллен» были перевооружены – на их борту были установлены ракеты «Поларис A3». Американцы теперь могли наносить ядерные удары по Москве, другим административным и промышленным центрам СССР из Средиземного моря, Северной Атлантики, Северного Ледовитого океана. Не оставшись в долгу, СССР первым в мире создает РПКСН – проект 667Б («Мурена») – с межконтинентальной баллистической ракетой, их на борту 12. Головной корабль вступил в строй в 1972 году. Ракета РСМ-40, установленная на нем, обладала гораздо большей, чем у указанных американских ракет, дальностью стрельбы и равнялась той, что закладывалась в разрабатываемую в США в то время ракету нового поколения «Трайдент-1″» В начале 1980-х СССР и США вступили в новый этап ядерного подводного противостояния, на верфи супердержав были заложены подводные атомоходы третьего поколения. Впервые морские стратегические системы с сопоставимыми характеристиками Москва и Вашингтон ввели почти одновременно. В 1981 году в состав советского ВМФ вошел головной подводный ракетоносец системы проекта 941 «Акула», известный сейчас под название «Тайфун», а в состав военно-морских сил США – суперсубмарины «Огайо». Всего в 1981—1989 годах в Се
interpretive.ru
Бесшумная дизель-электрическая субмарина может навсегда положить конец производству атомных подводных лодок

Атомные подводные лодки (АПЛ) отличаются огромными размерами и диапазоном возможностей, которые включают нахождение под водой в течение длительного времени.

Усовершенствованная дизель-субмарина, построенная французской военно-морской оборонной компанией DCNS Group, ни в чём не уступает АПЛ. Названная SMX-Ocean, она настолько совершенна, что может находиться под водой в течение трёх недель и может пересечь Атлантику шесть раз без всплытия.
Лодка имеет следующие характеристики:
Длина: 100 метров
Высота: 15,5 м
Ширина: 8,8 м
Объём: 4750 тонн
Максимальная глубина погружения: 350 метров
Максимальная скорость, в подводном положении: 20 узлов
Дальность действия: 29000 км
На своём борту она несёт в общей сложности 34 вида оружия, включая торпеды, мины, ракеты: противокорабельные, крылатые и ракеты класса море-воздух.
Это означает, что она может атаковать цели в четырёх средах: под водой, на поверхности моря, на суше и в воздухе.

SMX-Ocean представляет собой прорыв в подводных технологиях, чтобы проявить свои качества она использует принцип движения, независящего от воздуха (Air Independent Propulsion, AIP).
Эта технология позволяет дизельной подводной лодке работать без необходимости доступа к атмосферному кислороду в течение длительных периодов времени, заменяя его другим окислителем (например, жидким кислородом) при движении под водой.
Одним из преимуществ использования AIP над подлодками с ядерными двигателями является то, что у АПЛ должен постоянно быть включён насос охлаждающей жидкости, который шумит. Подводные лодки AIP могут быть почти полностью бесшумными — и, следовательно, гораздо более скрытными.
По мнению экспертов, дизель-электроход SMX-Ocean способен устранить последние сохраняющиеся преимуществ атомных подводных лодок. Он использует новейшие AIP технологии в качестве элементов конструкции корпуса — а именно топливные элементы и литий-ионные батареи. Это позволяет лодке оставаться под водой до 21 дня и пребывать в море в течение 90 дней без захода в порт.
Удивительная подводная лодка имеет на борту даже беспилотные подводные и летательные аппараты.
Атомные подводные лодки, оснащённые новейшими технологиями, становятся всё более недоступным даже для самых богатых государств. Им на смену могут прийти более дешёвые дизель-электрические AIP-лодки.

gearmix.ru
