Содержание

Красный светодиод

Из всех монохромных светодиодов красные были созданы первыми. Практически сразу же их стали применять в световых индикаторах. Постепенно с развитием технологий появились довольно яркие led-источники. Сегодня спрос на красные светодиоды есть практически в каждой производственной сфере, начиная от автомобилестроения и заканчивая сельским хозяйство.

Красный светодиод

Когда появился красный светодиод?

Еще в 1907 года британскими учеными наблюдалось свечение твердотельного диода при прохождении через него электрического тока. Начиная с того времени во всем мире было проведено множество экспериментов, введено понятие «полупроводник», изобретен транзистор и лазер. И только в 1961 году перед миром предстал прибор, которому суждено было перевернуть наши представления об источнике света.

Изобретателем первого настоящего светодиода, излучающего видимый красный цвет, является американский ученый Ник Холоньяк. Полупроводником для генерации излучения стал GaAsP (арсенид-фосфид галлия), который и по сей день используется в производстве, служа основой для темно-красных led-ламп.

Главные характеристики

Длина волны красного света, излучаемого светодиодом, составляет 610-760 нм. Фиксируемое падение напряжения находится в диапазоне 1,63-2,03 Вольт. Помимо GaAsP, сегодня используются и другие легированные структуры, обеспечивающие чистый и яркий красный свет.

Считается, что при соблюдении правил эксплуатации, качественный красный светодиод имеет срок службы 80 тысяч часов. Разделите это число на 24 часа в сутках и затем на 365 дней в году, и вы получите, что красная led-лампа может непрерывно светить более 9 лет.

В реальных условиях существует перегрев, неправильное подключение и скачки напряжения, поэтому срок несколько снижается. Но в любом случае это в десятки раз больше, чем у обычной лампы накаливания.

Благодаря возрастающей с каждым днем конкуренции в продаже представлен широкий ряд моделей светодиодов. Они отличаются своей эффективностью, размерами, углом излучения, мощностью. На их основе создаются современные светильники, прожекторы, собираются модули, дела.

Применение красного светодиода

Практичность красного светодиода доказана временем. Это не просто игрушка для новогодней гирлянды, хотя и такое применение вполне востребовано. На их основе собираются современные светильники, прожекторы, делаются рекламные вывески, запускаются бегущие строки. Вот несколько примеров, как используют этот современный источник света.

Красные светодиоды в стоп-сигналах автомобиля

  1. Постоянно совершенствуются светодиоды для автомобильных стоп-сигналов и подворотников. Некоторые компании имеют специальные отделы, занимающиеся исключительно этим вопросом.
  2. Простое и в тоже время полезное применение красному цвету нашлось в светофоре. Теперь он горит ярче и дольше, что повышает уровень безопасности на дорогах.
  3. Красная светодиодная подсветка применяется в сельском хозяйстве для усиления роста растений. В этой сфере по-прежнему проводятся исследования, подтверждающие положительное влияние искусственного освещения на развитие стеблей и листьев. Ленты из красных светодиодов закрепляются вертикально, образуя занавески, чтобы как можно лучше осветить растение в теплицах. Сверху также подвешиваются блочные светильники.
  4. Самые разнообразные индикаторы редко обходятся без красного света. Его применяют в лабораторных установках, телевизорах, медицинском оборудовании, компьютерах, различных технических приспособлениях.
  5. Удобство в использовании и небольшие затраты на электроэнергию привели к тому что светодиоды красного цвета, как и других цветов, стали использовать дизайнеры для оформления помещений, украшения зданий, создания инсталляций. Теперь это одно из средств самовыражения, инструмент искусства.

Не осталась в стороне сфера медицины. Здесь изучают влияние чистого красного света на самочувствие человека. Предполагается использование излучения в терапевтических целях.

И конечно, надо напомнить, то красные светодиоды применяют в RGB-схемах для получения белого света. Они являются неотъемлемым звеном в конструкции светодиодных экранов, многоцветных лент и других осветительных приборов.

le-diod.ru

основные характеристики и области применения

СИД (светоизлучающие диоды), носящие также более привычное для нас английское название LED (аббревиатура от light-emitting diode), являются настоящими невоспетыми героями в мире электроники. Они выполняют десятки различных функций и применяются сейчас чуть ли не в каждом электронном устройстве. Так, например, они отображают символы на световых табло, передают информацию от пульта дистанционного управления к приемнику сигнала, освещают дома или сообщают вам о текущем состоянии прибора. Собранные вместе зеленые, красные и синие светодиоды могут формировать изображение на огромном телевизионном экране или управлять дорожным движением в светофоре.

Светит, но не греет

В принципе, светодиоды – это лишь миниатюрные лампочки, которые отлично устанавливаются в любую электрическую схему. Но при этом у них нет нити накаливания, обязательной для обычных ламп, вследствие чего они несильно нагреваются. Свет, излучаемый СИД, возникает лишь в результате движения электронов в полупроводнике, соответственно, и срок службы у них такой же, как и у обычного транзистора.

Если сравнивать ресурс работоспособности светодиода и лампы накаливания, то у LED он на тысячи часов больше. Крошечные светодиоды стали заменой трубок, освещающих жидкокристаллические экраны высокой четкости, позволив делать их значительно более тонкими.

Откуда взялся этот странный свет?

Не углубляясь в дебри физических процессов, посмотрим, за счет чего светится СИД.

Свет – это форма энергии, выделяемая атомом, состоящая из множества небольших пакетов частиц с энергией и импульсом, которые называли фотонами. Они вырабатываются при перемещении электронов с дальней орбиты на более ближнюю. Чем больше проходимое электроном расстояние, тем больше энергия выделяемого им фотона, характеризующаяся более высокой частотой. Эта частота как раз и отвечает за длину световой волны, которая и определяет цвет излучения. Например, атомы в стандартном кремниевом диоде устроены таким образом, что электрон падает на относительно короткое расстояние. В результате частота фотонов настолько мала, что невидима для человеческого глаза – она находится в инфракрасной части спектра света. Разумеется, это необязательно плохо: инфракрасные светодиоды идеально подходят, в частности, для пультов дистанционного управления.

Горящие красным светодиоды открывают отрезок видимого человеком светового излучения и уже в состоянии, например, подсвечивать цифры в электронных часах. В зависимости от материалов, используемых в СИД, они могут быть настроены для свечения в инфракрасном, ультрафиолетовом и всех цветах видимого между ними спектра.

Двое из ларца, одинаковых с лица

Вскоре после разработки красного светодиода появились СИД и других цветов. Практически сразу их стали комбинировать, размещая в единой оболочке. Двухцветный светодиод – это устройство с двумя выводами, где в одном корпусе параллельно установлены два встречно направленных диода разного цветового излучения. При этом цвет будет зависеть от полярности подаваемого на устройство напряжения.

Широкое применение получили красно-зеленые светодиоды, используемые в качестве индикатора готовности устройства к работе (горит красный – выключено, зеленый – включено).

Нет в мире совершенства, или Пара недостатков идеального источника света

Очевидно, что LED-технологии еще несовершенны. Одним из недостатков является их уязвимость для высоких температур. Протекание слишком большого тока и, как следствие, перегрев светодиодной схемы вызывают необратимое выгорание, часто называемое светодиодным расплавлением. Кроме того, созданные на основе передовых полупроводниковых материалов светодиоды до недавнего времени были слишком дороги для использования в качестве естественного освещения. Но с 2000-х годов, с запуском массового производства, цена на СИД упала в несколько раз и стала соизмерима со стоимостью обычных ламп, а с учетом долгого срока службы, яркого света, экологичности и потрясающей энергоэффективности использование светодиодов стало более экономичным вариантом освещения для дома.

Великий и ужасный красный фонарь

Остановимся более подробно на том, где нашел применение красный светодиод. Его по праву можно считать «старшим братом» в семействе СИД, хотя бы потому, что он был первым светодиодом, работающим в видимом спектре излучения. Естественно, что и применять его для практических нужд стали раньше других и в первую очередь для привлечения внимания в случае неисправности оборудования. Согласитесь, когда вместо равномерного урчания двигателя ритмично моргает красный светодиод, подсвечивая ту или иную иконку на панели вашего любимого автомобиля или ненаглядной стиральной машинки, то как минимум это вызывает чувство легкой тревоги. Да, именно для оповещения о таких чрезвычайных ситуациях чаще всего и используют индикатор такого типа.

Тайна красного цвета

Красный цвет имеет самую большую длину волны и наименее подвержен рассеиванию, соответственно, он виден с наиболее дальнего расстояния. Потому неудивительно, что мигающий красным светодиод широко используется для аварийных и тревожных фонарей. Причем уровень потребления электроэнергии у СИД такого цвета наименьший среди всех других светодиодов видимого спектра, что обеспечивает максимальное время работы используемого устройства освещения.

Красные светодиодные фонари принято использовать там, где есть необходимость в свете высокой интенсивности, при этом не мешая другим людям. Например, они являются предпочтительными в театре, в кино и для чтения астрономических карт. Красный свет не напрягает глаза, способствуя лучшему расширению зрачков, и позволяет отлично видеть отражающие свет объекты.

И у огородников LED-технологии нашли достойное применение. Синий свет стимулирует начальный рост растения, а использование красных светодиодов улучшает процесс цветения и завязи плодов. Здесь СИД вне конкуренции, поскольку, выделяя огромное количество света, не перегревают и не сушат воздух, в отличие от ламп другого типа, способных нанести вред будущему урожаю.

Чем дальше, тем «чудесатее»

Замена старых ламп накаливания на светодиодные является лишь верхушкой айсберга, LED-история только начинается. Благодаря новым разработкам светодиодные решения выходят на новые горизонты, которые ранее для них были недоступны. Наиболее вероятным представляется направление развития, связанное с использованием органических светодиодов, или OLED.

Органические материалы, применяемые для создания этих полупроводников, являются пластичными, что позволяет уже сегодня создавать образцы гибких источников света и даже дисплеев. Похоже, что именно OLED-технологии проложат дорогу для следующего поколения телевизоров и смартфонов. Ведь действительно удобно снять свой телевизор со стены, свернуть в трубочку и забрать с собой, предположим, на дачу.

Трудно сказать, куда светодиодные технологии пойдут в будущем, но ясно одно – возврата к лампочке Эдисона уже не будет.

fb.ru

5 видов светодиодов — какие самые яркие. Таблицы характеристик, цена и сравнение.

Условно все светодиоды можно разделить на две большие группы:

  • осветительные

Осветительные это те, которые могут обеспечить световой поток не меньше, чем у традиционных источников света. Некоторые модели даже их превосходят.

К ним можно отнести 4 популярных вида:
  • SMD
  • COB
  • Filament
  • PCB STAR

К индикаторным относится dip светодиоды. Рассмотрим сперва их.

Сокращение DIP расшифровывается как Direct In-line Package. Именно их в первую очередь начали массово выпускать в недалеком прошлом.

Трудно представить, но первые неказистые экземпляры для рядовых пользователей стоили от 200$ за штуку.

На сегодняшний день они уже не так распространены, но все же применяются:

  • в устройствах индикации
  • в панелях электронных приборов
  • световых табло
  • или елочных украшениях

По форме корпуса они могут быть круглыми, овальными или прямоугольными. Самые популярные типоразмеры с выпуклыми линзами – 3,5,8,10мм.

Напряжение питания 2,5-5В, при токе до 25мА.

Бывают разноцветными и многоцветными (RGB). Это когда в одном корпусе спрятано 3 перехода, а внизу есть 4 вывода.

В электрических схемах все светодиоды обозначаются как обычный диод с двумя стрелочками.

Несмотря на малые размеры и свою “древность”, отдельные модели из-за специфической формы корпуса, могут выдать в 1,5-2 раза больше яркости, чем некоторые SMD.

К тому же потребление энергии у DIP меньше чем SMD, да и стоят они дешевле. Однако SMD технология не стоит на месте и с каждым годом их параметры стремительно сближаются.

Вот таблицы с основными техническими характеристиками (сила света, рабочее напряжение, сила тока, угол свечения, цена) для индикаторных светодиодов DIP разных типоразмеров. А также расшифровка маркировки их названий и обозначений (для просмотра нажмите на соответствующую вкладку):

Круглые 3ммКруглые 5ммКруглые 8ммКруглые 10ммПрямоугольныеКвадратныеОвальныеЦилиндрические

Данный вид на сегодня является самым популярным. SMD расшифровывается с английского = Surface-Mount-Device.

В своей конструкции они имеют полупроводниковый чип или кристалл, установленный на подложку. Снизу расположены контакты для подключения.

Каждый такой светодиод закрывается в корпусе, который напрямую можно припаивать к любой поверхности. Поэтому то их и называют ”изделиями поверхностного монтажа”.

Несмотря на одинаковое название “СМД”, в продаже можно встретить модели обладающие абсолютно разными:

  • типоразмерами
  • напряжением питания

О популярности данного типа могут говорить следующие цифры. Общее количество производимых светодиодов SMD, только в одном корпусе 2835, за год составляет несколько миллиардов штук.

Почему они так популярны? Конечно из-за своих достоинств:

  • малая стоимость
  • высокая надежность
  • продолжительный срок службы
  • ну а самое главное – высокая светоотдача
Именно SMD вид используется в большинстве светодиодных лампочек и светильников.

Таблицы всех технических характеристик наиболее популярных марок светодиодов марки SMD 2835, 3528, 5050, 5730:

SMD 2835SMD 3528SMD 5050SMD 5730

COB – Chip On Board. У этого вида большое количество маленьких кристаллов размещено на единой подложке и все это собрано в одном корпусе.

Схема соединения этих кристаллов – последовательно параллельная. Сверху они заливаются люминофором.

По-другому их называют светодиодными матрицами. Их достоинства:

  • легкость монтажа
  • хороший световой поток
  • разнообразная форма сборки светодиодов

Все эти преимущества очень кстати подошли для изготовления ярких и компактных прожекторов. Также КОБы активно применяют там, где нужна акцентированная и декоративная подсветка.

Однако из-за близости расположения кристаллов друг к другу, происходит сильный нагрев корпуса, даже если вы и обеспечите нормальное охлаждение. Поэтому если вам нужна качественная фокусировка, придется использовать силиконовую оптику.

Она стойка не только к высоким температурам, но самое главное выдерживает без последствий огромное количество циклов нагрев-остывание.

На абы какую поверхность COM матрицы ставить нельзя. Ее необходимо предварительно подготовить.

В противном случае, от перепадов температур, подложка деформируется, что еще больше повысит температуру светодиода и приведет к его повреждению.

Кстати, это основная причина выхода из строя светодиодных прожекторов. 

Приблизительно на один светодиодный ватт в режиме 100Лм/Вт нужно 20см2 площади радиатора.

По норме от 6 до 10Вт может пассивно принять воздух, в то время как теплопроводность алюминия 200-300 Вт/(м*К).

Есть у COB светодиодов и другие недостатки:

  • светоотдача и срок службы меньше чем у SMD видов

Поэтому на сегодня, для решения именно энергоэффективных задач в освещении, КОБ модели не совсем подходят. Это будет экономически не целесообразным.

Таблицы технических характеристик COB светодиодов:

COB 3ВтCOB 5ВтCOB 7ВтCOB 9ВтCOB 10ВтCOB 15ВтCOB 20ВтCOB 30Вт

И матриц:

Матрица 50ВтМатрица 150ВтМатрица 10Вт

Filament светодиоды

Филаментные модели представляют из себя стеклянную полоску с наклеенными поверх нее светодиодами. С двух концов полоски металлизируются.

Через них подается питание. Если здесь применить различные кристаллы, то можно добиться достаточно высокого CRI.

Люминофор наносится сверху. При этом вся конструкция помещена в стеклянную колбу, как в обычной лампочке.

Однако для всей этой конструкции, как и в любом ярком светодиоде требуется охлаждение.

Для этого здесь применяют газ — гелий. Именно благодаря ему, происходит отвод тепла на внешние стенки колбы филаментной лампочки.

По простому можно сказать, что филаментная лампочка – это КОБ светодиод, который поместили в газовую среду. Достоинства филаментных моделей:

  • можно легко изготавливать привычные нам всем модели лампочек классического вида (груша, свеча, шарик). При этом начинка у них будет модернизированная.
  • одинаковое светораспределение как и у ламп накаливания

Именно поэтому их применяют как альтернативная замена обычным лампочкам в светильниках и люстрах.

Однако свечение такой лампы все же сопровождается высоким нагревом. Вследствие чего, наблюдается постепенная деградация диодов, и как итог – их непродолжительный срок службы.

Таблица сравнения филаментных моделей и других видов ламп и источников света:

PCB Star светодиоды

Если исходить из занимаемой площади, то эти светодиоды занимают первое место по величине светового потока.

Данный светодиод состоит из одного единственного кристалла, имеющего большую площадь (относительно моделей SMD).

Однако по большому счету, это тот же самый SMD вид. Он напаивается к подложке из алюминия, напоминающую по форме звезду.

Если у вас очень мощный источник света, а не множество кристаллов, то и фокусировка его упрощается. Поэтому из таких типов светодиодов PCB Star и начали массово делать яркие мощные прожекторы и не менее яркие ручные фонарики.

Таблицы всех технических характеристик светодиодов “звезда”:

Star 1ВтStar 1Вт без платыОтдельно платыStar 3ВтStar 3Вт без платыStar 5ВтStar 5Вт без платы

Из всех представленных видов на сегодняшний день, SMD модели являются самыми универсальными. Из них делают множество световой продукции:

При этом производители добиваются вполне оптимальных решений по цене и светоотдаче.

svetosmotr.ru

Характеристики светодиодов, применение и схема подключения

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Все эти элементы внутреннего монтажа уже уходят в прошлое

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.

Устройство светового диода с пояснениями

Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.

В наше время светодиодные лампы могут быть даже такими

1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.

Фонари на диодах со специальными линзами светят на расстояние до 3 км
Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

  • Экономичность без потери силы светового потока – здесь они вне конкуренции;
  • Прочный корпус – отсутствует опасность механического повреждения;
  • Долговечность – такие элементы работают в десятки раз дольше ламп накаливания;
  • Компактность – имеют малые габариты;
  • Наиболее безопасны – работают от сети 3-24 В;
  • Экологичны – не требуют специальной утилизации.

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования драйвера(электронного стабилизирующего блока).
Ультрафиолетовый и инфракрасный световые диоды – изготавливают даже такие

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке светодиодных ламп. На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.

RGB прожекторы с контроллером и пультом ДУ действительно хороши

Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиодаМатериалПрямое напряжение при 20 мА
Типовое значение (В)Диапазон (В)
ИКGaAs, GaAlAs1,21,1-1,6
КрасныйGaAsP, GaP, AlInGaP2,01,5-2,6
ОранжевыйGaAsP, GaP, AlGaInP2,01,7-2,8
ЖелтыйGaAsP, AlInGaP, GaP2,01,7-2,5
ЗеленыйGaP, InGaN2,21,7-4,0
ГолубойZnSe, InGaN3,63,2-4,5
БелыйСиний/УФ диод с люминофором3,62,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.

Точечный потолочный светильник на диодах очень экономичен

Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 1200. По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I×U, где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой блок питания необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.

На такой платформе могут быть сотни кристаллов

Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.

Подделку довольно тяжело отличить от оригинала при покупке

Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.

Вот они, LED SMD2835. Маленькие, но света от них достаточно

Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

ПараметрКитайский 28352835 0,2W2835 0,5W2835 1W
Сила светового потока, Лм82050100
Потребляемая мощность, Вт0,090,20,51
Температура, в градусах С+60+80+80+110
Ток потребления, мА2560150300
Напряжение, В3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 1200.

На таких элементах делается лампа «кукуруза»

Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

ПараметрПоказатель
Сила светового потока, Лм45-50
Потребляемая мощность, Вт0,5
Диапазон рабочих температур, в градусах СОт -40 до +80
Номинальный ток, мА150
Рабочее напряжение, В3,1-3,2
Угол освещения120 градусов

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.

Элементы на ленте могут располагаться и в 2 ряда для яркости

Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

МодификацияXM-LXR-E, XP-G, XP-E, XP-C
Сила светового потока, Лм/втT5 (от 260 до 280)T6 (от 280 до 300)U2 (от 300 до 320)Q2 (от 87,4 до 93,9)Q3 (от 93,9 до 100)Q4 (от 100 до 107)Q5 (от 107 до 114)R2 (от 114 до 122)

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.

Нить накала постепенно уходит в историю

Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).

Мультиметром довольно просто прозвонить световой диод

Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.

Такие обозначения могут встретится на маркировке ленты

Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в кодеНазначениеОбозначенияРасшифровка обозначения
1Источник светаLEDСветодиод
2Цвет свеченияRКрасный
GЗеленый
BСиний
RGBЛюбой
CWБелый
3Способ монтажаSMDSurface Mounted Device (Устройство, монтируемое на поверхность)
4Размер чипа30283,0 х 2,8 мм
35283,5 х 2,8 мм
28352,8 х 3,5 мм
50505,0 х 5,0 мм
5Количество светодиодов на метр длины30
60
120
6Степень защиты:IPInternational Protection
7От проникновения твердых предметов0-6Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8От проникновения жидкости0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.

Ассортимент ламп для дома на световых диодах довольно широк

Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Игорь Мармазов

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”

Стабилизатор для диодных ламп – подобный можно спаять самостоятельно

Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.

Схема подключения дневных ходовых огней на автомобиле

Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.

Такую рекламу легко можно сделать самостоятельно

Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.

Простейшая цветомузыка – осталось подключить датчик звука

В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.

Этот диод можно с легкостью заменить при желании

Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).

Такова схема последовательного подключения световых диодов

Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Разберемся, как рассчитать сопротивление для светодиода.

Сделать это можно по формуле:

R = (VS – VL) / I,где

  • VS–напряжение питания;
  • VL –номинальное напряжение для светодиода;
  • I – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.

Параллельно подключенные последовательные тройки световых диодов

Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.

Идеальная подсветка потолка при помощи светодиодной ленты

В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

seti.guru

Красные лазерные диоды

Модель

Тип лазера Длина волны (nm) Мощность
(mW)
Темп. диапазон Тип корпуса Произв. pdf
ADL-63054TL FP 635 5 -10…+50 ТО-18, 3-pin,
window cap
AL
LD6305A5 FP 635 5 -10…+50 ТО-18, 3-pin,
window cap
AL
ADL-63102TL-3 FP 635 10 -10…+50 ТО-18, 3-pin,
window cap
AL
ADL-63104TL FP 635 10 -10…+50 ТО-18, 3-pin,
window cap
AL
LD6310B4 FP 635 10 -10…+50 ТО-18, 3-pin,
window cap
UO
QL63F5SA4 FP 635 10 -10…+50 ТО-18, 3-pin,
window cap
QSI
ADL-63153TL FP 635 15 -10…+50 ТО-18, 3-pin,
window cap
AL
ADL-63203TL FP 635 20 -10…+40 ТО-18, 3-pin,
window cap
AL
QL63H5SA FP 635 20 -10…+40 ТО-18, 3-pin,
window cap
QSI
ADL-63301TL FP 635 30 -10…+40 ТО-18, 3-pin,
window cap
AL
ADL-65052TL FP 650 5 -10…+40 ТО-18, 3-pin,
window cap
AL
ADL-65055TL FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
AL
ADL-65055TA2 FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
встроенный драйвер
AL
OP-651 FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
FTI
LD6505A5 FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
UO
HLDP-650 A-5-02 FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
HJ
QL65D5SA-P FP 650 5 -10…+50 ТО-18, 3-pin,
window cap
QSI
ADL-65074TL FP 650 7 -10…+85 ТО-18, 3-pin,
window cap
AL
QL65F5SA FP 650 10 -10…+85 ТО-18, 3-pin,
window cap
QSI
QL65F5SC FP 650 10 -10…+85 ТО-18, 3-pin,
window cap
QSI
ADL-65102TL FP 650 10 -10…+50 ТО-18, 3-pin,
window cap
AL
ADL-65103TL FP 650 10 -10…+50 ТО-18, 3-pin,
window cap
AL
OP-652 FP 650 10 -10…+50 ТО-18, 3-pin,
window cap
FTI
LD653051A FP 650 30 -10…+50 ТО-18, 3-pin,
window cap
UO
ADL-66302TU FP 660 30 -10…+50 ТО-18, 3-pin,
window cap
AL
QL65I7SC FP 660 35 -10…+50 ТО-18, 3-pin,
window cap
QSI
LD6650E4 FP 660 50 -10…+50 ТО-18, 3-pin,
window cap
UO
ML101J21 FP 660 80 -10…+50 ТО-18, 3-pin,
window cap
MLD
ADL-66Z01HU FP 660 100 -10…+50 ТО-18, 3-pin,
window cap
AL
LD66A051A FP 660 100 -10…+50 ТО-18, 3-pin,
window cap
UO
ML101J25 FP 660 100 -10…+50 ТО-18, 3-pin,
window cap
MLD
ADL-66Z51DL FP 660 150 -10…+50 ТО-18, 3-pin,
window cap
AL

www.fti-optronic.com

Правильное включение светодиода — ОРБИТА-СОЮЗ

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие.
Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

    * Низкое электропотребления – в 10 раз экономичней лампочек
    * Долгий срок службы – до 11 лет непрерывной работы
    * Высокий ресурс прочности – не боятся вибраций и ударов
    * Большое разнообразие цветов
    * Способность работать при низких напряжениях
    * Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания.
Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках.
Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Цвета светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

            Таблица 1. Маркировка светодиодов

Многоцветные светодиоды

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Напряжение питания

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.
Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R — сопротивление резистора в омах.
Uпит — напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах.
Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт.
Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

         Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

Где:

    * Nmax – максимально допустимое количество светодиодов в гирлянде
    * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах.
    * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.
    * При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Все остальные действия по расчетам производятся в аналогии расчета резистора при одиночном включении светодиода.

Если напряжения источника питания не хватает даже для двух последовательно соединённых светодиодов, тогда на каждый светодиод нужно ставить свой ограничительный резистор.

Параллельное включение светодиодов с общим резистором — плохое решение. Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый, что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Последовательное соединение светодиодов предпочтительнее ещё и с точки зрения экономного расходования источника питания: вся последовательная цепочка потребляет тока ровно столько, сколько и один светодиод. А при параллельном их соединении ток во столько раз больше, сколько параллельных светодиодов у нас стоит.

Рассчитать ограничительный резистор для последовательно соединённых светодиодов так же просто, как и для одиночного. Просто суммируем напряжение всех светодиодов, отнимаем от напряжения источника питания получившуюся сумму (это будет падение напряжения на резисторе) и делим на ток светодиодов (обычно 15 — 20 мА).

А если светодиодов у нас много, несколько десятков, а источник питания не позволяет соединить их все последовательно (не хватит напряжения)? Тогда определяем исходя из напряжения источника питания, сколько максимально светодиодов мы можем соединить последовательно. Например для 12 вольт — это 5 двухвольтовых светодиодов. Почему не 6? Но ведь на ограничительном резисторе тоже должно что-то падать. Вот оставшиеся 2 вольты (12 — 5х2) и берём для расчёта. Для тока 15 мА сопротивление будет 2/0.015 = 133 Ома. Ближайшее стандартное — 150 Ом. А вот таких цепочек из пяти светодиодов и резистора каждая, мы уже можем подключить сколько угодною Такой способ называется параллельно-последовательным соединением.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Далее рассмотрим стабилизированную схему включения светодиодов. Коснёмся изготовления стабилизатора тока. Существует микросхема КР142ЕН12 (зарубежный аналог LM317), которая позволяет построить очень простой стабилизатор тока. Для подключения светодиода (см. рисунок) рассчитывается величина сопротивления R = 1.2 / I (1.2 — падение напряжения не стабилизаторе) Т.е., при токе 20 мА, R = 1,2 / 0.02 = 60 Ом. Стабилизаторы рассчитаны на максимальное напряжение в 35 вольт. Лучше не напягать их так и подавать максимум 20 вольт. При таком включении, например, белого светодиода в 3,3 вольта возможна подача напряжения на стабилизатор от 4,5 до 20 вольт, при этом ток на светодиоде будет соответствовать неизменному значению в 20 мА. При напряжении 20В получаем, что к такому стабилизатору можно подключить последовательно 5 белых светодиодов, не заботясь о напряжении на каждом из них, ток в цепи будет протекать 20мА (лишнее напряжение погасится на стабилизаторе).

Важно! В устройстве с большим количеством светодиодов протекает большой ток. Категорически воспрещается подключать такое устройство к включенному источнику питания. В этом случае, в месте подключения, возникает искра, которая ведет к появлению в цепи большого импульса тока. Этот импульс выводит из строя светодиоды (особенно синие и белые). Если светодиоды работают в динамическом режиме (постоянно включаются, выключаются и подмаргивают) и такой режим основан на использовании реле, то следует исключить возникновение искры на контактах реле.

Каждую цепочку следует собирать из светодиодов одинаковых параметров и одного производителя.
Тоже важно ! Изменение температуры окружающей среды влияет на протекающий ток через кристалл. Поэтому желательно изготавливать устройство так, чтобы протекающий ток через светодиод был равен не 20мА, а 17-18 мА. Потеря яркости будет незначительная, зато долгий срок службы обеспечен.

Как запитать светодиод от сети 220 В.

Казалось бы все просто: ставим последовательно резистор, и всё. Но нужно помнить об одной важной характеристике светодиода: максимально допустимом обратном напряжении. У большинства светодиодов оно около 20 вольт. А при подключении его в сеть при обратной полярности (ток-то переменный, полпериода в одну сторону идёт, а вторую половину — в обратную) к нему приложится полное амплитудное напряжение сети — 315 вольт! Откуда такая цифра? 220 В — это действующее напряжение, амплитудное же в {корень из 2} = 1,41 раз больше.
Поэтому, чтобы спасти светодиод нужно поставить последовательно с ним диод, который не пропустит к нему обратное напряжение.

Еще один вариант подключения светодиода к электросети 220в:

Или же поставить два светодиода встречно-параллельно.

Вариант питания от сети с гасящим резистором не самый оптимальный: на резисторе будет выделяться значительная мощность. Действительно, если применим резистор 24 кОм (максимальный ток 13 мА), то рассеиваемая на нём мощность будет около 3 Вт. Можно снизить её в два раза, включив последовательно диод (тогда тепло будет выделяться только в течение одного полупериода). Диод должен быть на обратное напряжение не менее 400 В. При включении двух встречных светодиодов (существуют даже такие с двумя кристаллами в одном корпусе, обычно разных цветов, один кристалл красного свечения, другой зелёного) можно поставить два двухваттных резистора, каждый сопотивлением в два раза меньше.
Оговорюсь, что применив резистор большого сопротивления (например 200 кОм) можно включить светодиод и без защитного диода. Ток обратного пробоя будет слишком мал, чтобы вызвать разрушение кристалла. Конечно, яркость при этом весьма мала, но например для подсветки в темноте выключателя в спальне её будет вполне достаточно.
Благодаря тому, что ток в сети переменный, можно избежать ненужных трат электричества на нагрев воздуха ограничительным резистором. Его роль может выполнять конденсатор, который пропускает переменный ток, не нагреваясь. Почему так — вопрос отдельный, рассмотрим его позже. Сейчас же нам нужно знать, что для того, чтобы конденсатор пропускал переменный ток, через него должны обязательно проходить оба полупериода сети. Но ведь светодиод проводит ток только в одну сторону. Значит, ставим встречно-параллельно светодиоду обычный диод (или второй светодиод), он и будет пропускать второй полупериод.

Но вот мы отключили нашу схему от сети. На конденсаторе осталось какое-то напряжение (вплоть до полного амплитудного, если помним, равного 315 В). Чтобы избежать случайного удара током, предусмотрим параллельно конденсатору разрядный резистор большого номинала (чтобы при нормальной работе через него тёк незначительный ток, не вызывающий его нагрева), который при отключении от сети за доли секунды разрядит конденсатор. И для защиты от импульсного зарядного тока тоже поставим низкоомный резистор. Он также будет играть роль предохранителя, мгновенно сгорая при случайном пробое конденсатора (ничто не вечно, и такое тоже случается).

Конденсатор должен быть на напряжение не менее 400 вольт, или специальный для цепей переменного тока напряжением не менее 250 вольт.
А если мы хотим сделать светодиодную лампочку из нескольких светодиодов? Включаем их все последовательно, встречного диода достаточно одного на всех.

Диод должен быть рассчитан на ток, не меньший чем ток через светодиоды, обратное напряжение — не менее суммы напряжения на светодиодах. А ещё лучше взять чётное число светодиодов и включить их встречно-параллельно.

На рисунке в каждой цепочке нарисовано по три светодиода, на самом деле их может быть и больше десятка.
Как расчитать конденсатор? От амплитудного напряжения сети 315В отнимаем сумму падения напряжения на светодиодах (например для трёх белых это примерно 12 вольт). Получим падение напряжения на конденсаторе Uп=303 В. Ёмкость в микрофарадах будет равна (4,45*I)/Uп, где I — необходимый ток через светодиоды в миллиамперах. В нашем случае для 20 мА ёмкость будет (4,45*20)/303 = 89/303 ~= 0,3 мкФ. Можно поставить два конденсатора 0,15 мкф (150 нФ) параллельно.

Наиболее распространённые ошибки при подключении светодиодов

1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.

2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).

3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.

4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.

5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.

6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.

Мигающие светодиоды

Мигающий сеетодиод (МСД) представляет собой светодиод со встроенным интегральным генератором импульсов с частотой вспышек 1,5 -3 Гц.
Несмотря на компактность в мигающий светодиод входит полупроводниковый чип генератора и некоторые дополнительные элементы. Также стоит отметить то, что мигающий светодиод довольно универсален — напряжение питания такого светодиода может лежать в пределах от З до 14 вольт — для высоковольтных, и от 1,8 до 5 вольт для низковольтных экземпляров.

Отличительные качества мигающих сеетодиодое:

    • Малые размеры
    • Компактное устройство световой сигнализации
    • Широкий диапазон питающего напряжения (вплоть до 14 вольт)
    • Различный цвет излучения.

В некоторых вариантах мигающих светодиодов могут быть встроены несколько (обычно — 3) разноцветных светодиода с разной периодичностью вспышек.
Применение мигающих светодиодов оправдано в компактных устройствах, где предьявляются высокие требования к габаритам радиоэлементов и электропитанию — мигающие светодиоды очень экономичны, т..к электронная схема МСД выполнена на МОП структурах. Мигающий светодиод может с лёгкостью заменить целый функциональный узел.

Условное графическое обозначение мигающего светодиода на принципиальных схемах ничем не отличается от обозначения обычного светодиода за исключением того, что линии стрелок- пунктирные и символизируют мигающие свойства светодиода.

Если взглянуть сквозь прозрачный корпус мигающего светодиода, то можно заметить, что конструктивно он состоит из двух частей. На основании катодного (отрицательного вывода) размещён кристалл светоизлучающего диода.
Чип генератора размещён на основании анодного вывода.
Посредством трёх золотых проволочных перемычек соединяются все части данного комбинированного устройства.

Отличить МСД от обычного светодиода легко по внешнему виду, разглядывая его корпус на просвет. Внутри МСД находятся две подложки примерно одинакового размера. На первой из них располагается кристаллический кубик светоизлучателя из редкоземельного сплава.
Для увеличения светового потока, фокусировки и формирования диаграммы направленности применяется параболический алюминиевый отражатель (2). В МСД он немного меньше по диаметру, чем в обычном светодиоде, так как вторую часть корпуса занимает подложка с интегральной микросхемой (3).
Электрически обе подложки связаны друг с другом двумя золотыми проволочными перемычками (4). Корпус МСД (5) выполняется из матовой светорассеивающей пластмассы или из прозрачного пластика.
Излучатель в МСД расположен не на оси симметрии корпуса, поэтому для обеспечения равномерной засветки чаще всего применяют монолитный цветной диффузный световод. Прозрачный корпус встречается только у МСД больших диаметров, обладающих узкой диаграммой направленности.

Чип генератора состоит из высокочастотного задающего генератора — он работает постоянно -частота его по разным оценкам колеблется около 100 кГц. Совместно с ВЧ-генератором работает делитель на логических элементах, который делит высокую частоту до значения 1,5- 3 Гц. Применение высокочастотного генератора совместно с делителем частоты связано с тем, что для реализации низкочастотного генератора требуется использование конденсатора с большой ёмкостью для времязадающей цепи.

Для приведения высокой частоты до значения 1-3 Гц используются делители на логических элементах, которые легко разместить на небольшой площади полупроводникового кристалла.
Кроме задающего ВЧ-генератора и делителя на полупроводниковой подложке выполнен электронный ключ и защитный диод. У мигающих светодиодов, рассчитанных на напряжение питания 3-12 вольт, также встраивается ограничительный резистор. У низковольтных МСД ограничительный резистор отсутствует Защитный диод необходим для предотвращения выхода из строя микросхемы при переполюсовке питания.

Для надёжной и долговременной работы высоковольтных МСД, напряжение питания желательно ограничить на уровне 9 вольт. При увеличении напряжения возрастает рассеиваемая мощность МСД, а, следовательно, и нагрев полупроводникового кристалла. Со временем чрезмерный нагрев может привести к быстрой деградации мигающего светодиода.

Безопасно проверить исправность мигающего светодиода можно с помощью батарейки на 4,5 вольта и последовательно включенного совместно со светодиодом резистора сопротивлением 51 Ом, мощностью не менее 0,25 Вт.

Исправность ИК-диода можно проверить при помощи фотокамеры сотового телефона.
Включаем фотоаппарат в режим съемки, ловим в кадр диод на устройстве (например, пульт ДУ), нажимаем на кнопки пульта, рабочий ИК диод должен в этом случае вспыхивать.

В заключении следует обратить внимание на такие вопросы как пайка и монтаж светодиодов. Это тоже очень важные вопросы, которые влияют на их жизнеспособность.
светодиоды и микросхемы боятся статики, неправильного подключения и перегрева, пайка этих деталей должна быть максимально быстрая. Следует использовать маломощный паяльник с температурой жала не более 260 градусов и пайку производить не более 3-5 секунд (рекомендации производителя). Не лишним будет использование медицинского пинцета при пайке. Светодиод берется пинцетом выше к корпусу, что обеспечивает дополнительный теплоотвод от кристалла при пайке.
Ножки светодиода следует гнуть с небольшим радиусом (чтобы они не ломались). В результате замысловатых изгибов, ноги у основания корпуса должны остаться в заводском положении и должны быть параллельны и не напряжены (а то устанет и кристалл отвалится от ножек).

Чтобы ваше устройство защитить от случайного замыкания или перегрузки следует ставить предохранители.

Скачать:
1. Програма для автоматического подбора резистора при подключении светодиодов — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
2. Программа автоматического расчета токоограничивающего резистора светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту
3. Интернет-ресурс для автоматического расчета и подбора резисторов светодиода — Пожалуйста Войдите или Зарегистрируйтесь для доступа к этому контенту

os-info.ru

Светодиоды 440-450нм и 660-670нм для растений и фитолампа на них

Как то я уже рассказывал о изготовлении ламп для подсветки растений из наборов с ТАО. Тогда меня покритиковали, что я использовал светодиоды «неправильного спектра».

И вот я решил исправится и купил «правильные светодиоды» синие 440-450нм и красные 660-670нм.
Брать именитые Bridgelux почти за 1$ не позволила жаба, поэтому на свой страх и риск купил неизвестного производителя. Опыт удался, за подробностями под кат.

Заказ

Итак перелопатив десятки продавцов на ТАОБАО решил рискнуть и взять у этого продавца
Лот на светодиоды один, но в опциях можно выбрать синие, красные, 1,3 и 5 Вт, а также уже напаянные на алюминиевую звездочку.

Цена через посредника MisterTao:

Синий светодиод (450-455нм) 3вт без радиатора — $0.23 x 20шт = $4.6
Красный светодиод (660-670нм) 3вт без радиатора — $0.31 x 20шт = $6.2
С доставкой и комиссией получается около $17 или $0.42 за штуку если больше ничего не брать.
Я брал, поэтому мне они вышли дешевле.

Производитель светодиодов имеет сайт на китайском, на котором есть много интересной светодиодной продукции.
К сожалению до даташитов этот производитель еще не дорос.

Заказ был доставлен еще в ноябре за 33 дня обычной почтой.

Характеристики

Красные светодиоды 3Вт
Код производителя: PJH-P3R140A1-60T
Длина волны: 660-660 нм
Рабочее напряжение: 2.6-3.0 В
Максимальный ток: 700 мА
Размер кристалла: 4.3 мм
Световой поток: 60-80 лм

Синие светодиоды 3Вт
Код производителя: PJH-P3R140A1-30T
Длина волны: 450-455 нм
Рабочее напряжение: 3.4-3.8 В
Максимальный ток: 700 мА
Размер кристалла: 4.5 мм
Световой поток: 30-40 лм

Пришли светодиоды в пакетиках подписанных от руки по китайски

Люминофора у монохромных светодиодов нет, линзы прозрачные и кристаллы видны. У синего (слева) кристалл чуть больше чем у красного (справа), что соответствует описанию.

Распаиваю проверенным методом при помощи термопасты и фена на алюминиевые радиаторы-звездочки.

Радиаторы звездочки намазываю КПТ-8 и двумя капельками суперклея креплю к алюминиевому профилю

Снимаю вольт-амперную характеристику

Подключаю поочередно синий и красный диоды к источнику 5В через мощный переменный резистор.

Вольт-амперную характеристика и зависимость мощности от тока

Как видно из графика и таблицы, красный светодиод при паспортном токе 700мА выдает мощность 1.65 Вт при рабочем напряжении 2.36 В. Синий ближе к заявленным характеристикам.

Драйвер для светодиодов (4-6)x3Вт у меня лежал давно. Я ему давно заменил радиатор на более мощный

Подключаю и получаю мигалку-цветомузыку ))). Светодиоды начинают моргать примерно раз в секунду.
Драйвер дает больше напряжения, чем нужно 5-ти последовательным светодиодам. Всему виной красные диоды с низким рабочим напряжением.

Впаиваю последовательно диодам 1-ваттный резистор на 2 Ом и все работает нормально, хотя резистор сильно греется. Думаю, в дальнейшем добавлю еще один красный диод, а пока продолжим тестировать:

Ток в цепи светодиодов почти 0.6А

Напряжение 13.5В

Померил напряжение на каждом диоде, посчитал мощность, получил, что синие работают на 2Вт, красные на 1.3Вт.
Мощность по синему цвету — 4Вт, по красному 3.9Вт.
Суммарная мощность светильника 7.9Вт + чуть меньше 1 Вт на сопротивлении.

После часа работы светодиодов, радиатор нагрелся до 41 С

А что же со спектром?
Обманул нас продавец или нет?

Измерение длины волны светодиодов при помощи дифракционной решетки

Для измерения спектра попросил у знакомого учителя физики принести из кабинета спектрометр. Получил дифракционную решетку с шагом 0.002 мм и комментарий, что они спектры на такими уроке измеряют.

Сворачиваю бумажную трубу, вставляю туда решетку. Креплю к алюминиевому профилю с напечатанной линейкой.

Посветил зеленым лазером 532 нм. Четко видно отклонение луча с 1-м и 2-м максимумом света

Белый цвет фонарика разлагается на цвета

Светодиод дает круг. Установка на входе трубы щели 1мм форму пятна не меняет, а яркость пятен снижает. Значит будем мерить между краями пятен.

Для каждого источника света были проведены ряд измерений с разным расстоянием до решетки. Получаем следующую таблицу

Длина волны каждого источника соответствует заявленным характеристикам. Точность измерения не менее 5%.
Для большей точности нужно собирать жесткую конструкцию спектрометра.

Выводы:

1. Спектральные характеристики светодиодов близки к заявленным производителем. Если синие довольно близки по характеристикам к тем, что применялись мною раньше, то красные имеют «более правильный» спектр для реакции фотосинтеза.

2. Мощность красного светодиода меньше синего при одинаковом токе и ниже заявленной в характеристиках. Для поднятия мощности их ближе к паспортной нужно питать красные светодиоды отдельно драйвером на 900 — 1000 мА, но сколько они проработают в таком режиме, неизвестно. Я решаю проблему разности мощности увеличением количества красных светодиодов.

3. В целом светодиоды вполне оправдали мои ожидания и годятся для изготовления фитоламп.

4. Эффективность фитолампы оценить пока трудно. Растения хорошо живут с дополнительным светом. Весной будут ящики с рассадой. Освещу половину фитосветом и сравню рост.

Фито лампа в деле

Телевизор для кота

Собрал новую кормушку для птиц из «набора водопроводчика» более ни на что не пригодившегося.

Теперь кот занят. Хотя недоступные птицы быстро надоедают )))


Почитать о всех моих поделках можно в моем боге

mysku.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *