электромагнитная пушка США / Оружие / magSpace.ru

Пентагон провел успешные испытания электромагнитной пушки на наземном оружейном полигоне ВМС в Дальгрене, штат Вирджиния. Заряд пролетел через лесистую местность, преодолев всего 1676 м, правда его со смыслом направили по очень низкой траектории. По оптимальной траектории, подсчитали специалисты, он пролетел бы в сто раз большее расстояние — около 160 км.

В перспективе дальность полета снарядов может достичь 200 морских миль, то есть 370 километров.
Снаряд электромагнитной пушки представляет собой обычную 8 кг болванку, без взрывчатки внутри. Он поражает цель за счет высокой кинетической энергии, которая выделяется при ударе. Скорость, с которой снаряд вылетает из пушки, превышает скорость звука в пять-восемь раз.





 
Сила удара суперпушки достигла 33 мегаджоулей. В один мегаджоуль можно оценить, например, работу, которую выполняет автомобиль весом в одну тонну, следующий со скоростью в 150 км/ч.
Это оружие — надежда американского флота. Контр-адмирал Невин Карр, руководитель флотских исследовательских программ, пояснил, что если направить электромагнитную пушку на арсенал боеприпасов корабля противника, то «его взрывчатка станет вашей взрывчаткой».

Пушка состоит из двух электропроводных направляющих, по которым движется снаряд. Ток, идущий по рельсам, возбуждает магнитное поле, которое перпендикулярно току, проходящему через снаряд и смежный рельс. В результате происходит взаимное отталкивание рельсов и ускорение снаряда. Для разгона непроводящего ток снаряда на его донце устанавливается шайба из токопроводящего материала, например алюминия, затем зажигается плазменная дуга, которая испаряет шайбу и ускоряет снаряд реактивной струей.

 

magspace.ru

Рельсовая электромагнитная пушка ВМС США

Специалисты центра разработки надводного вооружения ВМС США в Далгрен (штат Виргиния) создали экспериментальный образец электромагнитной пушки, которая, согласно планом войдет в состав вооружения перспективных боевых кораблей, в частности эсминцев DDG-1000 «Замволт».  Рельсовая электромагнитная пушка (Electromagnetic Railgun), это оружие, воздействующее на цель посредством разогнанного до скорости несколько километров в секунду снаряда. Свое название оружие получило из-за воздействия на цель кинетической энергией поражающих элементов. Командование ВМС США занимается вопросами разработки систем артиллерийского вооружения сверхдальнего поражения для надводных кораблей, которые войдут в состав флота после 2016 года. Одним из наиболее перспективных направлений и является создание электромагнитных рельсовых пушек.

 

В рамках проводимых научных исследований фирма «BAE Systems» в январе 2012 года поставила в Центр наземных военных исследований ВМС США полноразмерный демонстрационный образец рельсовой электромагнитной пушки с кинетической энергией разогнанного снаряда в конце канала ствола около 32 МДж. С помощью этой пушки снаряды массой 18 кг будут лететь со скоростью до 2,5 км/с на дальность от 89 и до 161 км. 


Испытания различных моделей электромагнитных пушек начались в США в марте 2007 года. За все время проведения тестов были проверены различные конфигурации ствола и конструкции направляющих рельсового типа. При этом производились и испытания сплавов, из которых изготовлены различные элементы пушки. 


Проектированием и изготовлением импульсного источника энергии, который должен обеспечить работу на борту корабля электромагнитной пушки и других систем оружия, занимается американская компания «Рейтеон».

В настоящее время соответствующие научные исследования возглавляет управление по военно-морским исследованиям ВМС страны, которое реализует план исследований и разработок с дальнейшим принятием на вооружение нового вида оружия.


Испытания будут продолжаться вплоть до 2017 года. По заявлению представителя фирмы «BAE Systems», пока стрельба ведется снарядами не аэродинамической формы. Их форма оптимизирована для наиболее эффективного разгона в канале ствола. 


В дальнейшем ожидается, что в качестве боеприпасов будут использоваться управляемые снаряды. При этом поражение цели должно происходить не за счет использования обычных взрывчатых веществ, а за счет высокой кинетической энергии самого снаряда.

Целью специалистов но данном этапе является проверка работы всех систем и узлов установки.


В дальнейшем планируется начать испытания на дальность стрельбы до 160 км, а затем это расстояние будет увеличено до 350 км.


В 2013 году командование ВМС США заключило контракт с компанией «BAE Systems» на разработку нового образца рельсовой пушки, который будет способен вести огонь очередями без перегрева ствола. 


В 2016 году, согласно его планам, будут проведены испытания новой рельсовой пушки с борта корабля.


Согласно планам в 2016 году предполагается установить опытный образец электронной пушки на быстроходный транспорт JHSV-3 «Millinocket» и продемонстрировать работу пушки.

Исходя из анализа совокупности работ, проводимых в этой области, можно сделать вывод, что в настоящее время они находятся на этапе натурных испытаний промышленно произведенных демонстрационных прототипов, результаты которых предсказать невозможно. 


Кроме того, разработчикам еще предстоит окончательно решить проблемы скорострельности и стрельбы очередями, а также живучести ствола при сохранении им требуемых параметров. В связи с этим техническая готовность рельсовых электромагнитных пушек, создаваемых по заказу ВМС США, ожидается не ранее 2025 года.

tehnowar.ru

испытания и перспективы оружия нового поколения . Чёрт побери

В конце прошлого месяца появилась информация об успешном испытании в США электромагнитной пушки (railgun), у нас эту разработку называют рельсотроном. Статью по этому поводу опубликовало весьма уважаемое издание The Wall Street Journal, разместив в нем видеоматериал с испытаниями электромагнитной пушки. Разработкой этого оружия занимаются корпорации General Atomics и BAE Systems. Американцы уже заявили, что это оружие после его доработки приведет к настоящей революции в военном деле и сможет защитить союзников США от посягательств Китая и России.

Эта новость вызвала громадный резонанс в российской прессе. СМИ патриотической направленности разразились целым потоком материалов, которые можно объединить в две большие группы: «американцы опять безбожно пилят военный бюджет» и «российский рельсотрон все равно будет лучше». Однако давайте попытаемся спокойно разобраться, что в действительности представляет собой данная технология, и каковы ее потенциальные возможности. Есть ли перспективы у нового оружия, действительно ли это революционный прорыв?

Что такое электромагнитная пушка рельсотрон?

Рельсотрон – это система, которая для придания скорости снаряду использует электромагнитное поле. Снаряд, изготовленный из материала проводящего ток, разгоняется между двух направляющих (рельсы), которые подключены к мощному источнику постоянного тока. Сила тока такова, что между рельсами образуется плазменная дуга.

Человечество почти тысячу лет знакомо с порохом и использует энергию сгорающих пороховых газов для метания различных снарядов на весьма приличные дистанции. Зачем же городить огород, и выбрасывать миллиарды долларов на непонятные электромагнитные пушки?

Дело в том, что в сегодня мы практически подошли к пределу возможности пороха. Разогнать снаряд до скорости выше 2,5 км/секунду ему уже не под силу. Это стало понятно давно, поиски оружейных систем, построенных на иных физических принципах, идут уже много десятилетий.

Еще одной проблемой, связанной с традиционной артиллерией, является ресурс орудийных стволов. При выстреле они испытывают огромные нагрузки. Естественно, что современная металлургия предлагает конструкторам материалы с большим потенциалом и ресурсом, их нельзя сравнить с тем, что было сто или даже пятьдесят лет назад. Но и здесь мы подошли к пределу.

Физический принцип, на котором основан рельсотрон, предельно прост: снаряд замыкает электрическую цепь и движется вперед благодаря силе Лоуренца. Эти физические законы изучаются детьми в школьном курсе физики. Однако воплотить их в реальности оказалось очень непросто. Все дело в материалах и технологиях и, конечно же, в источниках энергии, которой на один выстрел нужно столько, что хватит освещать небольшой город.

В чем сила рельсотрона?

Какими же преимуществами будут обладать вооруженные силы, имеющие в своем арсенале рельсотроны? Их несколько, и они действительно впечатляют. Вот полный список:

    высокая скорость, а значит и разрушительная сила снаряда;значительная дальность стрельбы;сравнительно низкая стоимость одного выстрела;более высокая безопасность рельсотрона по причине отсутствия пороха;больший боезапас, по сравнению с ракетным оружием.

Давайте пройдемся по всем вышеуказанным пунктам.

Одним из недостатков традиционных артиллерийских система является тот факт, что снаряд получает импульс только непосредственно после взрыва пороха. То есть, время его разгона весьма невелико. Рельсотрон же разгоняет снаряд на протяжении всей длины направляющих, поэтому он может получить чудовищное ускорение, достигающее 60 G. Этот параметр и определяет остальные «прорывные» характеристики этого оружия.

Скорость снаряда, вылетающего из подобной электромагнитной пушки, может достигать 6-8 Махов, что позволяет поражать цели на дистанциях до 400 км. При стрельбе прямой наводкой (8-9 км) не нужно считать поправки, делать упреждения – снаряд из рельсотрона преодолевает такую дистанцию меньше, чем за секунду. Увернуться от него невозможно.

Подобный снаряд не нуждается во взрывчатом веществе, поражение объектов происходит за счет его кинетической энергии. Российский экспериментальный образец рельсотрона разогнал трехграммовый снаряд до скорости 6 км/с, что позволило испарить стальной лист-мишень.

Еще одним важным преимуществом подобного оружия является низкая стоимость одного выстрела. Сегодня она составляет примерно 25 тыс. долларов. По сравнению с современными управляемыми ракетами, некоторые из которых имеют ценник в 10 млн долларов, – это настоящие копейки.

Снаряды для рельсотрона имеют небольшой размер, что значительно увеличивает боезапас. Современный американский корабль с сотней ракет вполне может нести на своем борту несколько тысяч снарядов для рельсотрона.

Подобная система не имеет в своем составе взрывоопасных веществ (пороха или ракетного топлива), что значительно повышает безопасность военных объектов.

Нерешенные проблемы электромагнитных пушек

Если этот вид оружия настолько смертоносен, почему он до сих пор не стоит на вооружении ни одной из армий мира? Рельсотрон — это действительно весьма перспективное оружие, но чтобы начать его практическое применение, разработчикам необходимо решить множество сложнейших технических проблем.

Проект электромагнитной пушки впервые был предложен еще в период Первой мировой войны, в честь своего создателя ее назвали «пушкой Гаусса». По понятным причинам данный проект так и остался на бумаге.

Первый рельсотрон был построен учеными Австралийского университета в 70-х годах, он использовался в чисто научных целях. Строили подобные установки и в Советском Союзе. Однако военных не слишком интересовали модели, которые стреляли пульками с весом в несколько грамм, им нужна была более мощная установка. О рельсотроне думали разработчики программы «Звездных войн» во времена президента Рейгана, с его помощью хотели сбивать советские боеголовки. Но материалы и технологии того времени были таковы, что ствол пушки можно было использовать только один раз, потом нужно ставить новый. И это первая самая серьезная проблема, которая и сегодня стоит перед разработчиками рельсотрона. Только представьте себе на мгновенье, что происходит внутри этой пушки: огромные энергии, потоки плазмы, гигантские скорости снаряда.

 

Многие эксперты считают, что электромагнитные пушки (рельсотроны), твердотельные лазеры и гиперзвуковые боеприпасы – это наиболее перспективные направления развития вооружений в настоящее время. Если хотя бы одно из них доведут до ума – это станет реальным прорывом, а начало практического применения сразу двух технологий – приведет к революции.

Видео о рельсотроне

chert-poberi.ru

ЭЛЕКТРОМАГНИТНАЯ ПУШКА СТАНОВИТСЯ СИСТЕМОЙ ВООРУЖЕНИЯ

Автор:  В.Витт, М. Леффлер*

 

 

ЭЛЕКТРОМАГНИТНАЯ ПУШКА СТАНОВИТСЯ

СИСТЕМОЙ ВООРУЖЕНИЯ

В.Витт, М. Леффлер*

 

Программа СОИ США сосредоточила пуб­личное внимание на электромагнитных пушках (например, на рельсовой пушке), и в резуль­тате создалось впечатление, что такие элек­тромагнитные пушки подходят лишь для систем космического базирования противоракетной обороны. Однако в действительности электро­магнитная пушка имеет перспективное будущее в качестве оперативно-тактической системы вооружения, что объясняется в данной статье.

 

С начала 1980-х годов электромагнитная пупка становится все более и более важной частью планируемых усовершенствований систем сооружения будущего. Анализ вероятных средств нападения противника указывает на необходимость новых систем вооружения, обладающих большей дальностью действия и улучшенной эффективностью, а пушки, приводимые в действие обычным способом, к следующему своему поко­лению, вероятно, уже достигнут своих рабочих пределов. Дульные энергии могут быть еще увеличены путем оптимизации рабочих параметров, начальные же скорости существующего оружия с высокими ТТХ уже близки к физическим и техническим пределам. Физические законы, управляющие электромагнитной тягой снаряда, допускают более высокие скорости снаряда, чем скорости снаря­дов, приводимых в действие обычным способом — это существенное преимущество электромагнитной пушки. Можно также ожидать увеличе­ния дульных энергий. Электромагнитная пушка будет также обладать более высокой живучестью, чем обычная пушка, а во время кризиса независимость от сырья для метательных зарядов может иметь решаю­щее значение. Электрическая энергия для электромагнитной пушки может быть получена от любого первичного источника энергии.

Электромагнитный способ приведения снаряда в движение был предложен еще в начале 19 столетия, но отсутствие надлежащих средств накапливания электрической энергии мешало его реализации. Последние разработки привели к значительному прогрессу в накоплении электрической энергии, и, таким образом, значительно возросла осуществимость систем вооружения с электромагнитными пушками.

 

 

Электромагнитные пушки

Пушка катушечного типа

 

    Самой старой формой электромагнитной пушки, фактически соз­ванной, является, вероятно, пушка катушечного типа. На рис. 1 показан ее рабочий принцип. Пушка со стоит из ствола (не показанного на рисунке) с рядом неподвижных катушек ускорения. Когда эти катушки последовательно электризуются, возникает перемещающееся магнитное поло, которое возбуждает ток в катушке снаряда. Как следствие,

_______________________________________________________________________

* Доктор Волфрам Витт является начальником координации научно-исследовательских программ фирмы «Рейн/металл». Дипломированный инженер Маркус Леффлер в настоящее время работает в северном технологическом центре и занимается исследованиями в области сверхмощных электрических устройств ускорения.                                                                                        Прим. редакции журнала МТ


 

перемещающееся магнитное поле создает силу Лоренца «F» , которая действует на силу тока катушки снаряда и таким образом сообщает снаряду ускорение.

 

 

Рис. 1.            Принцип работы электромагнитной пушки катушеного типа:

1 -катушка снаряда; 2 — катушки ускорения; 3 — магнитное поле;

F — сила Лоренца

 

Существует множество других вариантов пушки катушечного типа. 6 физической точки зрения все они работают в основном в соответ­ствии с принципом магнитного взаимодействия двух электризуемых катушек (1). В некоторых вариантах вместо катушки снаряда используется снаряд, изготовленный из магнитного материала.

Сообщается, что в 1845 такая пушка катушечного типа била ис­пользована для запуска металлического стержня длиной около 20 м (2).  Во время испано-американской войны (1898г.) американский изобре­татель заявил, что чрезвычайно просто использовать токовую катушку для запуска тяжелых снарядов с южного конца Флориды в Гавану, на дальность 230 км (3), Для подтверждения этого заявления испытания никогда не проводились.

Кристиан Беркеленд, профессор физики в университете в Осло (работавший с 1898 по 1917г.), за период с 1901 по 1903г. получил три патента на свою «электромагнитную пушку» (4). В 1901г. Беркеленд создал первую такую электромагнитную пушку катушечного типа и использовал ее для разгона снаряда массой 500 г до скорости 50 м/с (2). С помощью второй большой пушки, созданной в 1903г. и выставленной в настоящее время в норвежском техническом музее в г. Осло, он достигал разгона снаряда массой 10 кг до скорости при­мерно 100 м/с. Калибр пушки 65 мм , длина 10 м . Современник  Беркеленда комментировал полезность этого устройства как оружия следую­щим образом: «Пушка Беркеленда довольно неуклюжа, можно сказать, научное устройство, которое сначала не вызывало большого доверия в отношении его полезности, но которое благодаря дальнейшему усо­вершенствованию могло бы стать полезным. До поры до времени казалось невозможным увязать ТТХ артиллерийских орудий с таким обширным использованием электричества. Только благодаря дальнейшим открытиям электромагнитная пушка стала полезной в бою. Затруднительным является то, что для пушки необходим специальный источник энергии… Коротко говоря, электромагнитная пушка находится в настоящее время в эмбриональной стадии. Но преждевременно пытаться делать выводы на основе ее несовершенства, что эта первая система вооружения в будущем не разовьется в полезное боевое средство поражения» (3).

В конце 1930-х годов К. Джастроу опубликовал значительно более критические замечания. Они появились в предисловии к теоретической монографии Е. Рогге: «Я обратился к проблемам, связанным с электромагнитной пушкой, в научном обсуждении в своей рабочей группе по «оборонным техническим средствам» германского общества военной политики военной науки, так как в последние годы попытки улучшить тактико-технические данные огнестрельного оружия снова и снова обращают внимание на использование электрического тока. Большие надежды связыва­ние этой возможностью, в частности, США и Россия. Следующие испыта­ния показывают … невозможность реализации этого предложения» (5). Тем не менее, весной 1944г. доктор Иоахим Хэнслер и главный инспектор Бунзель выполнили исследования по пушке катушечного типа (6,7). На Хиллерслебенском испытательном полигоне в Магдебурге, в тщательно отгороженном гараже, они провели испытания стрельбой малокалиберного ( 10 мм ) устройства, предположительно состоящего из множества катушек, стрельба велась по броневым плитам. Источ­ники энергии включали автомобильные аккумуляторные батареи, кон­денсаторы (емкости) и электрогенераторы. Но испытания были безуспешными и через полгода были прекращены. В 1970-е годы ученые оказались более удачливыми. Во время испытаний одноступенчатой пушки катушечного типа, проводимых в институте Эрнста Маха в Вейле-на-Рейне в 1970г., Хас и Циммерманн разогнали металлическое ядро массой 1,3 г до скорости 490 м/с. В 1976г. в Советском Союзе Бондалетоз и Иванов разогнали метал­лическое ядро приблизительно такой же массы до скорости 4,9 км/с     (8,9). Металлическое ядро подвергалось чрезвычайно быстрому уско­рению, такому быстрому, что оно, вероятно, недоступно для: орудийного применения.

 

 

Рельсовая пушка

 

Рельсовая пушка, показанная на рис. 2, является еще одной формой электромагнитной пушки. В принципе, она состоит из двух параллельных рельсовых направляющих; снаряд скользит между ними. Когда источник тока подсоединяется к рельсовым направляющим, ток проходит через одну рельсовую направляющую к снаряду, через про­ходящий якорь в основании снаряда к другой рельсовой направляющей и снова в другом направлении чрез другую рельсовую направляющую. Ток создает магнитное поло, которое действует силой Лоренца «F» на ток, проходящий через якорь, и таким образом разгоняет снаряд.

 

Рис. 2.            Рабочий принцип рельсовой пушки: 1 — ток; 2 — соединительные части; 3 — снаряд; 4 — рельсовые направляющие; 5 — магнитное поле; F- сила Лоренца.

 

Этот тип пушки рекламировался во время нескольких эффектных испытаний в США. Рельсовая пушка, как и пушка катушечного типа, может быть изготовлена в одном из многочисленных вариантов (10). Изобретателем рельсовой пушки был француз Андрэ Луи-Октав Фошон Виепле, который получил в 1920г. три патента (11).    Фошон Виепле заложил основу для своей рельсовой пушки, которая была исследована в пределах, допустимым министром вооружения военной промышленности, в период о 1916 по 1918г.г. К сожалению, Пушка не была испытана надлежащим образом (6).  Не были! измерены ни электрический ток, проходящий через рельсовую направляющую, ни скорость снарядов. В 1936г. служащие югославского военного министерства повторили эти испытания таким же образом.

В 1944 и 1945 годах Хэнслер, который, как упоминалось выше, уже исследовал пушку катушечного типа, проводил испытания 20-мм рельсовой пушки длиной 2 м , получившей обозначение LM -2. Первоначально испытания проводились в Берлине; позднее они проводились железнодорожном тоннеле  близ Клайс в Верхней Баварии (6). Пушка LM  -2 разгоняла алюминиевый цилиндр массой 10 г со средним ускорением 3х10 мс2 до скорости 1080 м/с. При использовании двух рельсовых пушек соединенных последовательно достигли скорости 1210 м/с.

Пушка Хэнслера попала в руки войск США в конце второй мировой войны. В 1946г. управление вооружений СВ поручило бронетанковой научно-исследовательской организации оценить работу Хэнслера. Исследования закончились, и в результате было выявлено, что проблема подачи энергии неразрешима (12).

Вслед за этим были проведены отдельные испытания для научения общего принципа действия рельсовой пушки. В 1958г. Арцимович сообщил, что о помощью рельсовой пушки могут достигаться очень высокие скорости снарядов (13). Ему удалось разогнать плазмы очень малой массы до скоростей свыше 100 м/с. В 1965г. Браст и Сол разогнали найлоновые снаряды массой 37 мг до скорости 4,8 м/с.*

 

 

Электротермическая пушка

 

    Третьим основным типом пушки, приводимой в действие с помощью Электрической энергии, является электротермическая пушка. Ее рабочий принцип показан на рис. 3. Она также существует во многих  вариантах; в простейшем варианте пушка состоит из обычного ствола с электродами плазмы, установленными на дульной части орудия.

 

________________________________________________________________________

*  Вероятно, 4,8 км/с.   Прим. редактора.

 


 

Рис. 3.            Рабочий принцип электротермической пушки: 1 — ствол; 2 — снаряд; 3 — плазма; 4 — дуга; 5 — мате­риал для образования плазмы; 6 — электроды для воспла­менения плазмы; 7 — изолятор.

 

 

Проблема подачи энергии для электромагнитных пушек

 

Испытания, проведенные в 1960-е годы со многими различными типами электромагнитных пушек, показали, что эти пушки могут обес­печивать более высокие начальные скорости, чем традиционные пушки. Но испытания не могли продемонстрировать дульные энергии, необходимые для применения оружия, так как все же не было требуемых источников питания.

Заслуживает внимания то, что Хэнслер отдавал должное многим аспектам этой проблемы. Он писал: «Разработку электромагнитной пушки можно разделить на две части:

разработку устройства ускорения снаряда или, как можно сказать по аналогии с обычной пушкой, ствола;

разработку устройства накопления энергии.

Энергия, которую может подавать устройство накопления энер­гии, составляет порядка миллиона киловатт, а требуемые токи сос­тавляют порядка миллиона ампер.

Я не хочу рассматривать обыденные неодобрения, так часто повторяемые в этом контексте теми, кто безнадежно ориентируется на прошлое, а именно, что энергетические потребности будут пре­пятствовать решению проблемы электромагнитной пушки.

… обычные пушки имеют те же самые энергетические потребнос­ти. Бесспорно, что такие энергетические потребности (в электри­ческих единицах) имеют порядок величины, эквивалентный энергии, Производимой большими электростанциями. Никто не попытается про­изводить большие количества энергии, которые обычной пушке требу­ются на 1/100 с, на постоянной базе. Почему же должен быть кто-то  настолько наивным, чтобы делать это для электромагнитной пушки?!

… Понятным подходом является попытка накопления энергии в соответствии о одним из следующих четырех процессов: электростатическим, электромагнитным, электрохимическим и механическим. Техническим проявлением этих четырех процессов являются, соответ­ственно, конденсатор (емкость), преобразователь импульсов, акку­муляторная батарея и импульсный генератор.

… Существующие конденсаторы, что касается их запаса энергии на единицу объема, не особенно подходят. После многих лет работы наш коллега О.Мукк открыл методы, которые могут увеличить величины запаса энергии на единицу объема на несколько порядков.

… Преобразователь импульсов очень подходит о точки зрения объема.

/…/ Первый эксперимент был полностью успешным. Основным нашим источником энергии была аккумуляторная бата­рея. Из всех имеющихся в промышленности типов мы выбрали один с самым большим энергоснабжением на единицу объема. Пользуясь идеями Капицы, мы добились успеха в разработке лабораторного варианта аккумуляторной батареи, увеличенной в 10-20 раз.

… Импульсные генераторы должны обеспечивать броски (пики) тока примерно 1,6 миллиона ампер.

… Современные импульсные генераторы являются «дальнейшими разработками» генераторов, разработанных для непрерывной работы. Их самоиндукция, следовательно, слишком велика, чтобы они могли обеспечивать такие импульсы. Хотя накопленная энергия в несколько раз больше требуемой, электросистему может выдать лишь часть требуемой энергии.

… Импульсный генератор, в виде униполярного устройства (см. рис. 5), является в настоящее время лучшей средой хранения энергии о точки зрения требуемого объема. Но в этой области мы также начали разработку по новому принципу, так как самоиндукция обычных устройств слишком велика.

 

 

Рис. 5.            Принцип униполярного генератора: 1 — магнитное поле В; 2 — ток возбуждения; 3 — катушка возбуждения; 4 — щетки; 5 – ротор

 

/…/ Направление будущих разработок по электромагнитной пушке ясно на основе … проведенных экспериментов. Как и более ранние исследователи, мы убедились, что электромагнитные пушки могут быть реализованы при современном уровне технологии, если разработка щедро обеспечивается (6).

 

 

Достижения

 

С тех пор разработки в области энергоснабжения постоянно продвигались вперед. В начале 1970-х годов была представлена первая возможность (в австралийском национальном университете в г. Канберра) продемонстрировать потенциальные возможности электромагнитной рельсовой пушки (19, 20).

Двухступенчатый униполярный генератор, который был разработан Марком Олифант для экспериментов в области физики частиц вы­соких энергий,  был приспособлен для экспериментов с рельсовыми пушками. Маховик генератора способен накапливать энергию вращения 500 МДж, выдаваемую импульсами тока до 1,6 МА. Доктор Ричард Маршалл, докторант Джон Барбер и другие исследователи подсоединили этот чрезвычайно мощный источник тока к рельсовой пушке длиной 5м. Сначала генератор не мог подавать необходимую энергию рельсовой пушке. После установки в систему катушки и дополнитель­ного переключателя Маршаллу и Барберу удалось наконец достичь ускорения массы поликарбоната 3,3 г до скорости 5,9 км/с. Среднее ускорение было более 10 мс2.

После этого было проведено много испытаний рельсовых пушек. Первоначально эти испытания проводились в условиях экспериментов по нуклеосинтезу и ударным волнам. В 1982г. группа под руковод­ством Р.Хока из Лоренских ливерморских национальных лабораторий в сотрудничестве с группой под руководством М. Фаулера представила малокалиберную ( 12,7 мм ) рельсовую пушку длиной 5 м , которая могла разгонять 2,2 г массы до скоростей примерно 10 км/с (21). Источником энергии являлся так называемый генератор сжатия магнитного потока, который преобразует энергию, накопленную во  взрывчатых веществах, в электрическую энергию.

Эти результаты, выдающиеся по сравнению с результатами, полученными в более ранних испытаниях, вселили в исследователей высшую степень оптимизма. Предполагалось, что скорости 150 км/с, которые требовались для экспериментов по нуклеосинтезу, могут быть достигнуты снарядами массой 0,1 г (22). Для обычных пушек основной предел снаряд-скорость определяется термодинамическими параметрами пороховых газов. Для электромагнитных пушек этот предел определяется предельными факторами характеристик материалов, из которых изготовлены ствол и снаряд. Теоретическим пределом скорости,  вероятно, будет скорость света (23). Эти предложения привели к  тому, что электромагнитная пушка стала частью программы СОИ. Дальнейшие испытания привели к отрезвляющей вести: фактически достижимых скоростей значительно не хватает. А. Швецов (СССР), который разогнал массы в 1,3 г до скорости примерно 5 км/с, обнаружил в 1983 г ., что очень трудно будет получить скорости снарядов, значительно превышающие уже достигнутые (24). В 1985г. Р.Хок и его группа безуспешно закончили свои испытания: они не смогли разогнать массы в 1 г до скоростей более 7 км/с — расчетной же была скорость 15 км/с (26).

Однако электромагнитная пушка становилась все интереснее для ее боевого использования в пределах «обычных» боевых средств. Первоначальной причиной этого была работа Маршалла и Барбера, которая привела к значительному техническому прогрессу в области энергоснабжения в США.

В 1980г. фирма «Вестингауз» создала лабораторную модель рельсовой пушки, которая привлекла большое внимание. Эта рельсовая пушка, которая получала энергию от униполярного генератора в 17,5 МДж  (см. рис. 6), использовалась для разгона снаряда массой примерно 300 г до скорости свыше 4 км/с, что соответствует дульной  энергии 2,8 МДж (19). Это послужило доказательством того, что электромагнитная пушка может производить высокие дульные энергии и высокие начальные скорости. Кроме того, это был показ успехов, достигнутых в области накопления энергии, главным обра­зом; униполярными генераторами, «компульсаторами» (см. ниже) и конденсаторами.

 

 

Рис. 6.            Схематическое изображение системы рельсовой пушки фирмы «Вестингауз»: 1 — приводной двигатель; 2 — униполярный гене­ратор; 3 — тороидальная катушка; 4 — рельсовая пушка; 5 — тоннель; 6 — ловушка; 7 – переключатель

 

Использовался компактный униполярный генератор (рис. 7), отношение массы к накопленной энергии которого значительно улучшено по сравнению с таковым у вышеупомянутых систем. Дальней­шие уменьшение массы должен обеспечить «самовозбуждающийся униполярный генератор с воздушным сердечником».

 

 

Рис. 7.            Униполярный генератор компактной конструкции (слева) с индукционной катушкой (справа). Катушка разработана для рельсовой пушки

 

Новый тип генератора «компульсатор» является производным от традиционного генератора переменного тока (27). Его характерной чертой является дополнительная стационарная катушка, соединенная последовательно с вращающейся катушкой (рис. 8). Дополнительная катушка периодически изменяет индуктивность устройства.  Если стационарная катушка располагается в магнитном поле В, диэлект­рическая проницаемость L достигает своего минимального зна­чения при t=t точно в точке, в которой электродвижущая сила самоиндукции имеет максимальное значение. В результате при раз­мыкании цепи к потребителю энергии подводится очень мощный раз­ряд тока.

Способность компульсатора производить периодически очень мощные разряды тока в соответствии с его частотой вращения например, 50 Гц) делает его особенно привлекательным в качестве источника энергии для электромагнитных пушек, которые должны обладать высокой скорострельностью (28). Кроме того, продолжительность пика тока составляет порядка 0,3-2 мс, что в пределах времени, необходимого снаряду для прохождения через стволы орудий малого и среднего калибра. В результате компульсатор устраняет потребность в катушке и переключателе для образования импульсов.

 

Рис. 8.            Принцип работы компульсатора: 1 — стационарная катушка; 2 — вращающаяся катушка Значителен также успех в технологии конденсаторов. За последние 10 лет плотности энергии конденсаторов возросли примерно в 50 раз.

 

Значителен также успех в технологии конденсаторов. За последние 10 лет плотности энергии конденсаторов возросли примерно в 50 раз.

Перезаряжаемые батареи с высокими характеристиками, такие как литиевые батареи, могли бы стать серьезным конкурен­том униполярным генераторам и конденсаторам. Удельная энергия 125кДж/кг считается хорошей величиной для таких конденсаторов, но в 1978г. была опубликована концепция батареи с удельной энергией 700 кДж/кг (29).

Современная работа также направлена на совершенствование самой рельсовой пушки, в частности, ствола и якоря снаряда. Для области мегоампер (МА) разрабатывается новый переключатель и повышается эффективность всей системы.

По сравнению с рельсовой пушкой пушка катушечного типа и электротермическая пушка находятся все еще на ранней стадии раз­работки. Недавно было сообщение об успешном испытании пушки катушечного типа, в которой снаряд массой 1 кг разгонялся до скорости свыше 1 км/с. Электротермическая пушка разгоняла снаряд массой 50 г до скорости 1,8 км/с. Электротермическая пушка фирмы «Рейн-металл» разгоняла снаряд массой 3 г до скорости 2 км/с (30).

 

 

Использование электромагнитных пушек

 

В настоящее время, когда становится ясно, что электромагнитные пушки полезны для боевого применения, возникает вопрос, какие случаи применения будут полезны. Хэнслер писал также по этому вопросу:

«Не мыслимо, чтобы электромагнитная пушка стала конкурентом традиционной пушки в пределах скоростей, достигаемых традицион­ной пушкой. С другой стороны для электромагнитной пушки имеются возможности применения в случаях, в которых традиционная пушка терпит неудачу, так как начальная скорость ее снарядов слишком низка.

… Современная война, конечно, для определенных целей тре­бует более высоких скоростей снарядов. Особенно насущным этот вопрос является для зенитных пушек, которые не могут идти в ногу о возрастанием скорости и высоты полета самолетов-штурмовиков. Разработки в области скорости и высоты самолетов осуществлялись быстро. Увеличение начальной скорости снарядов увеличит и даль­ность, и вероятность попадания для дальностей стрельбы, встречаю­щихся до сих пор.

… Баллистические соображения ведут, несомненно, к 4-см стреловидному оперенному снаряду с начальной скоростью, по крайней море, 2000 м/с. «Стреловидный снаряд  PEENEMUNDE» является формой снаряда с требуемыми баллистическими характеристи­ками. в этом контексте сразу возникает вопрос, какой будет самая большая начальная скорость из-за внешней баллистики. Теоретичес­кие исследования показали, что она составляет от 3000 до 4000 м/с. Еще более высокие начальные скорости вряд ли обеспечивают даль­нейшее преимущество из-за возрастания сопротивления воздуха. Следовательно, начальная скорость 2000 м/с считается первоначаль­ной целью, а от 3000 до 4000 м/с — желаемой окончательной целью разработки зенитной пушки.

… Наличие этой зенитной пушки будет определять — предпола­гая приблизительно равные данные для обеих противостоящих сторон — будет ли война выиграна или проиграна» (6).

Никто не сомневается в угрозе с воздуха и, следовательно, в необходимости эффективной противовоздушной обороны. Возрастаю­щее число аэротранспортабельных систем, их возрастающие скорости (особенно полетов на малой высоте) и способность к скрытым дейст­виям представляют основные проблемы для обороняющегося. Одним из основных требований к противовоздушной системе является спо­собность быстро реагировать.

Увеличения начальной скорости могут уменьшить продолжитель­ность обстрела и, следовательно, повысить эффективность против быстро движущихся целей. На рис. 9 показано сравнение традицион­ной пушки (начальная скорость 1300 м/с) с электромагнитной душкой (предполагаемая начальная скорость 4000 м/с). Предполагается, что первоначальные дальности обстрела одинаковые, то есть, что обе системы имеют одни и те же приборы обнаружения и сопровождения цели.

 

 

Рис. 9.            Графическое представление влияния скорости снаряда и цели на успех обстрела в противо­воздушной обороне: 1 — время полета снаряда; 2 — дальность; 3 — пороховая пушка; 4 — электрическая пушка; 5 — успех обстрела; 6 — скорость цели; 7 — начальная скорость

 

 

Увеличение начальной скорости может дать дополнительные преимущества. Все ствольное оружие, не стреляющее управляемыми на коночном участке траектории боеприпасами, требует чрезвычайно точного управления огнем, включающего расчет упрежденного место­положения цели для интервала в несколько секунд, соответствующего времени полота снаряда. Предположим самый удобней случай полета цели прямо вперед (линейная гипотеза управления огнем), поперечная ошибка по дальности, вызванная ошибкой в управлений огнем, пропор­циональна времени полота снаряда. Увеличение начальной скорости с 1.300 до 4000 м/с обеспечивает 60% уменьшение ошибки по дальности. Для реального поведения цели, включая, например, поперечные ускорения (часто не определяемые системами управления огнем), ошибка по дальности зависит от квадрата времени полета. В таких случаях электромагнитная пушка с высокой начальной скоростью мо­жет уменьшить влияние ошибки управления огнем на 80-90%.

Такие ясные прогнозы невозможны для противотанковых обстрелов, так как требования по внешней баллистике конечного участка траектории будут меняться с изменением брони. Кроме того, ясное, обычно действующее отношение между увеличенной окончательной ско­ростью и усовершенствованной бронепробиваемостью не может быть в настоящее время определено для негомогенной брони — оно может быть определено только для гомогенной брони и частично для простой экранированной брони. Тем не менее, можно ожидать, что пушка с более высокими начальными скоростями также будет обеспечивать преимущества в противотанковых обстрелах.

 

 

Перспективы

 

Работа по всем решающим узлам электромагнитной пушки быстро продвигается в США, а также начинается в других странах. Современ­ные успехи, что касается ускорителя, накопления энергии и образо­вания импульсов, явствуют о вероятности того, что системы воору­жения через поколение (вскоре после начала века) будут оснащены электромагнитными пушками.

Для достижения этой цели потребуется напряженная научно-исследовательская работа почти по всем аспектам электромагнитной пушки, включая энергоснабжение и снаряды. Важную роль сыграют новые материалы. Таким образом, электромагнитная пушка, кроме ее ожидаемой военной важности, должна явиться сильным импульсом технологического прогресса и новшества при значительном эффекте В гражданском секторе.

 

 

 

Wolfram Witt, Marcus Loffler

The Electro-magnetic Gun — СCloser to Weapon-

System Status.

Military Technology, 1998, No 5, p. 80-86

 

Переводчик Степанова Н.Ф.

Редактор к.т.н. Вахрушев И.Ф.

btvt.narod.ru

Рельсовая электромагнитная пушка ВМС США

Специалисты центра разработки надводного вооружения ВМС США в Далгрен (штат Виргиния) создали экспериментальный образец электромагнитной пушки, которая, согласно планом войдет в состав вооружения перспективных боевых кораблей, в частности эсминцев DDG-1000 «Замволт».

Рельсовая электромагнитная пушка (Electromagnetic Railgun), это оружие, воздействующее на цель посредством разогнанного до скорости несколько километров в секунду снаряда. Свое название оружие получило из-за воздействия на цель кинетической энергией поражающих элементов.

Командование ВМС США занимается вопросами разработки систем артиллерийского вооружения сверхдальнего поражения для надводных кораблей, которые войдут в состав флота после 2016 года. Одним из наиболее перспективных направлений и является создание электромагнитных рельсовых пушек.

В рамках проводимых научных исследований фирма «BAE Systems» в январе 2012 года поставила в Центр наземных военных исследований ВМС США полноразмерный демонстрационный образец рельсовой электромагнитной пушки с кинетической энергией разогнанного снаряда в конце канала ствола около 32 МДж. С помощью этой пушки снаряды массой 18 кг будут лететь со скоростью до 2,5 км/с на дальность от 89 и до 161 км.

Испытания различных моделей электромагнитных пушек начались в США в марте 2007 года. За все время проведения тестов были проверены различные конфигурации ствола и конструкции направляющих рельсового типа. При этом производились и испытания сплавов, из которых изготовлены различные элементы пушки.

Проектированием и изготовлением импульсного источника энергии, который должен обеспечить работу на борту корабля электромагнитной пушки и других систем оружия, занимается американская компания «Рейтеон».

В настоящее время соответствующие научные исследования возглавляет управление по военно-морским исследованиям ВМС страны, которое реализует план исследований и разработок с дальнейшим принятием на вооружение нового вида оружия.

Испытания будут продолжаться вплоть до 2017 года. По заявлению представителя фирмы «BAE Systems», пока стрельба ведется снарядами не аэродинамической формы. Их форма оптимизирована для наиболее эффективного разгона в канале ствола.

В дальнейшем ожидается, что в качестве боеприпасов будут использоваться управляемые снаряды. При этом поражение цели должно происходить не за счет использования обычных взрывчатых веществ, а за счет высокой кинетической энергии самого снаряда.

Целью специалистов но данном этапе является проверка работы всех систем и узлов установки.

В дальнейшем планируется начать испытания на дальность стрельбы до 160 км, а затем это расстояние будет увеличено до 350 км.

В 2013 году командование ВМС США заключило контракт с компанией «BAE Systems» на разработку нового образца рельсовой пушки, который будет способен вести огонь очередями без перегрева ствола.

В 2016 году, согласно его планам, будут проведены испытания новой рельсовой пушки с борта корабля.

Согласно планам в 2016 году предполагается установить опытный образец электронной пушки на быстроходный транспорт JHSV-3 «Millinocket» и продемонстрировать работу пушки.

Исходя из анализа совокупности работ, проводимых в этой области, можно сделать вывод, что в настоящее время они находятся на этапе натурных испытаний промышленно произведенных демонстрационных прототипов, результаты которых предсказать невозможно.

Кроме того, разработчикам еще предстоит окончательно решить проблемы скорострельности и стрельбы очередями, а также живучести ствола при сохранении им требуемых параметров. В связи с этим техническая готовность рельсовых электромагнитных пушек, создаваемых по заказу ВМС США, ожидается не ранее 2025 года.

www.the-submarine.ru

Гиперзвуковое оружие электромагнитная пушка | Лучшие армии мира Россия стратегия войны вооружение победы конфликты поражения

Гиперзвуковое оружие электромагнитная пушка, всемеро быстрее звука!

Эксперименты в сфере гиперзвукового оружия, позволили одной из крупных оружейных корпораций Британии BAE Systems заявить, что к 2020 г. гиперзвуковое оружие может поступить на вооружение армии.
ВМС США планируют принять на вооружение электромагнитное оружие — орудия, способные разогнать снаряды до рекордных скоростей, что даст недоступную сегодня дальнобойность.
Первые экспериментальные образцы должны быть изготовлены BAE Systems уже в 2014 г.
Корабельный вариант новаторского орудия может быть готов к принятию на вооружение к 2020 г.

  • Масса снаряда 18 кг
  • Начальная скорость снаряда — 2,5 к м /с (т.е. 7,5 скоростей звука), что почти вдвое быстрее, чем у обычных орудий
  • Расчётная дальнобойность — 400 км, которые снаряд должен преодолевать за шесть минут.

схема установки гиперзвукового оружия на эсминцы построенными по технологии стелс

Современные пушки имеют дальнобойность не более 80 км.
Снаряд способен уничтожать цель лишь за счёт колоссальной кинетической энергии, не нуждаясь при этом во взрывчатом веществе
Боевой корабль USS Zumwalt, созданный по технологии Стелс, все системы которого полностью электрифицированы, способен обеспечить энергией и электромагнитные орудия.

Схема работы электромагнитной пушки

Электрический импульс, проходящий через рельсы, создаёт в них магнитные поля, противоположно направленные относительно друг друга. Снаряд размещается между двумя токопроводящими рельсами, пред арматурой, обеспечивающей необходимый зазор между рельсами.
КАК РАБОТАЮТ Гиперзвуковое оружие электромагнитная пушка

эсминцы типа Замволт способен обеспечить энергией электромагнитные пушки

Уже сейчас в США строятся эсминцы типа «Замволт», для отработки технологий гиперзвукового оружия. Снаряды выпущенные из электромагнитных орудий, уже сейчас достигают гиперзвуковых скоростей. В перспективе ожидается, что дальнобойность орудий достигнет 400 км!
Чем же так страшен снаряд летящий с гиперзвуковой скоростью. Достаточно вспомнить, чем закончилось торможение в атмосфере Челябинского метеорита.

При этом материал, из которого изготовлены снаряды (как и в случае с метеоритом), не взрывоопасен, а значит, судну (танку) не грозит детонация боекомплекта.
Разумеется, и с «малыми формами» применения гиперзвука, море проблем. Колоссальное количество энергии для питания орудия, последующий отвод тепла от ствола  обеспечение охлаждения… Но сама перспектива превратить обычный кусок железа массой 18 кг, заряженный кинетической энергией  в оружие точечного и гарантированного поражения, впечатляет. Не стоит ли, достигнув паритета в этом виде вооружений, договориться о его запрете? Если успеем достигнуть паритета…или успеем договориться о запрете.

Ведь снаряд, выпущенный по атомному авианосцу способен вызвать катастрофу, сравнимую с применением ядерного оружия.

toparmy.ru

Электромагнитная пушка — это… Что такое Электромагнитная пушка?

Рельсовая пушка (англ. Railgun) — форма оружия, основанная на превращении электрической энергии в кинетическую энергию снаряда. Другие названия: рельсовый ускоритель масс, рельсотрон, рейлган (Railgun).

Принцип действия

Принцип действия

Рельсовая пушка использует электромагнитную силу, называемую силой Ампера, чтобы разогнать электропроводный снаряд, который изначально является частью цепи. Иногда используется подвижная арматура, соединяющая рельсы. Ток I, идущий через рельсы, возбуждает магнитное поле B между ними, перпендикулярно току, проходящему через снаряд и смежный рельс. В результате происходит взаимное отталкивание рельсов и ускорение снаряда под действием силы F .

Преимущества и недостатки

С изготовлением рельсотрона связан ряд серьёзных проблем: импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испариться и разлететься, но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивностью. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверхбольших скоростей. На практике рельсы изготавливают из бескислородной меди, покрытой серебром, в качестве снарядов используют алюминиевые брусочки или проволоку, в качестве источника питания — батарею высоковольтных электрических конденсаторов, генераторы Маркса, ударные униполярные генераторы, компульсаторы, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки. В тех рельсотронах, где снарядом является проволока, после подачи напряжения на рельсы проволока разогревается и сгорает, превращаясь в токопроводную плазму, которая далее также разгоняется. Таким образом рельсотрон может стрелять плазмой, однако вследствие её неустойчивости она быстро дезинтегрируется.

Существующие образцы

Испытания рельсотрона в Naval Surface Warfare Center, ВМС США, январь 2008 года

Первая крупномасштабная рельсовая пушка была спроектирована и построена в 1970-х годах Джоном П. Барбером из Канады и его научным руководителем Ричардом А. Маршаллом из Новой Зеландии в Исследовательской Школе Физических Наук Австралийского Национального Университета. В качестве источника энергии в конструкции был использован униполярный генератор — «Марк Олифант», с 500 МДж запасённой энергии.

В феврале 2008 года ВМС США продемонстрировали рельсотрон с энергией 10 МДж, снаряд которого развил дульную скорость 2520 м/с (9000 км/час).[1] ВМС США планирует установку рейлганов на свои боевые корабли к 2020 году. Ожидается, что оружие будет способно поражать цель на расстоянии 400 км с точностью до 5 метров с начальной скоростью полета 5800 м/с.

На очереди уже 32-мегаджоулевая установка, разрабатываемая британской BAE Systems по контракту с ВМС США. Работы, на которые выделено $36 млн, намечено завершить в 2011 году. Если заказчик останется доволен, следующий этап будет финансироваться гораздo щедрее — $276 млн. Предполагается, что к 2020 году он приведет к созданию электромагнитных орудий с дульной энергией в 64 МДж, что примерно в семь раз выше, чем у нынешних опытных образцов. Эти орудия должны поступить на вооружение строящихся в США эсминцев серии DDG1000 Zumwalt, чья модульная конструкция и электрическая трансмиссия рассчитывалась с прицелом на перспективные ЭМ-пушки.

Научная фантастика

Рельсовую пушку часто можно встретить в компьютерных играх. Она является самым знаменитым оружием в играх серии Quake начиная с Quake 2, также встречается в играх Command & Conquer 3: Tiberium Wars (в оригинальной англ. версии), Red Faction и «Санитары подземелий». В играх «рельса» представляет собой оружие, стреляющее металлическими болванками, вылетающими из него с невероятной скоростью. Кинетическая энергия болванок в результате также велика, поэтому рельсовая пушка является относительно мощным оружием. Во врагах это игровое оружие либо проделывает аккуратное отверстие, либо (для слабых боевых единиц) разрывает их на куски при попадании.

Рельсовая пушка (Rail Gun) также встречается в последних аддонах адаптированной к игре в интернете игры MechWarrior4: Mercenaries и является наиболее разрушительным оружием, обладающим огромным весом, мощью и дальностью. Устанавливается лишь на немногие мехи.

В игре Metal Gear Solid прототип танка Metal Gear Rex, вокруг которого крутится сюжет, использует рейлган для запуска ядерных снарядов.

Но самое, наверное, большое распространение раилганы получили в MMORPG EVE Online. Расы Gallente и Caldari активно используют этот вид вооружения, называемый тут гибридами (Hybrid) на своих космических кораблях. Гибриды являются едва ли не самым мощным видом вооружения. Делятся гибриды на, собственно, Railguns (раилганы) — дальнобойная артиллерия (бьёт вплоть до 200км) и Blasters (они же бластеры) — орудия предназначенные для очень ближнего боя (оптимальная дальность стрельбы до 10км в зависимости от класса пушек). Огромный выбор патронов позволяет регулировать как дальность стрельбы, так и количество повреждений наносимое цели (чем дальность стрельбы меньше, тем выше повреждения).

Примечания

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *