Агрегаты вертолета, КСС вертолета

 

 

Агрегаты вертолета. Каждый агрегат имеет свое функциональное назначение.

Каркасные агрегаты вертолета (фюзеляж, оперение, крыло) представляют собой конструкции, воспринимающие нагрузки от аэродинамических сил и сил, приходящих от установленных в нем агрегатов и систем, возникающих на различных режимах полета.

Несущий винт (НВ) представляет собой кинематическое устройство, обеспечивающее создание аэродинамических сил и моментов для движения, балансировки и управления вертолетом.

Механическое управление предназначено для передачи усилий пилота с целью изменения аэродинамической нагрузки на исполнительных органах управления (лопасти винтов, консоли стабилизатора).

Трансмиссия (приводы) распределяет мощность двигателей по потребителям — НВ, рулевому винту (РВ), энергетическим системам (гидравлической, электрической, системе теплообмена и т.п.), трансформируя ее в соответствии с потребными крутящими моментами.

Шасси воспринимает нагрузки при посадке и маневрах на ВПП.

Таким образом, основные агрегаты вертолета различают как по функциональному назначению, так и по условиям их работы. Поэтому формирование их КСС и ККС имеет свои специфические особенности в методике конструирования.

Двигатели, агрегаты гидросистемы, маслосистемы, электросистемы в практике вертолетных ОКБ относятся к готовым изделиям, создаваемым на специализированных предприятиях.
Общим критерием оценки целесообразности выбранной КСС и ККС является полное соответствие функциональному назначению и удовлетворение выбранным критериям оптимизации (минимальная масса и стоимость эксплуатации, надежность, эксплуатационная эффективность и т.п.).

Рассмотрим несколько примеров удачных решений из перечисленных основных агрегатов вертолета.

Вертолет MD-500  первоначально создавался как легкий военный вертолет для наблюдений и связи. Одной из дополнительных задач ставилась задача переброски четырех солдат на короткие расстояния.

Особое внимание обращалось на простоту конструкции и низкую стоимость изготовления вертолета и его эксплуатации.

Проектировщики применили очень лаконичную силовую схему фюзеляжа, состоящую из двух поперечных силовых шпангоутов, разделяющих фюзеляж на несколько отсеков: кабину для двух членов экипажа, отсек для полезной нагрузки (сидя на корточках там помещались четыре солдата), топливный отсек в нижней части фюзеляжа, моторный отсек в хвостовой части и отсек редуктора несущего винта. Нетрудно заметить, что все сосредоточенные силы: тяга несущего винта, нагрузка от полозков шасси и т.п. — воспринимаются самым рациональным способом.

Для вертолета Ка-50 силовая схема фюзеляжа представляет собой конструкцию в виде «ствола», образованного четырьмя плоскими поверхностями, пронизывающими фюзеляж по всей длине (в виде ствола), и расчлененного силовыми диафрагмами (шпангоутами) на ряд функциональных отсеков. Внешние обводы фюзеляжа (кроме хвостовой балки) не несут каких-либо нагрузок, кроме аэродинамических и инерционных от собственной массы, и могут легко видоизменяться. Такое решение позволило коренным образом упростить проблемы доступа к агрегатам при сборке, ремонте и обслуживании при обеспечении необходимой прочности и жесткости конструкции.

Введение испанским инженером Хуаном де ла Сиерва шарниров во втулку ротора (несущего винта) носило принципиальный характер. В истории развития идеи вертолета именно это решение позволило обеспечить реальные полеты на несущем винте при достаточно низких прочностных характеристиках имевшихся тогда материалов.

Прогресс в материаловедении в последние годы позволил отказаться от подшипников качения, всегда ограничивающих долговечность такого нагруженного и ответственного агрегата, каким является втулка несущего винта. В качестве примера можно привести конструкцию втулки вертолета MD-500 (пластинчатые торсионы из высокопрочной стали) ( 1.1.2), втулку вертолета Во-105 ( 1.1.3), втулку вертолета Ми-28 с эластомерными подшипниками ( 1.1.4).

 

 

 

Фирма «Камов» традиционно формирует силовые гидроусилители системы управления в виде одного общего модуля. Такое решение позволяет упростить трассыгидро систем и повысить их надежность. Наиболее интересным конструктивным решением такого модуля является блок РС-60Ф для вертолета Ка~32А со сдвоенными бустерами в каждом канале управления ( 1.1.5).
Предложение российского инженера Б.Я. Жеребцова сделать гидравлические стойки амортизаторов шасси вертолетов двухкамерными также носило принципиальный характер. Именно это решение дало в руки конструкторов инструмент для решения проблемы «земного» резонанса ( 1.1.6).

Агрегаты и узлы техники

 

 

avia.pro

Конструкция лопасти несущего винта вертолета

 

 

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего — стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора — нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части — к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5—6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти — 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь — это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь — это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05—0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9—12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.

Отстройка от флаттера лопастей

Упруго-массовые характеристик лопасти НВ

Характристика втулки несущего винта вертолета

 

Агрегаты техники

avia.pro

ВЕРТОЛЕТ — это… Что такое ВЕРТОЛЕТ?

  • вертолет — вертолет …   Орфографический словарь-справочник

  • ВЕРТОЛЕТ — летательный аппарат тяжелее воздуха с вертикальным взлетом и посадкой. Подъемная и пропульсивная силы создаются несущими винтами. Различают вертолеты одновинтовые с рулевым (хвостовым) винтом; двух или многовинтовые. Скорость полета вертолета до… …   Большой Энциклопедический словарь

  • вертолет — вертушка, геликоптер, автожир, автогир, стрекоза, телекоптер, винтокрылая машина Словарь русских синонимов. вертолёт геликоптер (устар.) Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова. 2011 …   Словарь синонимов

  • ВЕРТОЛЕТ — см. Автожир. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 Вертолет летательный аппарат тяжелее воздуха, у которого подъемная сила и поступательное движение обеспечиваются одним и …   Морской словарь

  • ВЕРТОЛЕТ — (геликоптер), летательный аппарат, в котором подъемная сила создается при помощи винта (винтов). Способен совершать вертикальный взлет и посадку, зависание, движение вперед, назад и боком. Для маневрирования оборудован комплексной системой… …   Научно-технический энциклопедический словарь

  • Вертолет — воздушное судно тяжелее воздуха, которое поддерживается в полете в основном за счет реакций воздуха с одним или несколькими несущими винтами, вращаемыми силовой установкой вокруг осей, находящихся примерно в вертикальном положении;… Источник:… …   Официальная терминология

  • вертолет — Воздушное судно тяжелее воздуха, которое поддерживается в полете в основном за счет реакций воздуха с одним или несколькими несущими винтами, вращаемыми силовой установкой вокруг осей, находящихся примерно в вертикальном положении. [ФАП от 31… …   Справочник технического переводчика

  • ВЕРТОЛЕТ — летательный аппарат тяжелее воздуха с вертикальным (см.) и посадкой. Подъёмная сила и поступательное движение создаются одним или несколькими несущими винтами (иногда в сочетании с небольшим крылом), вращающимися почти в горизонтальной плоскости …   Большая политехническая энциклопедия

  • Вертолет — Ка 50. Многоцелевой вертолёт Ми 38 на выставке МАКС 2005. Вертолёт  аэродинамический летательный аппарат, обладающий свойством совершать взлёт и посадку по вертикали, зависать в воздухе и перемещаться в любом направлении. Необходимые для полёта… …   Википедия

  • ВЕРТОЛЕТ —     Видеть во сне вертолет – к тому, что главное ваше дело завершится благополучно. Лететь на вертолете – значит, вскоре получите важную работу, и от того, как вы ее выполните, будет зависеть ваша дальнейшая карьера. Вертолет, который… …   Сонник Мельникова

  • dic.academic.ru

    вертолёт — это… Что такое вертолёт?

    летательный аппарат тяжелее воздуха, у которого подъёмная сила и тяга для горизонтального полёта создаются одним или двумя т. н. несущими винтами. Вертолёт может взлетать вертикально с места без разбега и садиться без пробежки, он может неподвижно висеть в воздухе, разворачиваться на месте и перемещаться в любом направлении. При отказе двигателя вертолёт продолжает полёт со снижением по наклонной траектории, а энергия, необходимая для вращения несущего винта, отбирается от набегающего на винт встречного воздушного потока. Вертолёты имеют фюзеляж с шасси и хвостовой балкой, иногда небольшое крыло, несущие винты, силовую установку (двигатель), электро-, радио – и навигационное оборудование; на конце хвостовой балки расположен рулевой винт. Вертолёт взлетает и удерживается в воздухе за счёт подъёмной силы, которую создают вращающиеся лопасти несущего винта. Крыло вертолёта (если оно есть) при достаточно большой скорости полёта создаёт дополнительную подъёмную силу (как и крыло самолёта) и таким образом частично разгружает несущие винты. Большинство вертолётов имеют один несущий винт либо два винта, расположенных соосно (вал верхнего винта проходит через полый вал нижнего) или разнесённых по концам фюзеляжа. Сила тяги, необходимая для горизонтального движения вертолёта, также создаётся несущим винтом. При вращении лопастей несущего винта в горизонтальной плоскости создаваемая ими аэродинамическая сила направлена вертикально вверх и удерживает вертолёт в воздухе. Если плоскость вращения лопастей винта наклонить, у аэродинамической силы появляются две составляющие: одна – вертикальная (подъёмная сила) и другая – горизонтальная (сила тяги), обеспечивающая горизонтальный полёт аппарата. Чем больше наклон оси несущего винта, тем больше сила тяги и выше скорость полёта. Чаще, однако, сила тяги создаётся не за счёт наклона оси несущего винта, а за счёт поворота его лопастей на некоторый угол, называемый углом установки лопасти. Такой способ создания тяги энергетически выгоднее применения дополнительного воздушного винта типа пропеллера. Управляют вертолётом с помощью несущего и рулевого винтов. При одновременном увеличении угла установки всех лопастей несущего винта вертолёт поднимается, при уменьшении – опускается. Боковое и путевое управление вертолётом осуществляется также поворотом лопастей несущего винта, но не всех одновременно, а поочерёдно; кроме того, для путевого управления используется рулевой винт с поворотными лопастями.

    Вертолёты широко применяются для перевозки грузов, почты, пассажиров, при разведке и разработке газовых и нефтяных месторождений в труднодоступных районах, для проведения ледовой разведки, монтажа крупногабаритного оборудования, при спасательных работах и тушении пожаров и т. д. Вертолёты входят в состав вооружённых сил всех крупных государств и применяются для перевозки и десантирования войск и грузов, уничтожения танков и другой техники противника, для огневой поддержки войск, разведки, связи и выполнения других заданий. Кроме того, вертолёты применяют для траления мин, борьбы с подводными лодками, постановки минных заграждений, осуществления спасательных операций на море и т. д.

    Первый вертикальный подъём летательного аппарата с человеком на борту при помощи винтов состоялся 29 сентября 1907 г. во Франции. Вертолёт, созданный братьями Л. и Ж. Брегге и профессором Ш. Рише, поднимался вертикально четырьмя винтами на высоту 1.5 м. Первый вертолёт, способный двигаться поступательно, был построен В. Корню (Франция) в ноябре 1907 г. В 1912 г. русский изобретатель Б. Н. Юрьев впервые создал вертолёт с одним несущим винтом; он же изобрёл автомат перекоса – устройство, автоматически изменяющее углы установки лопастей несущего винта для поддержания заданного направления и режима полёта вертолёта. Автомат перекоса Юрьева стал основным органом управления вертолётом. В 20—30-х гг. 20 в. в России построено несколько работоспособных вертолётов, в т. ч. вертолёты серии ЦАГИ (1-ЭА, 3-ЭА, 5-ЭА, 11-ЭА). Вертолёты создавались также в США и Германии. Серийный выпуск вертолётов впервые организован в 1942 г. американской фирмой «Сикорский аэро энджиниринг» (R-4), в России – в 1952 г. (Ми-4). Наиболее известны в России вертолёты, созданные конструкторскими бюро М. Л. Миля (Ми-12, Ми-26, Ми-34 и др.) и Н. И. Камова (Ка-15, Ка-18, Ка-25 и др.). За рубежом вертолёты выпускают фирмы «Сикорский», «Каман» (США), «Агуста» (Италия), «Уэстленд» (Великобритания), «Аэроспасьяль» (Франция) и др.

    Схема устройства вертолёта Ми-1:

    1 – несущий винт; 2 – автомат перекоса; 3 – ось несущего винта; 4 – бачок для противообледенительной жидкости; 5 – рулевой винт; 6 – редуктор; 7 – стабилизаторы; 8 – бак для горючего; 9 – основное колесо; 10 – вентилятор; 11 – двигатель; 12 – главный вал; 13 – места пассажиров; 14 – место пилота; 15 – рычаг для одновременного регулирования газа и установки лопастей; 16 – носовое колесо; 17 – рация

    Энциклопедия «Техника». — М.: Росмэн. 2006.

    dic.academic.ru

    Общее устройство и принцип полёта вертолёта

    Общее устройство и принцип полёта вертолёта

    Общее устройство и принцип полёта вертолёта

    К объяснению принципа полёта вертолёта.

    Несущий винт служит для поддержания и перемещения вертолета в воздухе. При вращении в горизонтальной плоскости несущий винт создает тягу(Т) направленную вверх, выполняет роль подъёмной силы(Y). Когда тяга несущего винта будет больше веса вертолета(G), вертолет без разбега оторвется от земли и начнет вертикальный набор высоты. При равенстве веса вертолета и тяги несущего винта вертолет будет неподвижно висеть в воздухе. Для вертикального снижения достаточно тягу несущего винта сделать несколько меньше веса вертолета. Поступательное движение вертолета(P) обеспечивается наклоном плоскости вращения несущего винта при помощи системы управления винтом. Наклон плоскости вращения винта вызывает соответствующий наклон полной аэродинамической силы, при этом ее вертикальная составляющая будет удерживать вертолет в воздухе, а горизонтальная — вызывать поступательное перемещение вертолета в соответствующем направлении.

    Основные части вертолета:

    1 — фюзеляж; 2 — авиадвигатели; 3 — несущий винт; 4 — трансмиссия; 5 — хвостовой винт; 6 — концевая балка; 7 — стабилизатор; 8 — хвостовая балка; 9 — шасси

    Фюзеляж является основной частью конструкции вертолета, служащей для соединения в одно целое всех его частей, а также для размещения экипажа, пассажиров, грузов, оборудования. Он имеет хвостовую и концевую балки для размещения хвостового винта вне зоны вращения несущего винта,и крыла (на некоторых вертолетах крыло устанавливается с целью увеличения максимальной скорости полета за счет частичной разгрузки несущего винта (МИ-24)).Силовая установка(двигатели) является источником механической энергии для приведения во вращение несущего и рулевого винтов. Она включает в себя двигатели и системы, обеспечивающие их работу (топливную, масляную, систему охлаждения, систему запуска двигателей и др.). Несущий винт(НВ) служит для поддержания и перемещения вертолета в воздухе, и состоит из лопастей и втулки НВ. Трансмиссия служит для передачи мощности от двигателя к несущему и рулевому винтам. Составными элементами трансмиссии являются валы, редукторы и муфты. Рулевой винт(бывает тянущий и толкающий) служит для уравновешивания реактивного момента, возникающего при вращении несущего винта, и для путевого управления вертолетом. Сила тяги рулевого винта создает момент относительно центра тяжести вертолета, уравновешивающий реактивный момент несущего винта. Для разворота вертолёта достаточно изменить величину тяги рулевого винта. Рулевой винт так же состоит из лопастей и втулки. Системы управления вертолета состоят из ручного и ножного управления. Они включают командные рычаги (ручку управления, рычаг «шаг — газ» и педали) и системы проводки к несущему и рулевому винтам. Управление несущим винтом производится при помощи специального устройства, называемого автоматом перекоса. Управление рулевым винтом производится от педалей. Взлетно-посадочные устройства служат опорой вертолета при стоянке и обеспечивают перемещение вертолета по земле, взлет и посадку. Для смягчения толчков и ударов они снабжены амортизаторами. Взлетно-посадочные устройства могут выполняться в виде колесного шасси, поплавков и лыж.

    Основы теории полёта вертолёта. Если Вам интересно получить более подробную информацию по теме, тогда жмите здесь

    Рассмотрим общую конструцию вертолёта, на примере вертолёта МИ-24П, изображённого на фото. На интересующий элемент конструкции вертолёта наводите курсор.



    acv179672006.narod.ru

    ОБЩАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА

     

    Общие сведения о вертолете

     

    Вертолет Ми-171 предназначен для перевозки людей и различных грузов в грузовой кабине, а также для транспортировки крупногабаритных грузов на внешней подвеске.

    Вертолет спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установлены два турбовальных двигателя ТВ3‑117ВМ, оборудованных пылезащитными устройствами.

    Грузовая кабина вертолета снабжена десантными сиденьями на 24 человека и может быть переоборудована в санитарную на двенадцать стандартных носилок.

    Экипаж вертолета состоит из двух летчиков и бортового техника.

     

    Основные технические данные вертолета

    § Нормальная взлетная масса 11000кг;

    § Максимальная взлетная масса 13000кг;

    § Максимальная масса перевозимого груза

    при полной заправке топливных баков 4000кг;

    § Максимальная масса груза, перевозимого на

    внешней подвеске 3000кг;

    § Масса пустого вертолета: 7580кг,

    § Мощность силовой установки 2×2000л.с.;

    § Длина вертолета:

    без несущего и рулевого винтов 18,3м;

    с несущим и рулевым винтами 25,32м.

    § Высота вертолета:

    без рулевого винта 4,76м;

    с рулевым винтом 5,55м.

    § Колея шасси 4510мм;

    § База шасси 4280мм;

    § Клиренс вертолета (по шп.№14) 0,445мм;

    § Стояночный угол вертолета 4010’;

    § Расстояние от конца лопасти до хвостовой балки на стоянке 0,45м.

    ФЮЗЕЛЯЖ ВЕРТОЛЕТА

    Общая характеристика фюзеляжа

    Фюзеляж является основным силовым корпусом вертолета и представляет собой цельнометаллический полумонокок переменного сечения с гладкой работающей обшивкой.

    На рис.1.2 представлены конструктивные разъемы планера вертолета Ми-171

    1.Передняя нога шасси;

    2. Носовая часть фюзеляжа;

    3. Сдвижной блистер;

    4. Крышка люка для выхода к двигателям

    5. Главная нога шасси;

    6. Капот обогревателя КО-50;

    7. Правый подвесной топливный бак;

    8. Капот;

    9. Редукторная рама;

    10. Центральная часть фюзеляжа;

    11. Крышка люка в правой грузовой створке;

    12. Правая грузовая створка;

    13. Хвостовая балка;

    14. Стабилизатор;

    15. Концевая балка;

    16. Обтекатель;

    17. Хвостовая опора;

    18. Трапы;

    19. Левая грузовая створка;

    20. Щиток;

    21. Главная нога шасси;

    22. Левый подвесной топливный бак;

    23. Сдвижная дверь;

    24. Сдвижной блистер;

    25. Люк-окно;

    26. Обтекатель пылезащитного устройства.

     

    Фюзеляж имеет три конструктивных разъема и включает в себя:

    Ø носовую часть;

    Ø центральную часть;

    Ø хвостовую балку;

    Ø концевую балку с обтекателем.

    Стыковка основных частей фюзеляжа осуществлена по шпангоутам 1 и 23 центральной части и по шпангоуту 17 хвостовой балки.

     

    Носовая часть фюзеляжа

    Носовая часть фюзеляжа представляет собой самостоятельный отсек, в котором размещены кабина экипажа, органы управления вертолетом и двигателями, приборное и другое оборудование.

    Кабина экипажа занимает отсек между шпангоутами 1 Н и 5Н и отделена от грузовой кабины шпангоутом 5Н с дверью.

    В кабине экипажа размещены сиденья левого и правого летчиков, борттехника, органы управления вертолетом, приборные доски, два короба под аккумуляторы и этажерки с радио- и электроаппаратурой. Кабина может оснащаться стрелковой установкой.

    На правом и левом бортах имеются сдвижные блистеры размером 750х750 мм.

    Остекление кабины состоит из органического и силикатного (триплекс) стекла. Силикатными являются передние стекла левого и правого летчиков. Они имеют электрический обогрев и стеклоочистители. Остальное остекление выполнено из выпуклых органических стекол, обдуваемых теплым воздухом из системы отопления. Допускаются трещины стекол длиной до 100мм с последующей засверловкой ее концов.

    На левом борту между шпангоутами ЗН и 5Н установлены штепсельные разъемы ШРАП-400-ЗФ и ШРАП-500К для подключения источников переменного и постоянного тока.

    Сиденья летчиков регулируются по высоте и по расположению их вдоль продольной оси кабины. Предусмотрена регулировка угла наклона спинок сидений летчиков. Сиденье борттехника — откидное.

    На правом борту между шпангоутами 4Н и 5Н установлены выпрямительные устройства ВУ-6А, которые охлаждаются наружным воздухом, поступающим через жалюзи съемной панели.

    На потолочной панели кабины экипажа расположен люк с крышкой для выхода к двигателям.

    В кабине экипажа установлены дополнительные противобликовые козырьки на пульты, щитки и приборы.

    Внутренняя поверхность кабины экипажа, приборные доски, лицевые поверхности пультов и щитков окрашены черной матовой эмалью.

     

    Центральная часть фюзеляжа

    — На левом борту между шпангоутами 1 и 4 увеличена ширина проема и сдвижной двери (размер проема 1405х1250мм).

    — На правом борту между шпангоутами 2 и 4 вместо аварийного люка выполнен проем со сдвижной дверью (1405х825мм).

    — В грузовом полу между шпангоутами 7 и 10 увеличены размеры проема выхода троса внешней подвески (размер 496х950мм). Изменена конструкция крышки люка, которая выполнена из сотовой панели. Крышка фиксируется в проеме двумя неподвижными штырями слева и двумя подвижными штырями с двумя ручками справа. Открывается крышка только из грузовой кабины.

    — Сзади между шпангоутами 13 и 21 вместо грузовых створок установлена аппарель, закрывающая проем грузовой кабины. Для обеспечения герметичности закрытого положения по периметру фюзеляжного проема закреплены резиновые профили.

    Аппарель — коробчато-клепаной конструкции, имеет лонжероны, балки, стрингеры и обшивку. В зоне прилегания выпущенной аппарели к грунту приклепан лист из нержавеющей стали.

    Аппарель шарнирно подвешена на двух кронштейнах–петлях к нижней части шпангоута 13.

    Убранное положение аппарели фиксируется двумя замками, которые при выпуске аппарели открываются от гидроцилиндров (гидроцилиндра), смонтированных (смонтированного) на стенке балки проема грузовой кабины.

    Выпуск и уборка аппарели осуществляется от автономной бортовой гидравлической системы с помощью двух силовых гидроцилиндров, смонтированных по бортам проема грузовой кабины.

    Аппарель может быть установлена в линию пола грузовой кабины и удерживается в этом положении двумя тросами.

     

    Хвостовая балка

    Хвостовая балка — клепаной конструкции, балочно-стрингерного типа, имеет форму усеченного конуса длиной 5440мм, состоит из каркаса и гладкой работающей обшивки.

    Снизу в коробе установлена аппаратура ДИСС.

    Снаружи балки выполнены лючки для осмотра и смазки хвостового вала.

    Внутри балки расположены опоры хвостового вала трансмиссии и колодки с роликами под тросы управления рулевым винтом.

    К хвостовой балке крепится стабилизатор и амортизатор хвостовой опоры.

    Концевая балка

    Концевая балка предназначена для выноса оси вращения: рулевого винта в плоскость вращения несущего винта.

    Балка — клепаной конструкции, состоит из килевой балки и обтекателя.

    Ось килевой балки отклонена вверх на угол 43010′ по отношению к оси хвостовой балки.

    С правой стороны между шпангоутами 2 и 3 в средней части выполнен закрывающийся крышкой лючок для проверки уровня масла в промежуточном редукторе по масломерному стеклу. Еще два лючка используются для обдува промежуточного редуктора набегающим потоком воздуха и обслуживания редуктора.

    Обтекатель образует задний обвод концевой балки и является фиксированным аэродинамическим рулем.

     

    Стабилизатор

    Стабилизатор служит для обеспечения необходимой продольной устойчивости вертолета. Он установлен с фиксированным углом –60 относительно хвостовой балки. На земле установочный угол стабилизатора может меняться в зависимости от варианта применения вертолета в диапазоне от +90 до -90.

    Стабилизатор имеет симметричный профиль и состоит из правой и левой половин трапециевидной формы в плане.

    Носовая часть стабилизатора обшита дюралюминиевыми листами Д16Т толщиной 0,8 мм, а хвостовая часть может быть обшита полотном АМ100-ОП или стеклопластиком По желанию заказчика она может быть выполнена металлической. Площадь стабилизатора — 2 м2.

     

    Капот

    Капот включает в себя:

    Ø капот двигательного отсека;

    Ø туннель подвода воздуха к вентилятору;

    Ø капот вентиляторного отсека;

    Ø шпангоут 1К;

    Ø капот редукторного отсека;

    Ø шпангоут 2К;

    Ø отсек капота концевой;

    Ø продольную противопожарную перегородку.

    Крышки капотов в открытом положении удерживаются цилиндрами, которые являются воздушными демпферами и предохраняют их от ударов о фюзеляж при открывании.

     


    

    infopedia.su

    Вертолет это что такое Вертолет: определение — История.НЭС

    Вертолет

    Первый эскиз вертолета с кратким описанием сделал в 1489 г. Леонардо да Винчи. Его вертолет приводился в движение мускульной силой. Неизвестно, проводил ли Леонардо испытания своего аппарата, поскольку не осталось никаких документов, свидетельствующих об этом. Ученые долго считали, что летательный аппарат невозможно привести в движение мускульной силой. Но не так давно был построен такой вертолет. Он смог взлететь и летать.

    Триста лет спустя после Леонардо М. В. Ломоносов построил первую модель вертолета. Она состояла из фюзеляжа и двух винтов, вращавшихся в разные стороны. Эта модель предназначалась для подъема термометров с целью измерения температуры воздуха в верхних слоях атмосферы. Двигателем служила часовая пружина.

    В 1784 г. французские изобретатели Лоннуа и Бьенвеню использовали в своей модели вертолета силу упругости сжатого лука. Вес их модели составлял около 80 г.

    В 1863 году француз Г. де Ланде издал книгу, в которой излагал проект аппарата под названием «аэронеф». У «аэронефа» были крылья, тянущий винт и вертикальные мачты, на которых располагались подъемные винты. Из проекта де Ланде изобретатели в дальнейшем многое позаимствовали.

    В 1869 г. русский изобретатель А. Н. Лодыгин обратился в Главное инженерное управление русской армии с проектом аппарата вертикального взлета с электрическим двигателем. Этот аппарат, названный изобретателем «электролет», предназначался для воздушной разведки и бомбардировки.

    В 90?е годы XIX в. созданием вертолета начал заниматься H. Е. Жуковский вместе со своими учениками. Ученый считал, что за геликоптером всегда будет оставаться преимущество безопасного подъема и спуска.

    И вот в 1907 году появился вертолет, который смог оторваться от земли. Его сконструировали французы, братья Л. и Ж. Бреге, совместно с профессором Ш. Рише.

    Русский изобретатель И. И. Сикорский в 1901 г. еще в детстве построил модель своего первого вертолета с двигателем на резинке. Позже он создал большую модель с двумя пропеллерами, которая поднялась в воздух и летала в нескольких метрах над землей.

    В 1903 г. Сикорский поступил в Российскую военно?морскую академию в Петербурге, а в 1906?м продолжил изучение инженерного дела в Париже. В 1907 г. он возвратился в Киевский политехнический институт. Игорь Сикорский вернулся к своей идее летательного аппарата, который бы поднимался в воздух вертикально с помощью вращающегося пропеллера. Во время путешествия по Германии Сикорский производил в гостиничных номерах расчеты, необходимые для запуска вертолетного пропеллера диаметром 120 см. Благодаря финансовой поддержке сестры Сикорский возвратился в Париж для изучения аэродинамики и приобретения необходимых компонентов для создания своего первого вертолета.

    В 1909 г. Сикорский вернулся в Киев с трехцилиндровым двигателем от мотоцикла «Анзани» мощностью 25 л. с. и на его основе создал вертолет с двумя одновременно вращающимися винтами. Конструкция была довольно неудобна для пилота, в кабине везде торчали провода, приводившие в движения лопасти пропеллера. Однако Сикорский добился главного: он решил проблему вибрации и продемонстрировал способность своей машины подняться в воздух посредством «роторных крыльев». По расчетам инженера, его вертолет мог подниматься в воздух с грузом в 140 кг.

    Конструкция была еще очень несовершенна, и Сикорский отказался от своей первой модели. В октябре 1909 г. он вернулся в Париж для изучения уже имеющихся к тому времени моделей аэропланов.

    После приезда в Россию молодой изобретатель в феврале 1910?го использовал моторы для создания второй, вновь неудачной, модели вертолета. Маленький биплан «S?1» так и не взлетел. Биплан «S?2» и большая модель «S?3» смогли лишь ненадолго подняться в воздух. А модель «S?5» с мощностью двигателя 50 л. с. в мае 1911 г. не только поднялась в воздух, но и продемонстрировала свою способность летать. Игорю Сикорскому Российским Императорским аэроклубом была выдана лицензия на изобретение.

    Еще в конце XIX в. было предложено несколько схем вертолета: одновинтовая, соосная, поперечная и продольная схема расположения винтов.

    Недостатком одновинтовой схемы был реактивный момент, возникающий при вращении винта. Он заставлял вращаться не столько сам винт, сколько гондолу вертолета. Для его компенсации предлагалось устанавливать рулевые винты или применять двухвинтовую соосную схему. Для обеспечения поступательного движения вертолета предлагалось применять пропеллеры или наклон оси вращающегося винта. Были также предложения использовать машущие крылья, гребные колеса, наземные буксиры и парус.

    Особую роль в истории мирового вертолетостроения занимает работа в 1908–1914 гг. студента Московского технического училища Б. Н. Юрьева. Он возглавлял группу студентов, членов комиссии по геликоптерам при Воздухоплавательном кружке МТУ. В 1911 г. Юрьев разработал проект одновинтового вертолета с хвостовым рулевым винтом. В этом проекте Юрьев смог решить проблему уравновешивания реактивного момента, действующего на гондолу. Для этого он применил рулевой винт, установленный на хвосте вертолета и приводимый в движение передачей от двигателя. Поскольку у силы, создаваемой хвостовым винтом, было большое плечо относительно центра тяжести вертолета, ее действие уравновешивало реактивный момент. Для поворота вертолета Юрьев предложил делать шаг лопастей хвостового винта изменяемым. При увеличении тяги этого винта можно было преодолевать реактивный момент главного винта и разворачивать машину в нужном направлении.

    Чтобы обеспечить управляемость вертолета относительно продольной и поперечной осей, можно было поставить сбоку и спереди машины по одному винту. Боковой винт управлял бы креном вертолета, а передний регулировал высоту полета аппарата. Однако такая схема была очень сложной и делала вертолет неустойчивым. Поэтому Юрьев сконструировал несущий винт таким образом, что тот самостоятельно создавал оба момента, необходимые для управления вертолетом. С этой целью изобретатель создал аппарат перекоса. Принцип его работы состоял в том, что управление полетом осуществлялось путем изменения угла наклона лопастей к плоскости вращения, что достигалось подвижностью лопастей относительно их продольных осей. Если разные участки описываемого круга лопасть проходила с различными углами установки, то это приводило к увеличению или уменьшению тяги на этих участках. В результате несущий винт поворачивался в соответствующую сторону.

    Необходимую установку лопастей и обеспечивал автомат. Он состоял из двух колец, связанных жесткой скользящей связью и подвешенных на кардане на неподвижной опоре. Внутреннее, подвижное, кольцо было связано тягами с рычагами, поворачивающими лопасти, и вращалось вместе с валом винта. Внешнее, неподвижное, кольцо было связано с тягами продольного и поперечного управления. Оно передавало усилие от этих тяг на подвижное кольцо, изменяя при этом угол наклона последнего. Наклоняясь, подвижное кольцо вызывало изменение углов установки лопастей относительно продольной оси и появление горизонтальной составляющей тяги несущего винта. Эта составляющая сообщала вертолету поступательное движение и наклоняла его в сторону движения. Для поворота было необходимо направить в нужную сторону внешнее кольцо.

    Для вертикального перемещения вертолета служила система управления общим шагом винта. Оно достигалось одновременным увеличением или уменьшением углов установки всех лопастей несущего винта путем поднимания или опускания скользящего кардана автомата перекоса. Одновременно увеличивалась или уменьшалась тяга двигателя.

    В 1912 г. вертолет Юрьева был выставлен на Международной выставке воздухоплавания в Москве. Работа была отмечена Малой золотой медалью. После замены макетных деталей настоящими были проведены испытания для получения характеристик несущего винта. Они были прерваны из?за плохой работы двигателя и поломки вала винта. Дальнейшей работе помешала мировая война.

    Бурное развитие самолетостроения привело к тому, что конструкторы на время оставили вертолет без внимания. Лишь в 1923 г. испанец Пескара создал вертолет, который десять минут парил в воздухе на высоте трех метров и пролетел в общей сложности 300 м.

    В 1924 г. француз Эмишен построил вертолет, который поднялся и пролетел на высоте полтора метра около 120 м. Управлял им сам Эмишен. Эта машина умела зависать в воздухе, разворачиваться на месте и лететь задним ходом.

    Надежно действующий вертолет удалось создать группе сотрудников Центрального аэрогидродинамического института под руководством Юрьева. Это был одноместный 1?ЭА с одним несущим и двумя рулевыми винтами. На нем была достигнута высота 605 м. В 1938 г. под руководством Братухина был создан вертолет 11?ЭА, на котором была применена поперечная схема.

    Аналогичную схему использовал в 30?е годы и немецкий конструктор Фокке. В 1937 г. его машина FW?61 установила мировые рекорды скорости – 123 км/ч и высоты – 2439 м. В 1941 г. FW?223 был выпущен небольшой серией.

    Свою детскую мечту И. Сикорскому удалось реализовать. В 1919 г. он эмигрировал в США, где создал свою фирму «Сикорский». В 1939 г. изобретатель создал свой первый вертолет S?46. Он отказался от полных расчетов машины и вносил изменения прямо в ходе испытаний. Вертолет имел простую конструкцию: фюзеляж представлял собой ферму из стальных труб, кресло пилота было открытым и находилось впереди двигателя мощностью 65 л. с. Вращение посредством ременной передачи передавалось на редуктор, приводящий в движение трехлопастный несущий винт. Рулевой однолопастный винт устанавливался в хвосте на коробкообразной балке.

    Испытания показали несовершенство конструкции. Из?за неправильного расчета плохо работал автомат перекоса. Это привело к плохой управляемости вертолета. При одном испытании он опрокинулся и разбился. После этого Сикорский применил схему с тремя рулевыми винтами. Эта машина хорошо управлялась, и в мае 1940 г. Сикорский показал ее летчикам. Вертолет свободно перемещался в разные стороны, зависал неподвижно и разворачивался на месте, но при этом не летел вперед. После определения и устранения недостатка летные качества машины значительно улучшились. Два года Сикорский менял конструкцию, используя различные системы управления. Это помогло ему в создании новых вертолетов.

    В 1941 г. Сикорский получил военный заказ на вертолет, предназначенный для корректировки артиллерийского огня и связи. На этой модели был вновь применен автомат перекоса, рассчитанный более тщательно. В апреле 1942 г. машину показали военным. Во время полета S?47 продемонстрировал свои огромные возможности, перемещаясь в разные стороны, зависая на месте. В зависший вертолет поднимался пассажир.

    После запуска в серийное производство S?47 получил название XR?4. Свое боевое крещение он получил в джунглях Юго?Восточной Азии, где стал единственным средством снабжения армии. Позже был сконструирован XR?5, на который установили специальный вертолетный двигатель. В дальнейшем вертолеты Сикорского получили распространение в различных отраслях хозяйства.

    После войны в СССР были созданы конструкторские бюро М. Л. Миля и Н. С. Камова. В первом разрабатывались одновинтовые вертолеты, во втором – вертолеты, работающие по двухвинтовой соосной схеме. Кроме них вертолетами занималось КБ А. С. Яковлева. Первым советским серийным вертолетом стал Ми?1, выпуск которого начался в 1951 году.

    На современных вертолетах устанавливают поршневые и воздушно?реактивные двигатели. Для кратковременного увеличения мощности при взлете и посадке вертолета может применяться ракетный двигатель. На некоторых вертолетах применяли самолетные одновальные турбовинтовые двигатели и двухвальные турбовинтовые двигатели со свободной турбиной. Возможен также реактивный привод несущего винта, в котором окружное усилие создается автономными реактивными двигателями, расположенными на лопастях несущего винта, или истечением газа из сопловых отверстий, расположенных на концах лопастей.

    Вертолеты применяются в вооруженных силах для перевозки войск и грузов, огневой поддержки сухопутных войск, разведки, поиска и уничтожения подводных лодок. В народном хозяйстве вертолеты используются для перевозки пассажиров, грузов, уничтожения вредителей сельхозкультур, удобрения полей, монтажных работ.

    Оцените определение:

    Источник: 100 знаменитых изобретений

    interpretive.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *