Содержание

Звёздная эволюция — Википедия

Материал из Википедии — свободной энциклопедии

Звёздная эволюция в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием гравитационной неустойчивости и постепенно принимающее форму шара. При сжатии энергия гравитационного поля переходит в основном в тепло и излучение, и температура объекта возрастает. Когда температура в центре достигает 15—20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла[1]. В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Эволюция звезды класса G на примере Солнца

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники.

ru.wikipedia.org

Что происходит при гибели звезды. Цикл жизни звезд.⋆Поиск истины

Вглядываясь в глубины Вселенной, астрономы исследуют столкновение различных космических сил. Смерть звезды приоткрыла нам завесу пределов времени и пространства. Современная астрономия позволила увидеть совершенно иную Вселенную: кипящую и неукротимую. Зрелище сопровождаемое предсмертной агонией гигантской звезды. Поверхность ее похожа на бушующее море огня, покрытого всплесками раскаленного газа. Вздымающиеся волны образуют цунами высотой в тысячу метров. В атмосферу взмывают огромные газовые шлейфы, которые больше нашей Земли. В глубинах звезды начался процесс разрушения. Это приводит к взрыву и рождению сверхновой. На ее месте остаются лишь цветные нити и светящиеся облака газов.

Удивительно то, что гибель одной звезды, порождает целое поколение новых звезд. Подобная смена гибели и рождения, определяет всю историю нашей галактики – Млечного пути и миллиарды таких же галактик во Вселенной.

Наше представление о космосе сформировано редкими взрывами звезд, достаточно яркими, чтобы увидеть их невооруженным взглядом.

В 1054 году, звездочеты Северной Америки обнаружили сверхновую, наблюдая за полумесяцем. Это же событие наблюдали в Китае, Корее, на Ближнем Востоке.

Астроном Тихо Браги, наблюдал подобное явление в 1572 году. Он писал об этом: «Я был настолько поражен этим зрелищем, что не постыдился подвергнуть сомнению то, что видели мои собственные глаза»

Следующий случай, в 1604 году, описал Иоганн Кеплер. Галилей на этом сделал обоснование для нового подхода к астрономии, взяв за идею изменение как фундаментальную составляющую космоса.

Чтобы понять, как звезды формируют Вселенную, ученые используют целый арсенал новейших технологий. От гигантских телескопов, расположенных высоко в горах, до целой армады спутников в космосе. Глядя на звезды в телескопы, мы видим испускаемый ими свет. Но это лишь маленькая толика того, что известно, как электромагнитный спектр.

На одном конце спектра находится короткое высокоэнергетичные рентгеновское и гамма излучение. На другом, длинные, низкоэнергетичные радиоволны, ультракороткие волны. Для сбора сигналов, испускаемых звездами в отдаленных уголках галактики, используется несметное количество радиотелескопов. Они помогают ученым рассмотреть объекты сквозь толщу туманностей и газовых скоплений.

На другом конце спектра располагаются ультрафиолетовые рентгеновские и гамма лучи. Коротковолновое рентгеновское излучение позволяет врачам просветить наши тела и увидеть переломы костей. Астрономы же ищут его в космосе, как свидетельства самых бурно протекающих процессов.

Формирование бесконечного космоса можно увидеть, не выходя из дома. Наше Солнце – это звезда средних размеров с температурой на поверхности порядка 6000 градусов Цельсия. В его глубинах, температура достигает пятнадцати миллионов градусов Цельсия. Такая температура и давление вызывает ядерные реакции, которые превращают водород в гелий с высвобождением огромного количества энергии.

Солнце, как и другие звезды на протяжении всей жизни противостоит гравитации. Энергия, выделяемая из глубин, удерживает верхние слои. Солнце выделяет достаточно энергии, чтобы удерживать гравитацию под контролем на протяжении миллиардов лет. Иначе обстоят дела с большими звездами.

Они сгорают быстро и жарко, накапливая в ядре все более и более тяжелые элементы. Когда ядро достигает критического порога, энергии для удержания гравитационного поля не хватает. Звезда взрывается и погибает. Это разрушение рождает сверхновую. Взрыва насыщает окружение углеродом, кислородом, железом и другими элементами необходимыми для жизни, какой мы ее знаем. Взрывная волна дает начало рождению новых звезд.

Такие звездные инкубаторы, образованные сверхновыми, проникают во все уголки галактики. Среди них существует, и светящееся скопление газа и пыли, известное, как туманность Ориона. Здесь ученые обнаружили звезды со своими солнечными системами в процессе формирования. Когда скопление достигает определенной плотности, в них возникают ядерные процессы. Это рождает звезды и их планетарные системы.

Другая судьба ожидает внутреннюю часть взорвавшейся звезды. Сильно сжатое ядро, после взрыва остается нетронутым. Представим, что Землю сжали до размера теннисного мяча. Это нейтронные звезды. Некоторые вращаются с невероятной скоростью – сотни оборотов в секунду.

Когда первые, так называемые, пульсары были открыты с помощью радиотелескопов, их сигналы принимали за сигналы других цивилизаций.

Крабовидная туманность – это оболочка сверхновой, которую наблюдали в разных местах в 1054 году. Ученые сосредоточили свое внимание на глубинной части пульсара. Они зафиксировали всплески радиации, которые оставили круглые следы в окружающем газовом облаке. Некоторые погибающие звезды ожидает крайне странная судьба. Вселенная рождает монстров.

Альберт Эйнштейн предположил, что есть звезды с такой гравитацией, которая не позволяет прорваться даже свету. Но он отклонил эту идею, как невозможную. Что когда-то было за гранью понимания – сейчас определяет границу науки. Астрономы считают, что когда врывается большая звезда, в ее ядро проникает столько материи, что она может покинуть Вселенную. Но последнее слово за гравитацией.

Пользуясь преимуществами земли, мы можем охарактеризовать Вселенную по известным нам критериям, включая формы света электромагнитного спектра. Однако черные дыры с этим не согласны. Как можно определить объект, который не дает света?

Астрономы нашли ответ во вспышке гамма излучения, направленного в центр нашей галактики. Радиотелескопы сконцентрировались на источники и обнаружили потоки материи в двух направлениях. И вот что они увидели.

Черная дыра, испускающая потоки газа с внешних слоев звезды. Они образуют вращающийся диск. Он формирует магнитные поля, которые вращаясь, образуют два высокоэнергетичных луча, или потока, из, проходящих сквозь них, материи.

Астрономы знают, что черные дыры способны сконцентрировать в этих потоках огромное количество энергии в мгновение ока. Одна из них, известная под названием «GROJ 1655-40», несется сквозь Вселенную на скорости 400 тысяч километров в час. В четыре раза быстрее, чем другие звезды. Это подобно выстрелу из пушки, произведенному одной из Сверхновых.

Черные дыры, благодаря способности мобилизовать огромное количество энергии, интересуют нас не только из любопытства. Есть категория дыр, существующих с незапамятных времен. С тех пор, когда первые звезды только зарождались. Когда те первородные гиганты погибали, они рождали черные дыры.

Гравитация подпитывала черные дыры космическим веществом и газом. Вещество превратилось впервые галактики, которые переросли в крупные. Некоторые из них достигли массы, в миллиарды раз превышающие массу Солнца.

Испуская энергетические потоки, они разогревали окружение галактик. Это останавливало струю газа в центральной галактике, замедляя ее рост, и, провоцируя рост периферийных галактик. Но на этом воздействие черных дыр не заканчивалось.

Галактическое скопление, называемое «Гидра А», окружено раскаленными впадинами, испускающими рентгеновское излучение. Из центральной галактики вырывается поток, видимый в радиоволновом спектре. Газ по краям этого потока содержит большое количество ионов железа, и других металлов, рожденных взрывом сверхновой. Выталкивая эти металлы на края Вселенной, черные дыры насыщают отдаленные галактики элементами, необходимыми для формирования звезд и планетарных систем, подобных нашей.

Исполинские черные дыры наблюдаются почти во всех галактиках во Вселенной. Так же отмечается и рост числа мощных энергетических потоков.

Нам досталось роль наблюдателей за тернистым жизненным циклом звезд. Находясь на колоссальном удалении от них во времени и пространстве, нам очень многое непонятно.

Запуск двух станций «Вояджер» в 1977 году, заметно сократил это расстояние. После обследования самых далеких планет Солнечной системы и их спутников, эти аппараты направляются к внешним пределам нашей системы, на десятки миллиардов километров от Земли. Двигаясь со скоростью 16 километров в секунду, Вояджер2 покроет расстояние в четыре световых года и достигнет одной из ближайших к нам звезд – Сириуса, через 290 тысяч лет.

Наблюдая из нашего тихого уголка в галактике, мы поняли, что звезды не только освещают Вселенную, но и насыщают ее материей, необходимой для жизни. Наблюдая за гибелью звезды во взрыве, мы приобретаем понимание той силы, которая образует Вселенную и меняет миры, подобные нашему собственному миру.

nasch-mir.ru

Жизнь и смерть звезд — Naked Science

Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.

 

 

Рождение

 

Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.

 

Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.

 

Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.

 

Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.

 

Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.

 

Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.

 

Область активного звездообразования N44 / ©ESO, NASA

 

 

Ни детства, ни отрочества, ни юности

 

Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.

 

Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.

 

Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.

 

Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.

 

Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.

 

Коричневый карлик в представлении художника / ©ESO/I. Crossfield/N. Risinger

 

 

Неспокойная старость

 

В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.

 

Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.

 

Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.

 

Авторское представление об экзопланете, вращающейся вокруг красного карлика GJ 1214 / ©ESO/L. Cal?ada

 

Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (изотоп железа, который иногда называют «пеплом термоядерного горения»).

 

Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.

 

В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.

 

В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро - белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.

 

Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу.

 

Система KOI-256, состоящая из красного и белого карликов / ©NASA/JPL-Caltech

 

 

Экстремальная старость

 

Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.

 

Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.

 

В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.

 

Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.

 

В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.

 

Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.

 

Сверхновая SN 1994D в галактике NGC 4526 (яркая точка в нижнем левом углу) / ©NASA

 

 

А что ждет наше Солнце?

 

Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.

 

Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.

 

Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.

 

Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.

 

Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.

 

Солнечная активность / ©NASA/Goddard/SDO

 

Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.

 

Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.

 

А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.

 

naked-science.ru

Жизненный цикл звезды - описание, схема и интересные факты

Звезды, как и люди, могут быть новорожденными, молодыми, старыми. Каждый миг умирают одни звезды и образуются другие. Обычно самые юные из них похожи на Солнце. Они находятся на стадии формирования и фактически представляют собой протозвезды. Астрономы называют их звездами типа Т - Тельца, по имени своего прототипа. По своим свойствам – например, светимости – протозвезды являются переменными, поскольку их существование еще не вошло в стабильную фазу. Вокруг многих из них находится большое количество материи. От звезд типа Т исходят мощные ветровые потоки.

Протозвезды: начало жизненного цикла

Если на поверхность протозвезды падает вещество, оно быстро сгорает и превращается в тепло. Как следствие, температура протозвезд постоянно увеличивается. Когда она поднимается настолько, что в центре звезды запускаются ядерные реакции, протозвезда обретает статус обыкновенной. С началом протекания ядерных реакций у звезды появляется постоянный источник энергии, который поддерживает ее жизнедеятельность в течение длительного времени. Насколько долгой будет жизненный цикл звезды во Вселенной, зависит от ее первоначального размера. Однако считается, что у звезд, диаметром с Солнце, энергии хватит на то, чтобы безбедно существовать в течение приблизительно 10 млрд лет. Несмотря на это, случается и так, что даже более массивные звезды живут всего лишь несколько миллионов лет. Это происходит по причине того, что сжигают они свое топливо гораздо быстрее.

Звезды нормальных размеров

Каждая из звезд представляет собой сгустки горячего газа. В их глубинах постоянно происходит процесс выработки ядерной энергии. Однако не все звезды похожи на Солнце. Одно из главных различий заключается в цвете. Звезды бывают не только желтыми, но и синеватыми, красноватыми.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Попытки объяснить жизненный цикл звезд

Люди издавна пытались проследить жизнь звезд, однако первые попытки ученых были достаточно робкими. Первым достижением было применение закона Лейна к гипотезе Гельмгольца-Кельвина о гравитационном сжатии. Это принесло в астрономию новое понимание: теоретически температура звезды должна повышаться (ее показатель обратно пропорционален радиусу звезды) до тех пор, пока увеличение плотности не замедлит процессы сжатия. Тогда расход энергии будет выше, чем ее приход. В этот момент звезда начнет стремительно остывать.

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц – «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго – в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран – так называемый «глаз быка», находящийся в созвездии Тельца; а также звезда Антарес в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило – одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно – за последние пять миллиардов лет была израсходована половина запаса.

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура – напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго – всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако – гравитационный коллапс облака – рождение сверхновой звезды – эволюция протозвезды – окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды – середина жизни – зрелость – стадия красного гиганта – планетарная туманность – этап белого карлика. Последние две фазы свойственны звездам малого размера.

Природа планетарных туманностей

Итак, мы рассмотрели кратко жизненный цикл звезды. Но что представляет собой планетарная туманность? Превращаясь из огромного красного гиганта в белого карлика, иногда звезды сбрасывают внешние слои, и тогда ядро звезды становится обнаженным. Газовая оболочка начинает светиться под действием энергии, излучаемой звездой. Название свое эта стадия получила за счет того, что светящиеся газовые пузыри в этой оболочке часто похожи на диски вокруг планет. Но на самом деле они ничего общего с планетами не имеют. Жизненный цикл звезд для детей может не включать всех научных подробностей. Можно лишь описать основные фазы эволюции небесных светил.

Звездные скопления

Астрономы очень любят исследовать скопления звезд. Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам – каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.

fb.ru

Время жизни звезд

Звезда Вега, снимок ESO

Время жизни звезд состоит из нескольких этапов, проходя через которые миллионы и миллиарды лет светила неуклонно стремятся к неизбежному финалу, превращаясь в яркие вспышки сверхновых или в угрюмый мрак черных дыр.

Общая информация

Эволюция Звезд

Время жизни звезды любого типа – невероятно долгий и сложный процесс, сопровождаемый явлениями космического масштаба. Многогранность его просто невозможно полностью проследить и изучить, даже используя весь арсенал современной науки. Но на основании тех уникальных знаний, накопленных и обработанных за весь период существования земной астрономии, нам становятся доступными целые пласты ценнейшей информации. Это позволяет связать последовательность эпизодов из жизненного цикла светил в относительно стройные теории и смоделировать их развитие. Что же это за этапы?

Жизненный цикл звезд

Не пропустите наглядное интерактивное приложение «Жизненный цикл звезд»!

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!


Эта огромная панорама туманности Ориона получена из снимков телескопа Хаббл. Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Эпизод II. Молодые звезды

Фомальгаут, изображение из каталога DSS. Вокруг этой звезды еще остался протопланетный диск.

Следующим этапом или циклом жизни звезды является период ее космического детства, который, в свою очередь, делится на три стадии: молодые светила малой (<3), промежуточной (от 2 до 8) и массой больше восьми солнечных единиц. На первом отрезке образования подвержены конвекции, которая затрагивает абсолютно все области молодых звезд. На промежуточном этапе такое явление не наблюдается. В конце своей молодости объекты уже во всей полноте наделены качествами, присущими взрослой звезде. Однако любопытно то, что на данной стадии они обладают колоссально сильной светимостью, которая замедляет или полностью прекращает процесс коллапса в еще не сформировавшихся солнцах.

Эпизод III. Расцвет жизненного пути звезды

Солнце снятое в линии H альфа. Наше звезда в самом расцвете сил.

В середине своей жизни космические светила могут обладать самыми разнообразными цветами, массой и габаритами. Цветовая палитра варьируется от голубоватых оттенков до красных, а их масса может быть значительно меньше солнечной, либо превышать ее более чем в триста раз. Главная последовательность жизненного цикла звезд длится около десяти миллиардов лет. После чего в ядре космического тела заканчивается водород. Этот момент принято считать переходом жизни объекта на следующий этап. По причине истощения водородных ресурсов в ядре останавливаются термоядерные реакции. Однако в период вновь начавшегося сжатия звезды начинается коллапс, который приводит к возникновению термоядерных реакций уже с участием гелия. Этот процесс стимулирует просто невероятное по масштабам расширение звезды. И теперь она считается красным гигантом.

Эпизод IV. Конец существования звезд и их гибель

Диск звезды Бетельгейзе, снимок телескопа Хаббл

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, белые карлики, нейтронные и черные дыры. Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Интересные факты из жизненных циклов звезд

Жизненный цикл звезд

Одним из самых своеобразных и примечательных сведений из звездной жизни космоса является то, что подавляющее большинство светил в нашей Вселенной находятся на стадии красных карликов. Такие объекты обладают массой значительно меньшей, чем у Солнца.

Довольно интересно также и то, что магнитное притяжение нейтронных звезд в миллиарды раз выше аналогичного излучения земного светила.

Влияние массы на звезду

Путь звезды в зависимости от массы

Еще одним не менее занимательным фактом можно назвать продолжительность существования самых огромных из известных типов звезд. В силу того, что их масса способна в сотни раз превышать солнечную, выделение ими энергии тоже многократно больше, иногда даже в миллионы раз. Следовательно, период их жизни длится гораздо меньше. В некоторых случаях их существование укладывается всего в несколько миллионов лет, против миллиардов лет жизни звезд с небольшой массой.

Интересным фактом также является противоположность черных дыр белым карликам. Примечательно то, что первые возникают из самых гигантских по массе звезд, а вторые, наоборот, из наименьших.

Во Вселенной существует огромное количество уникальных явлений, о которых можно говорить бесконечно, ведь космос крайне слабо изучен и исследован. Все человеческие знания о звездах и их жизненных циклах, которыми обладает современная наука, в основном получены из наблюдений и теоретических расчетов. Такие малоизученные явления и объекты дают почву для постоянной работы тысячам исследователей и ученых: астрономов, физиков, математиков, химиков. Благодаря их непрерывному труду, эти знания постоянно накапливаются, дополняются и изменяются, становясь, таким образом, более точными, достоверными и всеобъемлющими.


comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 5732

spacegid.com

Эволюция звезд

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Цикл жизни звёзды

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см3. Молекулярное облако же имеет плотность около миллиона молекул на см3. Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности. Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5—0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра, если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

Источник

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Рождение звёзд

2. Формирование и эволюция Солнечной системы

3. Звезды

myvera.ru

Как умирают звёзды | Журнал Популярная Механика

Нам выпало жить в молодой Вселенной, полной молодых звёзд. Всем им предстоит пройти несколько этапов звёздной эволюции — сжечь водород в своих недрах и взорваться или медленно остыть. Когда мир станет в тысячу раз старше, чем сейчас, на месте когда-то ярких светил появятся загадочные чёрные карлики или чёрные дыры, а некоторым звёздам суждено просто рассеяться в космической пустоте.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*109) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности. Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе, однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.

NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 1012 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 1016 или даже 1022 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.

Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 1014 — 1015 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 1012 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 1014 — 1015 лет до превращения в чёрный карлик.

www.popmech.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о