Фугасность — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 мая 2016; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 мая 2016; проверки требуют 8 правок.Фуга́сность (фр. fougasse от лат. focus «очаг, огонь»)[1] — характеристика взрывчатого вещества. Служит мерой его общей работоспособности, разрушительного, метательного и иного действия взрыва. Основное влияние на фугасность оказывает объём газообразных продуктов взрыва
Точное определение истинной работоспособности связано с техническими трудностями, поэтому обычно фугасность определяют и выражают в относительных единицах по сравнению со стандартными взрывчатыми веществами (как правило, кристаллическим тротилом). Для измеренной таким образом фугасности часто применяют термин тротиловый эквивалент
Существует несколько способов определения фугасности.
Наиболее простым и распространенным является проба Трауцля[2]. Этот способ в Российской Федерации используется для промышленных взрывчатых веществ как стандартный по ГОСТ 4546-81. Испытание проводят путём подрыва заряда массой 10 граммов, установленного внутри свинцового цилиндра (часто называемого бомбой Трауцля). До и после подрыва заряда измеряется объём полости внутри цилиндра. Разность между ними с учётом влияния температуры и капсюля-детонатора сравнивается с результатами испытания кристаллического тротила.
Также фугасность определяют измерением работы взрыва на баллистическом маятнике.
взрывчато |
---|
ru.wikipedia.org
Гексоген — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 ноября 2015; проверки требуют 25 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 ноября 2015; проверки требуют 25 правок. Перейти к навигации Перейти к поискуГексоген | |
---|---|
![]() | |
Общие | |
Систематическое наименование | 1,3,5-тринитро-1,3,5-триазациклогексан |
Традиционные названия | Гексоген, RDX, циклотриметилентринитрамин, циклонит |
Хим. формула | |
Физические свойства | |
Состояние | твердое |
Молярная масса | 222,12 г/моль |
Плотность | 1,816 г/см³ |
Термические свойства | |
Т. плав. | 205,5 °C |
Т. кип. | 234 °C |
Давление пара |
ru.wikipedia.org
Бризантные (дробящие=обычные) ВВ. Удельная энергия, температура вспышки, взрыва, скорость детонации и т.д. Тротил, гексоген, Тэн, тетрил, ТГ-50, ТГ-40, МС, ТГА-16, ПВВ4, ПВВ5А, ПВВ7, ПВВ12с, А- IХ-1 и 2, ЭВВ-11, ВС-6Д, ТМ, Гекфол-5 (А- IX-10)
| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Химический справочник / / Горение и взрывы. Окисление и восстановление. / / Бризантные (дробящие=обычные) ВВ. Удельная энергия, температура вспышки, взрыва, скорость детонации и т.д. Тротил, гексоген, Тэн, тетрил, ТГ-50, ТГ-40, МС, ТГА-16, ПВВ4, ПВВ5А, ПВВ7, ПВВ12с, А- IХ-1 и 2, ЭВВ-11, ВС-6Д, ТМ, Гекфол-5 (А- IX-10)
|
www.dpva.ru
формула, как выглядит, аналог, из чего делают
На протяжении веков единственным известным человечеству взрывчатым веществом был порох. Только технологические прорывы 19 века позволили изобрести мощный нитроглицерин, безопасный в обращении динамит, бездымный порох. А главным достижением оказался тротил, ставший фактическим стандартом военной взрывчатки.
Но если тротил – самое известное ВВ, то второе место можно отвести гексогену. А по распространённости он вполне может поспорить с ТНТ. Начиная с межвоенного периода, он понемногу вытеснял тротил, став в итоге основой для большинства взрывчатых композиций различного назначения.
Содержание статьи
История создания и внедрения
«Рождение» гексогена (в тот момент ещё циклотриметилентринитрамина) состоялось в 1890-е годы в Германии. Но переворота во взрывном деле “белый порошок” тогда не произвёл, потому что его надеялись использовать, как лекарство. Медицинская «карьера» вещества не задалась – оно оказалось сильным ядом. Новый виток интереса к нему начался уже после Первой Мировой войны, когда учёные стали искать взрывчатку, более мощную, чем тротил.
Уже в 1920 году немецкий учёный Герц запатентовал метод получения циклотриметилентринитрамин и способ его применения в качестве взрывчатки. Сырьё для производства такой взрывчатки получается из общедоступных (при развитой промышленности) аммиака и формальдегида. Тогда же и родилось краткое и удобное название «гексоген».
Британцы обратили на него внимание в 1930-е, находясь в поиске более мощного ВВ для противолодочного оружия.
Из соображений секретности вещество обозначили маловразумительным термином Research Department Explosive («Взрывчатка Департамента Исследований»). Так аббревиатура RDX стала общепринятым названием взрывчатки в англоязычном мире.
К началу Второй Мировой войны гексоген массово синтезировался и в США, и в СССР. Методы изготовления постоянно совершенствовались. От предложенной Герцем методики обработки уротропина азотной кислотой перешли к более эффективным способам. Если по процессу Герца из сырья получалось не более 40% взрывчатки, то так называемый метод «W» позволил довести выход продукта до 80%.
Так в качестве сырья стали применять не уротропин, а его динитрат (который сам по себе является слабым ВВ). В азотную кислоту стали добавлять аммиачную селитру. Интересно, что хотя массовое производство циклотриметилентринитрамина достаточно легко организовать даже при не очень развитой химической промышленности, кустарными способами его получить очень сложно.
Свойства и разнообразие «композиций»
Циклотриметилентринитрамин – кристаллический порошок белого цвета, с химической формулой C3H6N6O6, безвкусный и нерастворимый в воде. Но ценен и интересен он не этим. Скорость распространения ударной волны в заряде (детонации) у гексогена почти в 1,3 раза выше, чем у тротила.
А по фугасности, мерило которой — полость, образованная взрывом заряда в свинцовом цилиндре, сильнее в 1,7 раза. Бризантность взрывчатки длительное время вообще не удавалось точно оценить, поскольку взрыв не уменьшал высоту цилиндра из свинца, а просто разрушал его.
Неудивительно, что военные по всему миру заинтересовались такой взрывчаткой. Но обнаружили и серьёзные недостатки. В противоположность нечувствительному к внешним воздействиям тротилу, гексоген оказался чувствителен и к ударам, и к трению. Впрочем, эту проблему удалось быстро решить флегматизацией – смешиванием с веществами, увеличивающими стабильность.
Небезопасность в обращении привела к тому, что, «как есть» в зарядах он практически не применялся. Зато стал основным компонентом различных смесей. Так, советский гексал (А-IX-2) содержит в себе 73% гексогена, 4% флегматизатора (им выступает воск или парафин) и алюминиевую пудру. Во время Великой Отечественной эта смесь активно применялась в качестве наполнителя бронебойных снарядов.
Так, каморный снаряд БР-471 калибра 122мм содержал 156 грамм A-IX-2. А снаряд БР-540 для гаубицы МЛ-20 нёс в себе 660 грамм гексала. При этом в осколочно-фугасных гранатах продолжал использоваться тротил. Для снаряжения торпед и глубинных зарядов в СССР разработали так называемую «морскую смесь», содержащую до 57% гексогена.
Взрывчатка «Торпекс» — вариант «морской смеси» созданная в Британии в 1930-е, содержала примерно равные доли RDX и TNT. “Прыгающие бомбы”, использованные Королевскими ВВС для разрушения Рурских дамб, содержали заряды из трёх тонн «Торпекса».
Этим же веществом снаряжались британские сейсмические бомбы «Толлбой». В авиационных бомбах и торпедах «B» заменила «Композиция H6», считающаяся более безопасной.
Циклотриметилентринитрамин стал основой для первых пластичных взрывчатых веществ (обычно ошибочно называемых «пластиковыми»). За счёт пластичности зарядам легко придать любую форму и установить в какое угодно место (просто «облепив» взрывчаткой объект). Самый известный представитель таких ВВ – американская «композиция С-4», состоящая на 91% из RDX.
Пластификатором в ней служит диоктилсебацинат. Чехословацкая пластическая взрывчатка «Semtex» представляет собой смесь гексогена и тэна (TNT). Причём процентное содержание изменяется в зависимости от варианта.
Пластификатор «Семтекса» — диоктилфтанат. Во время Второй Мировой войны пластичная взрывчатка поставлялась в виде шашек массой 113 грамм в вощёной бумаге. Современные заряды С-4 – шашки массой 566 грамм в пластиковой оболочке.
Эффективность пластичной взрывчатки не могла не привлечь внимание террористов. Это привело к тому, что на заводах стали помечать заряды химическими метками. Поскольку «в домашних условиях» такое вещество воспроизвести нельзя, это является достаточно действенным средством ограничения его оборота.
RDX стал основой и для взрывчатых веществ с пластичным связующим (Polymer-Bonded Explosives).
Эти составы отличаются малой чувствительностью и высокой прочностью и применялись в термоядерном оружии. При помощи PBX инициировали подрыв ядерного заряда, создающего условия для протекания реакции синтеза.
А вот самый маленький «снаряд», в котором применён разрывной заряд RDX – пуля Mk.211 калибра 12,7мм. В этом случае чувствительность даже в ппюс, так как детонатора пуля не содержит – заряд инициируется воспламенением зажигательного состава при ударе о преграду.
Сравнение с другими взрывчатыми веществами
Для наглядности приведём небольшую таблицу с характеристиками различных ВВ. Возьмём тротил, как «фактический стандарт», собственно гексоген и более позднюю взрывчатку – октоген. В качестве перспективного взрывчатого вещества послужит гексанитрогексаазаизовюрцитан.
Тротил (TNT) | Гексоген (RDX) | Октоген (HMX) | ГНИВ (CL-20) | |
---|---|---|---|---|
Плотность | 1.6 г/см³ | 1.78 г/см³ | 1.86 г/см³ | 1.97 г/см³ |
Скорость детонации | 6900 м/с | 8750 м/с | 9100 м/с | 9380 м/с |
Тротиловый эквивалент | 1 | 1.6 | 1.7 | 2.0 |
Несложно понять, что по мощности RDX действительно превзошёл TNT. А вот октоген, даже превосходя предшественников по «взрывчатым» качествам, всё-таки не имел такого решительного превосходства, а в изготовлении оказался сложнее. Сложность и дороговизна изготовления пока что — барьер и для широкого распространения новейших ВВ. Даже если новые разработки гораздо мощнее гексогена.

Аналогом гексогена, который сможет его полностью вытеснить, считается малочувствительная взрывчатка FOX-7, полученная в Швеции в 1998 году. По характеристикам она близка к «композиции В», а её синтез несложен. Однако выпускают FOX-7 в малых масштабах, а о планах по её широкому применению ничего не известно.
Ядовитость
Да, сам по себе циклотриметилентринитрамин ядовит. Но, поскольку, как лекарство, он так и не состоялся, на это внимания не обращали и не считали недостатком. Во время Вьетнамской войны на протяжении 1969 года почти четыре десятка солдат получили отравление после того, как использовали вместо дров плитки С-4.
Дым, который образовывался при горении взрывчатки, и оказался ядовитым. Впрочем, никаких заметных последствий это не повлекло. Ограниченное применение на гражданском рынке гексоген нашёл как крысиный яд.
Гексоген появился позже тротила, а в массовом сознании отпечатался не так сильно. Но вот о том, какая взрывчатка более значима для развития военной техники и сыграла большую роль в той или иной войне – можно спорить.
С 30-х годов 20 века он был основой «начинки» снарядов и гранат, фугасных и кумулятивных зарядов.
Только в недавний период RDX стал несколько уступать позиции малочувствительным взрывчатым веществам на основе HMX — октогена. Но до сих пор можно с уверенностью говорить о том, что гексоген остаётся самой массовой взрывчаткой, сочетающей в себе высокие разрушительные качества и простоту промышленного изготовления.
Видео
warbook.club
Тротиловый эквивалент — Википедия. Что такое Тротиловый эквивалент
Материал из Википедии — свободной энциклопедии
Высота ядерного гриба в зависимости от энергии (в тротиловом эквиваленте)Троти́ловый эквивалент — мера энерговыделения высокоэнергетических событий, выраженная в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.
Удельная энергия взрывного разложения тринитротолуола в зависимости от условий проведения взрыва варьирует в диапазоне 980—1100 кал/г. Для сравнения различных видов взрывчатых веществ условно приняты значения 1000 кал/г и 4184 Дж/г.
Производные величины
- 1 грамм тринитротолуола выделяет 1000 термохимических калорий, или 4184 джоулей;
- 1 килограмм ТНТ = 4,184·106 Дж = 4,184 МДж;
- 1 тонна ТНТ = 4,184·109 Дж = 4,184 ГДж;
- 1 килотонна (кт) ТНТ = 4,184·1012 Дж = 4,184 ТДж;
- 1 мегатонна (Мт) ТНТ = 4,184·1015 Дж = 4,184 ПДж;
- 1 гигатонна (Гт) ТНТ = 4,184·1018 Дж = 4,184 ЭДж.
Эти единицы используются для оценки энергии, выделяемой при ядерных взрывах, подрывах химических взрывчатых устройств, падениях астероидов и комет, взрывах вулканов и прочее.
В частности, тротиловый эквивалент может характеризовать мощность ядерного взрыва. Он равен массе тротилового (тринитротолуолового) заряда, энергия которого во время взрыва была бы эквивалентна энергии взрыва данного ядерного боеприпаса. Например, тротиловый эквивалент одного грамма урана-235 или плутония-239 при полном[уточнить]делении их ядер примерно равен энергии взрыва 20 000 т тротила.
Так, энергия взрыва ядерной бомбы «Малыш» над Хиросимой 6 августа 1945 года по разным оценкам составляет от 13 до 18 кт ТНТ, что соответствует преобразованию в энергию примерно 0,7 г материи:
- E = mc2 = 0,0007 кг · (3·108 м/с)2 = 63·1012 Дж ≈ 15 кт ТНТ.
Для сравнения, общее мировое потребление электроэнергии за 2005 год (5·1020 Дж) равно 120 Гт ТНТ, или в среднем 3,8 кт ТНТ в секунду.
Тротиловый эквивалент взрывчатых веществ
Тротиловый эквивалент взрывчатых веществ представляет собой коэффициент, который указывает во сколько раз сильнее или слабее данное вещество по сравнению с тротилом[1][2] (изредка может вводиться сходный сравнительный коэффициент относительно других широко применяемых веществ)
- Тротил — 1,0
- Тритонал — 1,53
- Гексоген — до 1,3—1,6
- ТЭН — 1,39
- Аммонал — 0,99
- Порох — 0,55—0,66
- ТНРС — 0,39
- Тетрил — 1,15—1,25
- ЭГДН — 1,6
- Октоген — 1,7
См. также
Примечания
Ссылки
wiki.sc
Тротиловый эквивалент — WiKi
Высота ядерного гриба в зависимости от энергии (в тротиловом эквиваленте)Троти́ловый эквивалент — мера энерговыделения высокоэнергетических событий, выраженная в количестве тринитротолуола (ТНТ), выделяющем при взрыве равное количество энергии.
Удельная энергия взрывного разложения тринитротолуола в зависимости от условий проведения взрыва варьирует в диапазоне 980—1100 кал/г. Для сравнения различных видов взрывчатых веществ условно приняты значения 1000 кал/г и 4184 Дж/г.
- 1 грамм тринитротолуола выделяет 1000 термохимических калорий, или 4184 джоулей;
- 1 килограмм ТНТ = 4,184⋅106 Дж = 4,184 МДж;
- 1 тонна ТНТ = 4,184⋅109 Дж = 4,184 ГДж;
- 1 килотонна (кт) ТНТ = 4,184⋅1012 Дж = 4,184 ТДж;
- 1 мегатонна (Мт) ТНТ = 4,184⋅1015 Дж = 4,184 ПДж;
- 1 гигатонна (Гт) ТНТ = 4,184⋅1018 Дж = 4,184 ЭДж.
Эти единицы используются для оценки энергии, выделяемой при ядерных взрывах, подрывах химических взрывчатых устройств, падениях астероидов и комет, взрывах вулканов и прочее.
В частности, тротиловый эквивалент может характеризовать мощность ядерного взрыва. Он равен массе тротилового (тринитротолуолового) заряда, энергия которого во время взрыва была бы эквивалентна энергии взрыва данного ядерного боеприпаса. Например, тротиловый эквивалент одного грамма урана-235 или плутония-239 при полном[уточнить]делении их ядер примерно равен энергии взрыва 20 000 т тротила.
Так, энергия взрыва ядерной бомбы «Малыш» над Хиросимой 6 августа 1945 года по разным оценкам составляет от 13 до 18 кт ТНТ, что соответствует преобразованию в энергию примерно 0,7 г материи:
- E = mc2 = 0,0007 кг · (3⋅108 м/с)2 = 63⋅1012 Дж ≈ 15 кт ТНТ.
Для сравнения, общее мировое потребление электроэнергии за 2005 год (5⋅1020 Дж) равно 120 Гт ТНТ, или в среднем 3,8 кт ТНТ в секунду.
ru-wiki.org
Лекция № 7
Практические методы определения работоспособности и бризантности.
Способы ведения взрывных работ
7.1 Практические методы определения работоспособности и бризантности
Под фугасным действием понимают общее действие взрыва на некотором расстоянии от поверхности ВВ, которое проявляется в совершении работы продуктами взрыва в процессе их расширения до малых давлений. Фугасное действие часто называют работоспособностью.
7.1.1 Практические методы определения работоспособности
Любые практические методы лишь частично могут оценить работоспособность ВМ. О работоспособности можно судить и по бризантному действию ВМ, но чем большую степень расширения газов удается охватить методикой, тем она более точна. При одинаковой работоспособности (площади под кривой давления) бризантность может существенно отличаться.
Работоспособность ВВ характеризует его способность производить при взрыве разрушение горных пород. Самым надежным способом определения работоспособности ВВ является испытание их в производственных условиях. Однако подобные испытания очень сложны и дороги. Поэтому существует несколько способов относительной оценки работы взрыва, позволяющих сравнивать различные ВВ по их работоспособности.
Наиболее распространенным способом практической оценки условной работоспособности ВВ является испытание и определение расширения канала свинцовой бомбы Трауцля взрывом заряда ВВ стандартной массы.
Метод свинцовой бомбы Трауцля – принят на Международном конгрессе прикладной химии. Это наиболее широко применяемый метод, стандартный метод в России.
Свинцовая бомба – цилиндр с осевым отверстием. Для испытания применяют бомбы, отлитые из чистого рафинированного свинца. Бомба имеет форму цилиндра, высота и диаметр которого 200±2 мм. В бомбе имеется несквозной канал по оси цилиндра глубиной 125±2 мм и диаметром 25±0,5 мм.
З
Рисунок 2. Схема определения работоспособности ВВ в бомбе Трауцля
аряд массой 10±0,01 г испытуемого ВВ плотностью около 1 г/см3 помещают в бумажную гильзу. В специально сделанное гнездо в заряде помещают КД или ЭД (электродетонатор ЭД-8-Э).Подготовленный таким образом заряд ВВ вводят в канал бомбы до его дна. Свободное пространство канала над зарядом засыпают кварцевым песком, просеянным через сито № 144 (144 отверстия на 1 см2).
Затем производят взрыв заряда ВВ, после чего образующуюся в бомбе грушевидную полость очищают волосяным ершом, содержимое удаляют перевертыванием бомбы и замеряют объем полости водой, заливаемой из стеклянного мерного цилиндра.
Из полученного объема вычитают первоначальный объем канала и объем той полости, которая получается при взрыве одного капсюля-детонатора без заряда ВВ (этот объем примерно равен 30 см3).
Полученная разность и дает численное значение работоспособности испытуемого ВВ в кубических сантиметрах. Работоспособность ВВ рассчитывают как среднее арифметическое из двух параллельных опытов, между которыми отклонения должны быть не более 10 см3. Обычно испытания производят при температуре бомбы примерно +15°С с отклонением ±5°С. При больших отклонениях температуры вводится поправка на изменение объема от температуры до 10% измеренного объема. При 0ºC прибавляют 5% объема, при 30º отнимают 6%.
Работоспособность выражается в единицах приращения объема. ВВ можно лишь расположить в определенный относительный ряд. Абсолютную величину работоспособности ВВ можно определить через эквивалентный заряд, который совершает такое же расширение как известное ВВ.
Описанный стандартный метод испытания в свинцовой бомбе является условным и не позволяет определить действительную работоспособность различных ВВ. Например, если одно ВВ дает расширение 300 см3, а другое 600 см3, то еще нельзя утверждать, что истинная работоспособность второго ВВ ровно вдвое больше работоспособности первого. Расширить объем канала бомбы на первые 300 см3 труднее, чем на последующие от 300 см3 (до 600 см3).
Работоспособность выражается в единицах приращения объема. ВВ можно лишь расположить в определенный относительный ряд.
А. Ф. Беляев, применив в качестве эталона заряды аммонита № 6, получил следующие данные относительной работоспособности некоторых ВВ (в %): тротил 82%, тетрил — 100%, 62%-ный динамит — 104%, гексоген — 122%, тэн —123%, аммонит скальный № 1 — 119%, детонит М — 118%, аммонал — 132%.
Абсолютную величину работоспособности ВВ можно определить через эквивалентный заряд, который совершает такое же расширение как известное ВВ.
Фугасность некоторых взрывчатых веществ :
Тротил кристаллический — 285±7 см³
Аммонит скальный № 1 прессованный — 450—460 см³ (тротиловый эквивалент 1,6)
Аммонит № 6ЖВ — 365 см³ (тротиловый эквивалент 1,3)
Аммонал — 400 см³ (тротиловый эквивалент 1,4)
Гексоген — 480 см³ (тротиловый эквивалент 1,7)
studfiles.net