Что приводит к разрушению озонового слоя.

К разрушению озонового слоя приводят многочисленные факторы. Я рассмотрю самые главные. В первую очередь это, конечно же, фреоны. Фреоны – это собирательное название целой группы химических веществ появившихся на свет ещё в 20 годы. В основном они использовались в холодильниках в качестве хладагентов. И являются производными от метана, этана и циклобутана. В этих соединениях содержится фтор или хлор или оба этих элемента. Хотя они мало токсичны, всё же при их высокой концентрации их токсичность высока. По этому признаку они поделены на 6 классов. Наиболее опасными считаются 1 и 2 классы. Ещё одна область применения фреонов это использование их в аэрозольных упаковках в качестве распылителя. Так как большая часть производимых в мире фреонов попадает в атмосферу, можно сказать, что выпуск фреонов почти полностью работает на сокращение озонового слоя.

Фреоны достаточно быстро поднимаются вверх, в стратосферу. В стратосфере под действием ультрафиолетового излучения они достаточно быстро разлагаются. В результате выделяются активные атомы хлора, которые и участвуют в разложении озона.

Ещё один фактор, приводящий к уменьшению озонового слоя. Это высотные самолёты и запуски космических кораблей. Высокая температура в камерах сгорания реактивных двигателей, приводит к образованию окислов азота из находящихся там азота и кислорода. Причём скорость образования азота на прямую зависит от температуры, то есть мощности двигателя. Но ещё и очень важно, на какой высоте находится двигатель и выпускает в атмосферу разрушающие озон окислы азота. Чем выше, тем хуже для озона. Так при запуске ракет типа «Атлас» в атмосферный газ выбрасывается большое число молекул воды, в дальнейшем разрушающих озоновый слой, а в ионосфере на высоте 200-300 км образуются огромные дыры диаметром в сотни километров. Например, двигатели «Олимпус-593,» которые были установлены на самолетах «Конкорд» выделяли 18 г азота на 1 кг топлива. Наиболее вредными для озона являются выбросы военных самолётов. Так как их очень много и они летают в основном на высотах озонового слоя. На вооружении большинства стран мира имеются боевые твёрдотопливные ракеты. В состав их топлива входит окислитель – перхлорат аммония. Когда он сгорает, выделяются вещества, содержащие хлор. Также интересна точка зрения по этому вопросу Пономаря В.В.

1 »Основной причиной потепления климата, увеличения частоты и силы стихийных бедствий, является истощение озонового слоя и образование озоновых дыр из-за запусков шатлов’’.

Теперь рассмотрим действие минеральных удобрений на разрушение озонового слоя. Озон может уменьшаться за счёт того, что в стратосферу попадает закись азотаN2 O, которая образуется при денитрификации

Пономарь В.В. // Свет. — 2003. — №1. – с34

связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхних слоях океанов и морей. Эти процессы напрямую связаны с содержанием азота. Таким образом, можно быть уверенным, что с ростом количества минеральных удобрений вносимых в почву. Будет также и расти количество закиси азота. Далее образующиеся из закиси азота, окислы азота приводят к разрушению озонового слоя.

Ядерные взрывы тоже способствуют истощению озонового слоя. При сильном нагреве, а температура ядерного взрыва около 60000 гр. Происходят такие преобразования химических веществ, которые при, нормальных условиях протекают, вяло или вообще не протекают. Особо опасным является появление окиси азота NO. Это происходит таким образом. При повышении температуры до 60000гр молекулярный кислород практически весь превращается в атомный. И если при нормальной температуре окиси азота в воздухе практически нет, то при ядерном взрыве он составляет 1,5%. Излучение при взрыве тоже приводит к образованию окиси азота, это происходит, прежде всего, потому что излучение производит ионизацию атомов и молекул атмосферного газа. Затем образованные ионы вступают в реакции с другими составляющими атмосферы и образуют окислы азота.

Закись азота обнаруживается также и в дымовых газах электростанций. Это очень сильный источник влияния на атмосферу. Таким путём образуется примерно 3 млн. т. закиси азота.

Очень важную роль в разрушении озона играет пар. Эта роль реализуется через молекулы гидрооксила OH, которые рождаются из молекул воды и в конце превращаются в них. Поэтому от количества пара в стратосфере зависит скорость разрушения озона.

Так, по мнению профессора, Сывороткина1 основной вклад в убыль

Сывороткин В.Л. // Химия и жизнь. – 2001. — №3. – с19

озонового слоя вносит толеолитовый вулканизм. Этот тип вулканизма можно наблюдать в середине океана, там, где в коре образуются разломы. Из них выделяются потоки восстановленных газов (водорода, метана, азота), Которые и играют решающую роль в разрушении озонового слоя.

studfiles.net

Катастрофическое разрушение озонового слоя

Все мы живем на земле под лучами теплого солнца, однако все ли нам известно о воздействии этих лучей на человеческий организм?

Вся жизнь на Земле напрямую зависит от энергии Солнца. Именно ультрафиолетовое и инфракрасное излучение являются источником этой бесценной энергии. Однако воздействие ультрафиолета на живые организмы зачастую приводит к неизбежному нарушению структур нуклеиновых кислот и белков, и, как следствие, приводит к гибели клеток.

Сама природа создала надежную защиту — озоновый слой Земли, который служит барьером для вредоносных ультрафиолетовых лучей. В воздухе, на высоте 20-50 км содержится огромное количество озона, который создает своеобразный щит, защищающий всю биосферу и человечество.

Организм человека умеет защищаться за счет синтеза темного пигмента (меланина), который мы называем не иначе, как загар. Но  при этом в весенний период, когда кожа содержит малое количество меланина, человек не может пребывать длительное время на солнце: кожа может быстро покраснеть, а через несколько часов может подняться общая температура тела и появиться головная боль.

Всем давно известно, что ученые наблюдают методичное разрушение озонового слоя. В атмосфере значительно снизилось содержание озона, более того, была обнаружена так называемая «дыра», которая располагается над Антарктидой. К сожалению, площадь этой дыры увеличивается с каждым годом, и на сегодняшний момент ее площадь превышает по размерам саму Антарктиду.

Разрушение озонового слоя не проходит незаметно для человечества, так, например, в странах, которые находятся в непосредственной близости к материку, наблюдается рост заболеваний. В основном это заболевания, связанные с повышенным УФ-фоном, такие как катаракта, рак кожи и др.

Ученые из северного полушария также наблюдают снижение содержания в атмосфере озона и сообщают о возникновении озоновой «дыры» над Шпицбергеном.

Чем грозит разрушение озонового слоя Земли? Последствия могут быть самыми ужасающими, в первую очередь, это отражается на сборе урожая, который в значительной мере уменьшается. Далее наблюдаются мутации растений и животных, а также рост заболеваний. Страшно подумать, что озоновый слой может исчезнуть совсем, ведь это неизбежным образом может привести к гибели фауны и флоры.

Основные причины разрушения озонового слоя таятся в деятельности человека. Стремясь обеспечить свое комфортное существование, человек создает и использует различные промышленные технологии. Всевозможные аэрозольные разбрызгиватели, которые содержат фреоны (хлорфторметаны), являются безопасными для человека, но при этом сохраняются в атмосфере более 70 лет.

Дело в том, что в атмосфере накапливаются вещества, которые приводят к разрушению озона. Деятельность химической промышленности весьма способствует попаданию в воздух таких веществ. В первую очередь, разрушение озонового слоя происходит под влиянием хлора, один атом которого разлагает 100 тысяч молекул озона.

Способствует разрушению нашего «щита» и военная деятельность. Двигатели баллистических ракет, которые используются военными, выбрасывают в атмосферу огромнейшее количество вредных оксидов азота. Каждый запуск одной такой ракеты в космос образует огромную «дыру» в озоновом слое. Спустя только несколько часов такая «дыра» затягивается.

Еще в 70-е годы над далеким и безлюдным островом американские военные рассеяли в стратосфере химические вещества, которые способствовали образованию «дыры», которая затянулась только спустя много часов. Разрушение озонового слоя над островом привело к тому, что значительная часть наземных обитателей острова была просто уничтожена. Животные, растения, микроорганизмы – все погибли. Смогли уцелеть только несколько крупных черепах, которые спаслись благодаря толстому костяному панцирю. Однако эти черепахи ослепли, потому что сетчатка глаз была сожжена ультрафиолетом.

fb.ru

6. Разрушение озонового слоя Земли.

Одной из глобальных экологических проблем, требующих своего кардинального решения, является разрушение озонового слоя. Этот термин принят для обозначения пика концентрации озона в стратосфере, который служит в качестве эффективного экрана, разрушающего ультрафиолетовое излучение. Озон представляет собой разновидность кислорода, он образуется при воздействии на газообразный кислород ультрафиолетового света в верхних слоях атмосферы. Озоновый слой, находящийся примерно на высоте 24 км, защищает земную поверхность от губительных ультрафиолетовых лучей Солнца.

Обеспокоенность состоянием озонового слоя была впервые высказана в 1974 г., когда было установлено, что фторуглеводороды могут разрушать озоновый слой, защищающий Землю от ультрафиолетового излучения. Выбрасываемые в атмосферу фторированные и хлорированные углеводороды (ФХУ) и галогенные соединения (галоны) разрушают хрупкую структуру этого слоя. Озоновый слой истощается, что обусловливает появление так называемых «озоновых дыр». Проникающие ультрафиолетовые лучи солнца опасны для всего живого на Земле. Особенно отрицательно они воздействуют на здоровье человека, его имунную и генную системы, вызывая рак кожи и катаракту. Разрушение озонового слоя ведет к росту ультрафиолетового излучения, что в свою очередь приведет к росту инфекционных заболеваний.

Ультрафиолетовые лучи могут уничтожить планктон — крошечные организмы, составляющие основу цепи питания в океане. Они также опасны для растительного мира на суше, в том числе для сельскохозяйственных культур. По оценкам, уменьшение озона на 25% приводит к потерям 10% основных веществ в освещенном, теплом и биологически богатом верхнем слое океана и к потерям в 35% — вблизи поверхности воды. Так как планктон составляет основу цепи питания в море, изменения его количества и видового состава будут оказывать влияние на добычу рыбы и моллюсков. Потери такого рода будут оказывать прямое влияние на снабжение продуктами питания. То есть изменение уровня ультрафиолетового излучения в результате истощения озонового слоя Земли может оказать существенное влияние на производство продуктов питания. Как показывают исследования Королевской Академии наук Швеции, в результате влияния данного фактора урожайность сои уменьшилась на 20—25% при уменьшении озона на 25%. Также снижается содержание белка и масла в бобах. Леса также оказались уязвимыми, особенно хвойные породы деревьев.

Этапы разрушения озонового слоя:

1)Эмиссии: в результате деятельности человека, а также в результате природных процессов на Земле эмитируются (высвобождаются) газы, содержащие галогены (бром и хлор), т.е. вещества, разрушающие озоновый слой.

2)Аккумулирование (эмитированные газы, содержащие галогены, аккумулируются (накапливаются) в нижних атмосферных слоях, и под воздействием ветра, а также потоков воздуха перемещаются в регионы, которые не находятся в прямой близости с источниками такой эмиссии газов).

3)Перемещение (аккумулированные газы, содержащие галогены, с помощью потоков воздуха перемещаются в стратосферу).

4)Преобразование (бóльшая часть газов, содержащих галогены, под воздействием ультрафиолетового излучения Солнца в стратосфере преобразуется в легко реагирующие галогенные газы, в результате чего в полярных регионах Земного шара разрушение озонового слоя происходит сравнительно активнее).

5)Химические реакции (легко реагирующие галогенные газы вызывают разрушение озона стратосферы; фактор, способствующий реакциям – полярные стратосферные облака).

6)Удаление (под воздействием воздушных потоков легко реагирующие галогенные газы возвращаются в тропосферу, где из-за присутствующей в облаках влажности и дождей разделяются, и таким образом из атмосферы полностью удаляются).

7. Загрязнение вод

Загрязнение вод проявляется в изменении физических и органолептических свойств (нарушение прозрачности, окраски, запахов, вкуса), увеличении содержания сульфатов, хлоридов, нитратов, токсичных тяжелых металлов, сокращении растворенного в воде кислорода воздуха, появлении радиоактивных элементов, болезнетворных бактерий и других загрязнителей.

Главные загрязнители вод. Установлено, что более 400 видов веществ могут вызвать загрязнение вод. В случае превышения допустимой нормы хотя бы по одному из трех показателей вредности: санитарно-токсикологическому, общесанитарному или органолептическому, вода считается загрязненной.

Различают химические, биологические и физические загрязнители (П. Бертокс, 1980). Среди химических загрязнителей к наиболее распространенным относят нефть и нефтепродукты, СПАВ (синтетические поверхностно-активные вещества), пестициды, тяжелые металлы, диоксины и др. (табл. 14.1). Очень опасно загрязняют воду биологические загрязнители, например вирусы и другие болезнетворные микроорганизмы, и физические — радиоактивные вещества, тепло и др.

Основные виды загрязнения вод. Наиболее часто встречается химическое и бактериальное загрязнение. Значительно реже наблюдается радиоактивное, механическое и тепловое загрязнение.

Химическое загрязнение — наиболее распространенное, стойкое и далеко распространяющееся. Оно может быть органическим (фенолы, нафтеновые кислоты, пестициды и др.) и неорганическим (соли, кислоты, щелочи), токсичным (мышьяк, соединения ртути, свинца, кадмия и др.) и нетоксичным. При осаждении на дно водоемов или при фильтрации в пласте вредные химические вещества сорбируются частицами пород, окисляются и восстанавливаются, выпадают в осадок, и т.д., однако, как правило, полного самоочищения загрязненных вод не происходит. Очаг химического загрязнения подземных вод в сильно проницаемых грунтах может распространяться до 10 км и более.

Бактериальное загрязнение выражается в появлении в воде патогенных бактерий, вирусов (до 700 видов), простейших, грибов и др. этот вид загрязнений носит временный характер.

Весьма опасно содержание в воде, даже при очень малых концентрациях, радиоактивных веществ, вызывающих радиоактивное загрязнение

Механическое загрязнение характеризуется попаданием в воду различных механических примесей (песок, шлам, ил и др.). Механические примеси могут значительно ухудшать органолептические показатели вод.

ЗАГРЯЗНЕНИЕ ПОДЗЕМНЫХ ВОД

обусловленное антропогенной деятельностью ухудшение качества подземных вод (по физическим, химическим или биологическим показателям) по сравнению с их естественным состоянием, что приводит или может привести к невозможности их использования в заданных целях

Проблема загрязнения подземных вод усугубляется тем, что в условиях характерной для подземных горизонтов анаэробной восстановительной среды, постоянно низких температур, отсутствия солнечного света процессы самоочищения резко замедлены.

основные виды источников загрязнения подземных вод .Промышленные площадки предприятий, связанных с получением или использованием в качестве сырья веществ, способных мигрировать с подземными водами.Места хранения и транспортировки промышленной продукции и отходов производства.

Особенно большую опасность для загрязнения подземных вод представляют хранилища пестицидов, в том числе запрещенных к употреблению, а также недействующие скважины на животноводческих фермах.

Особенности загрязнения подземных вод связаны с тем, что при низких температурах, отсутствии солнечного света, недостатке или отсутствии кислорода процессы самоочищения протекают крайне замедленно, нередко развиваются вторичные процессы, усиливающие эффект загрязнения.

8. АНТРОПОГЕННОЕ ЭВТРОФИРОВАНИЕ.

Хотя эвтрофирование водоемов является природным процессом и его развитие оценивается в рамках геологических масштабов времени, однако за несколько последних веков человек существенно увеличил использование биогенных веществ, особенно в сельском хозяйстве в качестве удобрений и детергентов. Во многих водоемах в течение нескольких последних десятилетий наблюдается возрастание трофии, сопровождающееся резким увеличением обилия фитопланктона, зарастания водной растительностью прибрежных мелководий и изменение качества воды. Этот процесс стали называть антропогенным эвтрофированием.

Шилькрот Г.С. (1977) определяет антропогенное эвтрофирование как увеличение первичной продукции водоема и связанного с этим изменение ряда его режимных характеристик в результате возрастающей добавки в водоем минеральных питательных веществ. На Международном симпозиуме по вопросам эвтрофирования поверхностных вод (1976) принята следующая формулировка — «антропогенное эвтрофирование — это увеличение поступления в воду питательных для растений веществ вследствие деятельности человека в бассейнах водных объектов и вызванное этим повышение продуктивности водорослей и высших водных растений».

Антропогенное эвтрофирование водоемов стали рассматривать как самостоятельный процесс, принципиально отличающийся от естественного эвтрофирования водоемов.

Естественное эвтрофирование — процесс очень медленный во времени (тысячи, десятки тысяч лет), развивается главным образом вследствие накопления донных отложений и обмеления водоемов.

Антропогенное эвтрофирование — процесс очень быстрый (годы, десятки лет), отрицательные последствия его для водоемов проявляются зачастую в очень резкой и уродливой форме.

ПОСЛЕДСТВИЯ ЭВТРОФИРОВАНИЯ

К числу наиболее наглядных проявлений последствий эвтрофирования относится «цветение» воды. В пресных водах оно обусловлено массовым развитием сине-зеленых водорослей, в морских — динофлагеллятами. Продолжительность цветения воды колеблется от нескольких дней до 2-х месяцев. Периодическая смена максимумов численности отдельных массовых видов планктонных водорослей в водоемах представляет закономерное явление, обусловленное сезонными колебаниями температуры, освещенности, содержания биогенных элементов, а также генетически детерминированными внутриклеточными процессами. Среди водорослей, образующих многочисленные популяции до масштабов «цветения» воды наибольшую роль по темпам размножения, образуемой биомассе и экологическим последствиям играют сине-зеленые из родов Microcystis, Aphanizomenon, Anabaena, Oscillatoria. Научное изучение этого явления началось в 19 веке, а рациональное объяснение и анализ механизмов массового размножения сине — зеленых были даны только в сер. 20 века в США лимнологической школой Дж. Хатчинсона. Аналогичные исследования проводились в ИБВВ РАН (Борок) Гусевой К.А. и в 60-70-е годы коллективом Института гидробиологии (Украина), в конце 70-х — Институтом Великих озер (США).

Водоросли, вызывающие «цветение» воды, принадлежат к числу видов, способных к предельному насыщению своих биотопов. В водохранилищах Днепра, Волги и Дона в основном доминируют Microcystis aeruginosa, M. wesenbergii, M. holsatica, Oscillatoria agardhii, Aphanizomenoen flos-aquae, виды рода Anabaena.

Установлено, что исходный биофонд Microcystis зимой находится в поверхностном слое иловых отложений. Microcystis зимует в виде ослизненных колоний, внутри которых скопления мертвых клеток покрывают единственную живую. По мере повышения температуры центральная клетка начинает делиться, причем на первом этапе источником пищи являются мертвые клетки. После распада колоний клетки начинают утилизировать органические и биогенные вещества ила.

Aphanizomenon и Anabaena зимуют в виде спор, пробуждающихся к активной жизни при повышении температуры до +6 С<sup>0</sup>. Другим источником биофонда сине — зеленых водорослей является их скопления, выброшенные на берега и зимующие в слое сухих корок. Весной они отмокают и начинается новый цикл вегетации.

Первоначально водоросли питаются осмотически и биомасса накапливается медленно, затем всплывают и начинают активно фотосинтезировать. За короткий срок водоросли могут захватывать всю толщу воды и формируют сплошной ковер. В мае обычно доминируют Anabaena, в июне — Aphanizomenon, с конца июня -июль-август — Microcystis и Aphanizomenon. Механизм взрывного характера размножения водорослей был раскрыт работами Института Великих озер (США). Учитывая колоссальный потенциал размножения сине — зеленых водорослей (до 10<sup>20</sup> потомков одной клетки за сезон), можно отчетливо представить масштабы, которые принимает этот процесс. Поэтому фактором первичного эвтрофирования водохранилищ является обеспеченность их фосфором за счет залития плодородных пойменных земель и разложения растительности. Фактором вторичного эвтрофирования — процесс заиления, поскольку илы — идеальный субстрат для водорослей.

После интенсивного размножения под действием стягивающих электростатических сил начинается формирование колоний, стягивание колоний в агрегаты и слияние их в пленки. Образуются «поля» и «пятна цветения», мигрирующие по акватории под воздействием течений и сгоняемые к берегам, где образуются разлагающиеся скопления с огромной биомассой `- до сотен кг/м<sup>3</sup>.

Разложение сопровождается рядом опасных явлений: дефицитом кислорода, выделением токсинов, бактериальным загрязнением, образованием ароматических веществ. В этот период могут возникать помехи в водоснабжении вследствие забивания фильтров на водопроводных станциях, становится невозможной рекреация, возникают заморы рыб. Вода, насыщенная продуктами метаболизма водорослей, аллергенна, токсична и непригодна для питьевых целей.

Она может вызывать свыше 60 заболеваний, особенно желудочно-кишечного тракта, подозревается, хотя и не доказана, ее онкогенность. Воздействие метаболитов и токсинов сине — зеленых вызывает у рыб и теплокровных животных «гаффскую болезнь», механизм действия которой сводится к возникновению B<sub>1</sub> авитоминоза.

При массовом отмирании сине — зеленых происходит быстрый распад и лизис колоний, особенно в ночные часы. Предполагается, что причиной массового отмирания может быть массовое отравление собственными токсинами, а толчком — симбиотические вирусы, которые не способны разрушать клетки, но способные ослабить их жизнедеятельность.

Нагонные разрушающиеся массы сине-зеленых водорослей приобретают неприятную желто-бурую окраску и в виде дурно пахнущих скоплений разносятся по акватории, постепенно разрушаясь к осени. Весь этот комплекс явлений получил название «биологического самозагрязнения». Незначительное количество ослизненных колоний оседает на дно и перезимовывает. Этот резерв вполне достаточен для воспроизводства новых генераций.

Сине-зеленые водоросли — это древнейшая группа организмов, обнаруживаемая даже в архейских отложениях. Современные условия и антропогенная нагрузка лишь вскрыли их потенции и дали им новый импульс для развития.

Сине-зеленые подщелачивают воду и создают благоприятные условия для развития патогенной микрофлоры и возбудителей кишечных заболеваний, в том числе холерного вибриона. Отмирая и переходя в состояние фитодетрита, водоросли влияют на кислород глубинных слоев воды. Сине-зеленые в период цветения сильно поглощают коротковолновую часть видимого света, разогреваются и являются источником ультракороткого излучения, что может влиять на термический режим водоема. Уменьшается величина поверхностного натяжения, что может вызывать отмирание гидробионтов, обитающих в поверхностной пленке. Образование поверхностной пленки, экранизирующей проникновение в толщу воды солнечной радиации, вызывает световое голодание у других водорослей, замедляет их развитие.

Например, суммарная биомасса сине — зеленых водорослей, продуцирующих за период вегетации в водохранилищах Днепра, достигает величин порядка 10<sup>6</sup> т (в сухой массе). Это соответствует массе тучи саранчи, которую В.И. Вернадский назвал «горной породой в движении» и сравнивал с массой меди, свинца и цинка, добытых в течение 19 века во всем мире.

Последствия эвтрофирования для фитопланктона

Антропогенное эвтрофирование приводит к изменению характера сезонной динамики фитопланктона. По мере увеличения трофии водоемов увеличивается число пиков в сезонной динамике его биомассы. В структуре сообществ роль диатомовых и золотистых водорослей снижается, а увеличивается — сине — зеленых и динофитовых. Динофлагелляты характерны для стратифицированных глубоководных озер. Также увеличивается роль хлорококковых зеленых и эвгленовых водорослей.

Последствия эвтрофирования для зоопланктона. Преобладание видов с коротким жизненным циклом (ветвистоусых рачков и коловраток), преобладание мелких форм. Высокая продукция, небольшая доля хищников. Упрощается сезонная структура сообществ — одновершинная кривая с максимумом летом. Меньшее число доминирующих видов.

Последствия эвтрофирования для фитобентоса. Усиленное развитие нитчатых водорослей. Исчезновение харовых водорослей, которые не выносят высокие концентрации биогенов, особенно фосфора. Характерный признак — расширение площадей зарастания тростника обыкновенного, рогоза широколистного и манника, рдеста гребенчатого.

Последствия эвтрофирования для зообентоса.

Нарушение кислородного режима в придонных слоях приводит к изменению в составе зообентоса. Важнейшим признаком эвтрофирования является снижение личинок поденок гексании в оз. Эри — важный кормовой объект лососевых рыб в озере. Менее чувствительные к дефициту кислорода личинки некоторых двукрылых насекомых приобретают все большее значение. Возрастает плотность популяций малощетинковых червей. Бентос становится беднее и однообразнее. В составе преобладают организмы, приспособленные к пониженному содержанию кислорода. На поздних этапах эвтрофирования в глубинной области водоемов остаются немногие организмы, приспособленные к условиям анаэробного обмена.

Последствия эвтрофирования для ихтиофауны.

Эвтрофирование водоемов оказывает влияние на рыбное население в 2-х основных формах:

прямое влияние на рыб

прямое влияние относительно редко. Оно проявляется как единичная или массовая гибель икры и молоди рыб в береговой зоне и происходит при поступлении стоков, содержащих летальные концентрации минеральных и органических соединений. Такое явление обычно носит локальный характер и не охватывает водоем в целом.

опосредованное влияние, проявляющееся через разнообразные изменения водных экосистем

опосредованное влияние наиболее распространено. При эвтрофировании может возникать зона с пониженным содержанием кислорода и даже заморная зона. В этом случае сокращается сфера обитания рыб, уменьшается доступная для них кормовая база. Цветение воды создает неблагоприятный гидрохимический режим. Смена растительных ассоциаций в прибрежье, нередко сопровождающаяся усилением процессов заболачивания, приводит к сокращению площадей нерестилищ и мест нагула личинок и молоди рыб.

Изменения в ихтиофауне водоемов под влиянием эвтрофирования проявляется в следующих формах:

— снижение численности, затем исчезновение наиболее требовательных к качеству воды видов рыб (стенобионтов).

— изменение рыбопродуктивности водоема или отдельных его зон.

— переход водоема их одного рыбохозяйственного типа в другой по схеме:

лососево-сиговый → лещево-судачий → лещево-плотвичный → плотвично-окуневый-карасевый.

Это схема аналогична преобразованию озерных ихтиоценозов в ходе исторического развития водных экосистем. Однако под влиянием антропогенного эвтрофирования она совершается в течение нескольких десятилетий. В результате сначала исчезают сиговые рыбы (а в редких случаях лососи). Вместо них ведущими становятся карповые (лещ, плотва, и др.) и в меньшей степени окуневые (судак, окунь). Причем из карповых лещ постепенно вытесняется плотвой, из окуневых господствует окунь. В предельных случаях водоемы переходят в заморное состояние и населяется преимущественно карасем.

На рыбах подтверждаются общие закономерности в изменении в структуре сообществ — длинноцикловые виды замещаются короткоцикловыми. Отмечается рост рыбопродуктивности. Однако при этом ценные сиговые виды замещаются видами, обладающими невысокими товарными качествами. Сначала крупночастиковые — лещ, судак, затем мелкочастиковые — плотва, окунь.

Часто последствия для рыбного населения носят необратимый характер. При возвращении уровня трофии к исходному состоянию исчезнувшие виды появляются далеко не всегда. Их восстановление возможно лишь при наличии доступных путей расселения из соседних водоемов. Для ценных видов (сиг, ряпушка, судак) вероятность такого расселения невелика.

ПОСЛЕДСТВИЯ ЭВТРОФИРОВАНИЯ ВОДОЕМОВ ДЛЯ ЧЕЛОВЕКА

Основным потребителем воды является человек. Как известно, при избыточной концентрации водорослей происходит ухудшение качества воды.

Особое внимание заслуживают токсические метаболиты, в частности сине-зеленых водорослей. Альготоксины проявляют значительную биологическую активность по отношению к различным гидробионтам и теплокровным животным. Альготоксины относятся к высокотоксичным соединениям. Токсин сине — зеленых действует на центральную нервную систему животных, что приявляется в возникновении параличей задних конечностей, десинхронизации ритма центральной нервной системы. При хронических отравлениях токсин угнетает окислительно-восстановительные ферментативные системы, холинэстеразу, повышает активность альдолазы, в результате чего нарушается углеродный и белковый обмен, а во внутренних средах организма накапливаются недоокисленные продукты углеводного обмена. Уменьшение количества эритроцитов, угнетение тканевого дыхания вызывает гипоксию смешанного типа. В результате глубокого вмешательства в обменные процессы и тканевое дыхание теплокровных животных токсин сине — зеленых имеет широкий спектр биологического действия и может быть отнесен к числу протоплазматических ядов высокой биологической активности. Все это свидетельствует о недопустимости использования в питьевых целях воды из мест скопления водорослей и водоемов, подверженных сильному цветению, поскольку токсическое вещество водорослей не обезвреживается системами обычной водоочистки и может попадать в водопроводную сеть как в растворенном виде, так и вместе с отдельными клетками водорослей, не задерживаемыми фильтрами.

Загрязнение и ухудшение качества воды может отражаться на здоровье человека через ряд трофических звеньев. Так загрязнение воды ртутью явилось причиной ее накопления в рыбе. Употребление в пищу такой рыбы вызвало в Японии весьма опасное заболевание — болезнь Минимата, в результате которой отмечены многочисленные смертельные случаи, а также рождение слепых, глухих и парализованных детей.

Установлена связь между возникновением детской метгемоглобинемии и содержанием нитратов в воде, в результате чего более чем в 2 раза повысилась смертность маленьких девочек, родившихся в те месяцы, когда уровень нитратов был высоким. Отмечено высокое содержание нитратов в кукурузном поясе США в колодцах. Часто подземные воды не пригодны для питья. Возникновение менингоэнцефалита у подростков связывают после продолжительного купания в пруду или в реке в теплый летний день. Предполагается связь между заболеванием асептическим менингитом, энцефалитом и купанием в водоемах, что связано с усилением вирусного загрязнения воды.

Широкую известность приобрели инфекционные заболевания за счет микроскопических грибов, попадающих из воды в раны, вызывающие у человека сильное поражение кожи.

Контакт с водорослями, употребление воды из водоемов, подверженных цветению или рыбы, питающейся токсическими водорослями, вызывает «гаффскую болезнь», коньюктивиты и аллергии.

Часто в последние годы вспышки холеры приурочивают к периоду » цветения».

Массовое развитие водорослей в водоеме наряду с помехами водоснабжении и ухудшении качества воды значительно затрудняет рекреационное использование водного источника, а также является причиной помех в техническом водоснабжении. На стенках трубок водоводов и систем охлаждения усиливается развитие биообрастаний. При подщелачивании среды в следствие развития водорослей происходит образование твердых карбонатных отложений, а из-за оседания частиц и водорослей снижается теплопроводность трубок теплообменных устройств.

Таким образом, избыточное накопление водорослей в период интенсивного » цветения» воды является причиной биологического загрязнения водоемов и значительного ухудшения качества природных вод.

studfiles.net

Нарушение озонового слоя | Экология природных ресурсов

Высоко над Землей, в стратосфере, содержится сравнительно мало известный газ, важный для жизни. Этот газ – озон. Каждая молекула озона состоит из трех атомов кислорода. Озон в стратосфере поглощает больше 99% ультрафиолетового излучения, идущего от Солнца.

Слой озона, или озоновый экран расположен на высоте около 25-45 км. Этот экран предназначен защищать все живое на Земле от жесткого ультрафиолетового излучения. Живые организмы весьма уязвимы для ультрафиолетового излучения, ибо энергии даже одного фотона из этих лучей достаточно, чтобы разрушить химические связи в большинстве органических молекул. 

Не случайно поэтому в районах с пониженным содержанием озона многочисленны солнечные ожоги, наблюдается увеличение заболевания людей раком кожи и др. Установлено также, что растения под влиянием сильного ультрафиолетового излучения постепенно теряют свою способность к фотосинтезу, а нарушение жизнедеятельности планктона приводит к разрыву трофических цепей биоты водных экосистем и т. д.

Истощение озонового слоя

Насыщенность атмосферы озоном постоянно меняется в любой части планеты, достигая максимума весной в приполярной области. Впервые истощение озонового слоя привлекло внимание широкой общественности в 1985 г., когда над Антарктидой было обнаружено пространство с пониженным (до 50%) содержанием озона, по площади соизмеримое с континентальной частью США, получившее название «озоновой дыры».

Позднее блуждающие «озоновые дыры», меньшие по площади и не с таким значительным снижением содержания озона, стали наблюдаться в зимнее время и в Северном полушарии, над Гренландией, северной Канадой и Якутией. Результаты измерений подтверждают повсеместное уменьшение озонового слоя практически на всей планете.

Причины истощения слоя озона

Наука еще до конца не установила, каковы же основные процессы, нарушающие озоновый слой. Ученые выдвинули ряд гипотез как о естественном, так и о техногенном происхождении «озоновых дыр».

Ряд ученых настаивают на естественном происхождении «озоновых дыр». Причины их возникновения одни видят в естественной изменчивости озоносферы, циклической активности Солнца; другие связывают эти процессы с рифтогенезом и дегазацией Земли.

Техногенное происхождение «озоновых дыр» объясняют попаданием в верхние слои атмосферы техногенного хлора, фтора и других атомов и радикалов, способных активно присоединять атомарный кислород, тем самым конкурируя с реакцией: 

О + О2= О3.

Так, «озоновые дыры» связывают с тем, что занос активных галогенов в верхние слои атмосферы опосредован летучими хлорфторуглеродами типа фреонов.

Фреоны — фторсодержащие насыщенные углеводороды (главным образом производные метана и этана). Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже — брома. Фреоны широко применяются в промышленном производстве и в быту (хладагенты в холодильниках и кондиционерах, растворители, распылители, аэрозольные упаковки). Фреоны сами по себе не токсичны, инертны, весьма стойки и за счет турбулентных движений с потоком воздуха попадают в стратосферу, где распадаются под действием солнечного УФ с образованием свободного хлора. Атомы хлора не сразу вступают в цепную реакцию разрушения озона. Они реагируют с озоном, образуя оксид хлора. Радикалы ClO реагируют друг с другом с образованием относительно стабильного димера ClO — OCl, молекулы которого висят в воздухе, дожидаясь возвращения Солнца.

Когда наступает антарктическая весна и становится светло, солнечная радиация разрушает димер ClO — OCl, освобождая чрезвычайно реакционноспособный хлор, который начинает взаимодействовать с озоном. Концентрация озона в течение нескольких недель резко падает. По некоторым оценкам, исчезает более 97% озона.

Вернувшееся солнечное тепло постепенно рассеивает вихрь вокруг полюса, позволяя южному полярному воздуху снова перемешиваться. Обедненный озоном воздух рассеивается по всему земному шару, и уровень озона над Антарктидой становится почти нормальным.

Вследствие длительных запаздываний, необходимых, чтобы молекулы хлорфторуглеродов (ХФУ) достигли стратосферы, дальнейшее истощение озонового слоя неизбежно. Из-за долгого времени жизни в атмосфере молекул ХФУ и атомов хлора оно продлится по меньшей мере 100 лет, даже если производство ХФУ будет повсюду немедленно прекращено.

Монреальский протокол

В 1987 г. был принят Монреальский протокол о запрете веществ, разрушающих озоновый слой. В приложении к нему был дан перечень озоноразрушающих веществ (ОРВ), в т.ч. хлорфторуглеродов и бромфторуглеродов. 

Монреальский протокол наложил обязательства ограничить потребление, производство, импорт и экспорт ОРВ. В последнее время в США и в ряде западных стран построены заводы по производству новых видов хладореагентов (гидрохлорфторуглеродов) с низким потенциалом разрушения озонового слоя.

К факторам, разрушающим озоновый слой, относят:

  • запуски мощных ракет;
  • ежедневные полеты реактивных самолетов в высокие слои атмосферы;
  • испытания ядерного и термоядерного оружия;
  • пожары и вырубка леса — природного озонатора.

Основные мероприятия по охране атмосферного воздуха >

oblasti-ekologii.ru

Разрушение озонового слоя

Количество просмотров публикации Разрушение озонового слоя — 1520

В 70-х гᴦ. ХХ в. появилось сообщение о региональных снижениях содержания озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн. км2, где содержание озона за 80-е гᴦ. уменьшилось почти на 50%. Другие, “блуждающие” озоновые дыры, правда, меньшие по размеру и не с таким значительным снижением, стали наблюдаться в зимнее время и в северном полушарии, в зонах антициклонов – над Гренландией, Северной Канужной и Якутией. Средняя скорость уменьшения кон-центрации озона за период с 1980 по 1995 гᴦ. оценена в 0,5–0,7% в год.

Ослабление озонового экрана чрезвычайно опасно для всœей наземной биоты, в т.ч. и для здоровья людей, поскольку озоновый слой, расположенный в стратосфере на высоте около 25 км, защищает Землю от агрессивного воздействия жесткого, коротко-волнового ультрафиолетового излучения Солнца, поглощая его на 99%.

Большинство ученых склоняется к мнению о техногенном происхождении озоновых дыр.
Размещено на реф.рф
Основным разрушителœем озонового щита считают синтезируемые людьми соединœения – фторхлор-углеводороды (фреоны), используемые в холодильниках, в средствах пожаротушения, в аэрозольных упаковках. Фреоны летучи, они поднимаются в стратосферу, где разлагаются, высвобождая атомарный хлор, который разрушает озон. Возможны и другие пути заноса разрушителœей озона в стратосферу: атомные взрывы, выбросы высотных сверхзвуковых самолетов, запуски ракет и пр.
Размещено на реф.рф
Не исключено, что частично разрушение озонового слоя связано с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.

В 1985 ᴦ. мировое сообщество ввело ограничение на выбросы фреонов (Венская конвенция об охране озонового слоя).

Фреоны способны находиться в атмосфере, не разрушаясь 70— 100 лет, в связи с этим они всœегда достигают озонового слоя и разрушают его. При этом каждый атом хлора как катализатор способен разрушить до 100 тыс. атомов озона. До недавнего времени в мире производилось около 1,3 млн. т озоноразрушающих веществ. Около 35% производимого объёма приходилось на США, 40% — на страны ЕС, 10—12% — Японию, 7-10% — Россию.

Из других техногенных причин разрушения озонового слоя называют уничтожение лесов, как базовых поставщиков кислорода в атмосферу. Зарегистрировано также разрушение озона при ядерных взрывах в атмосфере, крупных пожарах и других явлениях, сопровождающихся поступлением в верхние слои атмосферы оксидов азота и некоторых углеводородов. Установлено также, что уничтожают озон полеты сверхзвуковых самолетов в стратосфере, запуски космических ракет. Только один запуск авиакосмической системы ʼʼШаттлʼʼ приводит к потерям 10 млн. т озона. 300 таких запусков в год — и практически весь озон будет уничтожен.

В последнее время ученые высказывают предположение о существенном вкладе природных явлений в процессы разрушения озона и возникновении ʼʼозоновых дырʼʼ. К таковым относятся, к примеру, 11-летние циклы солнечной активности, выход озонразрушающих газов (водород, метан) из разломов земной коры, наличие своеобразных нисходящих вихрей над Антарктидой, способствующих рассеиванию озона.

Антропогенное воздействие на ближний Космос. Околоземное космическое пространство (ОКП) представляет собой внешнюю газовую оболочку, которая окружает планету. Оно играет роль в сложнейших солнечно- земных взаимосвязях, определяющих условия жизни на Земле.

Антропогенные воздействия на ОКП, связанные с началом космической эры, весьма опасны, они оказались значительнее уровня (олее продолжительного влияния человека на любую другую природную среду, к примеру приземную атмосферу (тропосферу). ОКП уязвимее, нежели другие среды, поскольку количество вещества в ней неизмеримо меньше, а энергетика процессов гораздо слабее по сравнению с тропосферой, а тем более гидро- и литосферой.

Выделяют следующие виды воздействия человека на эту среду:

1) выброс химических веществ вследствие работы двигателœей ракет; 2) создание энергетических и динамических возмущений в результате полетов ракет; 3) загрязнение твердыми фрагментами, космическим мусором; 4) электромагнитное излучение радиопередающих систем; 5) радиоактивное загрязнение и жесткое излучение от ядерных энергетических установок, используемых на космических аппаратах; 6) попадание загрязнителœей из приземной атмосферы.

Наиболее опасными в плане изменения свойств ОКП в негативную сторону признается выброс химических веществ. Так, в результате пролета одной тяжелой ракеты ʼʼПротонʼʼ (РФ) в ОКП поступает около 100 т воды и более 90 т диоксида углерода. Для американского ʼʼШаттлаʼʼ эти показатели выше: 470 и ПО т, соответственно. Указанные химические вещества активно реагируют с ионами кислорода ионосферы, причем оказалось, что процесс идет гораздо быстрее, нежели в естественных условиях. В результате резко возрастает скорость рекомбинации ионосферной плазмы и падает концентрация заряженных частиц, ᴛ.ᴇ. образуются так называемые ʼʼионосферные дырыʼʼ.Сообщалось, что наиболее крупномасштабные нарушения были зарегистрированы после запуска ракет ʼʼСатурн-5ʼʼ (США): горизонтальные размеры ʼʼдырыʼʼ составили тысячи километров, а содержание электронов уменьшилось в них в несколько раз. Напомним также, что диоксид углерода, который при запуске ракет распространяется на сотни километров, играет большую роль в тепловом балансе термосферы.

Как считают специалисты, сохранение ОКП как внешней защитной оболочки Земли возможно только при условии ограничения пусков ракет и принципиального изменения технических средств и методов выведения космических кораблей на орбиту.

8.3. ʼʼПарниковый эффектʼʼ

Парниковый эффект и изменения климата. С конца ХIХ в. по настоящее время наблюдается отчетливая тенденция повышения общей температуры атмосферы. За последние 100 лет она повысилась на 0,60С. Причина – уменьшение спектральной прозрачности атмосферы для длинноволнового обратного излучения от поверхности земли, т. е. усиление парникового эффекта. Парниковый эффект создается увеличением концентрации газов – СО, СО2, СН4, NОх, ХФУ (хлорфторуглеводороды) и других, названных парниковыми газами.

По оценкам Всемирной метеорологической службы, при существующем уровне выбросов парниковых газов средняя глобальная температура в текущем столетии будет повышаться со скоростью 0,250С за 10 лет. К концу столетия по разным сценариям (в зависимости от принятия тех или иных мер) она может составить от 1,5 до 40С. В северных и средних широтах потепление скажется сильнее, чем на экваторе. Произойдет существенное перераспределœение осадков на планете. Уровень Мирового океана за счёт таяния льдов повысится к 2050 году на 30–40 см, а к концу столетия – от 60 до100 см. Это создаст угрозу затопления.

Различная температура на полюсах и экваторе – основная движущая сила циркуляции атмосферы. Более сильное потепление на полюсах приведет к ее ослаблению. Это изменит всю картину циркуляции и связанный с ней перенос теплоты и влаги, что повлечет за собой глобальные изменения климата.

referatwork.ru

Разрушение озонового слоя, причины, последствия и мероприятия по его уменьшению.

Антропогенное загрязнение атмосферы приводит, с одной стороны, к разрушению озона в верхних слоях (озоновые дыры), с другой стороны – к увеличению его концентрации в нижних слоях атмосферы. Важнейшей составной частью атмосферы, влияющей на климат и защищающей живые организмы на Земле от коротковолнового ультрафиолетового излучения Солнца, является озоновый слой. Озон располагается в атмосфере повсеместно, но основная его масса сосредоточена на высоте 20–25 км. Если бы его можно было выделить в чистом виде, то толщина слоя составила 3–5 мм.

Содержание озона выражается либо в сантиметрах (0,3–0,5), либо в единицах Добсона (миллиметры, умноженные на 100, т. е. 300–500 единиц).

Механизм образования и разрушения озона в верхних слоях атмосферы: В результате реакции диссоциации молекула кислорода под действием УФ-излучения Солнца распадается на 2 атома кислорода. Образовавшиеся радикалы либо соединяются между собой снова в молекулярный кислород, либо взаимодействуют с молекулой кислорода, образуя молекулу озона.

Одновременно идет противоположный процесс распада молекул озона и образования О2.

Важной особенностью озона является его способность поглощать жесткое ультрафиолетовое излучение Солнца в интервале длин волн 200–320 нм. До поверхности Земли доходит солнечное излучение с длиной волны более 320 нм, а область спектра с длиной волны 200–400 нм называется биологически активным ультрафиолетом (БАУ).

В последние годы наблюдается тенденция снижения количества озона в верхних слоях атмосферы. Ученые медики установили, что уменьшение концентрации озона на 1 % приводит к увеличению заболеваемости раком кожи (меланома) на 5–7 % – для европейской части это 6–6,5 тыс. человек в год. Кроме этого, уменьшение содержания озона вызывает заболевания глаз (катаракту), что приводит к слепоте. На молекулярном уровне УФ-лучи способны разрушать нуклеиновые кислоты, т. е. повреждать генетическую информацию организма. Общебиологическое действие ультрафиолетовой радиации выражается в гибели клеток, мутациях, и, в конечном счете, – стерилизации планеты.

Существенное влияние на состояние озона оказывает наличие в атмосфере таких загрязнителей, как оксиды азота, двуокисиуглерода, метана, соединенийхлора. Источниками веществ разрушителей озонового слоя являются химическое производство, авиация, применение азотных удобрений в сельском хозяйстве, широкое использование фреонов в холодильных установках, для тушения пожаров, в качестве растворителей и гель-носителей в аэрозолях, выхлопные газы автотранспорта.



Главный виновник хлорфторуглероды (фреоны или хладоны). Молекулы этого газа называют «убийцами» озона. По данным американских ученых фреоны в 20 000 раз превосходят углекислый га в создании парникового эффекта. Каждый атом хлора, высвобождающийся из фреонов в агрессивной среде озонового слоя, способен разрушить до 100 тыс. молекул озона. Осложняющим моментом является высокая устойчивость фреонов – попадая в атмосферу, они могут существовать в ней от 70 до 100 лет.

Из других причин разрушения озонового экрана планеты называют интенсивное уничтожение лесов, которые являются основным источником молекулярного кислорода в атмосфере.

Второй аспект проблемы озона, которая относится к локальным проблемам, – увеличение его количества в нижних слоях атмосферы. Здесь его повышенная концентрация проявляет себя как сильный яд (класс опасности – II). У людей отмечается затрудненное дыхание, раздражение слизистых оболочек глаз и верхних дыхательных путей. У растений озон вызывает разрушение хлорофилла, что влечет за собой нарушение процесса фотосинтеза и синтеза биомассы.

 

Основной причиной этого является фотохимические реакции продуктов сгорания ископаемого топлива в нижних слоях атмосферы под воздействием яркого солнца, в результате которых образуется озон (процесс образования фотохимического смога). Озон является тяжелым газом, поэтому он скапливается в приземных слоях. В связи с этим наиболее опасными районами концентрации озона, являются придорожные полосы дорог с интенсивным автомобильным движением.

И, несмотря на то, что концентрация озона в атмосфере меньше 0.0001%, озоновый слой полностью поглощает губительное для всего живого коротковолновое ультрафиолетовое излучение. Долгое время озоновый слой стремительно истощался из-за деятельности человека. Вот основные причины его истончения:
1) Во время запуска космических ракет в озоновом слое буквально «выжигаются» дыры. И вопреки старому мнению о том, что они сразу же затягиваются, эти дыры существуют довольно долгое время.
2)Самолеты летающие на высотах в 12-16 км. также приносят вред озоновому слою, тогда как летающие ниже 12 км. напротив способствуют образованию озона.
3) Выброс в атмосферу фреонов.



Разрушение озонового слоя фреонами

Самой главной причиной разрушения озонового слоя является хлор и его водородные соединения. Огромное количество хлора попадает в атмосферу, в первую очередь от разложения фреонов. Фреоны – это газы, не вступающие у поверхности планеты ни в какие хим. реакции. Фреоны закипают и быстро увеличивают свой объем при комнатной температуре, и потому являются хорошими распылителями. Из-за этой особенности фреоны долгое время использовались в изготовлении аэрозолей. И так-как, расширяясь, фреоны охлаждаются, они и сейчас очень широко используются в холодильной промышленности. Когда фреоны поднимаются в верхние слои атмосферы, от них под действием ультрафиолетового излучения отщепляется атом хлора, который начинает одну за другой превращать молекулы озона в кислород. Хлор может находиться в атмосфере до 120 лет, и за это время способен разрушить до 100 тысяч молекул озона. В 80-ых годах мировое сообщество начало принимать меры по сокращению производства фреонов. В сентябре 1987 года 23 ведущими странами мира была подписана конвенция, согласно которой, страны к 1999 году должны были снизить потребление фреонов в два раза. Уже найден практически не уступающий заменитель фреонов в аэрозолях – пропан-бутановая смесь. Она почти не уступает фреонам по параметрам, единственным ее минусом является то, что она огнеопасна. Такие аэрозоли уже достаточно широко используются. Для холодильных установок дела обстоят несколько хуже. Лучшим заменителем фреонов сейчас является аммиак, однако он очень токсичен и все же значительно хуже их по физ. параметрам. Сейчас достигнуты неплохие результаты по поиску новых заменителей, но пока проблема окончательно не решена.

Меры предотвращения: В 1977 г. Программой ООН по окружающей среде был принят план действий по озоновому слою, в 1985 г. в Вене состоялась конференция, принявшая Конвенцию по охране озонового слоя, был установлен список веществ, отрицательно влияющих на озоновый слой, и принято решение о взаимном информировании государств о производстве и использовании этих веществ, о принимаемых мерах .Таким образом, было официально заявлено о пагубном воздействии изменений озонового слоя на здоровье людей и окружающую среду и о том, что меры по охране озонового слоя требуют международного сотрудничества. Решающим стало подписание Монреальского протокола в 1987 г., согласно которому устанавливается контроль за производством и использованием фреонов.


cyberpedia.su

Проблема разрушения озонового слоя


⇐ ПредыдущаяСтр 6 из 11Следующая ⇒

Живые организмы на Земле защищены от коротковолнового ультрафиолетового (УФ) излучения Солнца, которое губительно для всего живого, озоновым экраном (озоновым слоем).

Озоновый экран — это воздушный слой в верхних слоях атмосферы (стратосфере), состоящий из особой формы кислорода — озона (рис. 5).

Толщина озонового слоя в масштабе атмосферы — не больше листа бумаги в объеме домашней библиотеки.

Озон имеет существенное эколого-биологическое значение и является важнейшим компонентом атмосферы, несмотря на то что процентное содержание его невелико — менее 0,0001 %. Связано это с тем, что именно озон активно поглощает УФ-излучение.

Озон — форма молекулярного кислорода (03). Основное его количество сосредоточено в стратосфере на высоте 15-25 км (верхняя граница — 45-50 км). Парадокс, но те же самые молекулы озона в тропосфере (нижний слой атмосферы) представляют собой опасные элементы, разрушающие живую ткань, включая легкие человека. Однако здесь озона весьма мало, и образуется он лишь во время грозовых разрядов.

Рис. 5. Озоновый экран: а — озон (03) в стратосфере поглощает УФ-лучи Солнца; б — озон формируется в стратосфере, когда под действием УФ-лучей молекулы 02 распадаются на свободные атомы, способные присоединяться к другим его молекулам

Специалисты по исследованию атмосферы из Британской Антарктической службы в 1985 г. сообщили о неожиданном факте: весеннее содержание озона в атмосфере над станцией Халли-Бей в Антарктиде уменьшилось с 1977 по 1984 г. на 40 %! Вскоре этот вывод подтвердили другие исследователи, также показавшие, что область пониженного содержания озона простирается за пределы Антарктиды и по высоте охватывает слой от 12 до 24 км, т.е. значительную часть нижней стратосферы. Фактически это означает, что в полярной атмосфере имеется озоновая «дыра». В начале 80-х гг. XX в. спутник «Нимбус-7» обнаружил аналогичную дыру в Арктике, правда, она охватывала значительно меньшую площадь и падение уровня озона в ней было не так велико — около 9 %. В среднем с 1979 по 1990 г. содержание озона снизилось на 5 %.

Так что же представляет собой слой озона в атмосфере? Теоретически, если весь озон «сжать» до плотности воды и разместить на поверхности Земли, то он образовал бы пленку всего 2-4 мм толщиной, причем минимум пришелся бы на экватор, а максимум оказался бы у полюсов. Высотное же распределение озона таково, что максимум концентрации отмечается на высоте 25 км. Но она повышается также и на высоте 70 км. Большая часть озона находится в стратосфере, и этот слой в Арктике обычно расположен низко, тогда как в тропической зоне — высоко. Что касается тропосферы, то здесь озона меньше, к тому же он в большей мере подвержен как сезонным, так и другим изменениям, в частности вызванным загрязнениями.

Утончение слоя озона может привести к серьезным последствиям для человечества. Уменьшение концентрации озона на 1 % вызывает увеличение интенсивности жесткого ультрафиолета у поверхности Земли в среднем на 2 %. По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям, однако из-за большей, чем у у-излучения, длины волны он не способен проникать глубоко в ткани, поэтому поражает только поверхностные органы. Жесткий ультрафиолет обладает достаточной энергией для разрушения ДНК и других органических молекул.

Жесткие ультрафиолетовые лучи способны вызвать у человека рак кожи, в частности быстротекущую злокачественную мела- ному, а также катаракту и иммунную недостаточность, не говоря уже об обычных ожогах кожи и роговицы. Они наносят вред животным и растениям, в частности морским экосистемам, поскольку плохо поглощаются водой.

Впервые мысль об опасности разрушения озонового слоя была высказана в конце 1960-х гг. Большую тревогу со стороны экологов вызвало негативное влияние водяного пара и оксидов азота (NOx), которые выбрасываются реактивными двигателями сверхзвуковых самолетов и ракет на высоте 20-25 км. Именно на этой высоте находится защитный слой озона, задерживающий жесткое ультрафиолетовое излучение космоса. Такие опасения основаны на свойстве оксида азота разрушать озон:

2NO + 03= N20 +202

В 1974 г. ученые установили, что вызывать разрушение озонового экрана могут хлорфторуглероды (ХФУ) (рис. 6). Начиная с этого времени так называемая «хлорфторуглеродная проблема» стала одной из основных в исследованиях по загрязнению атмосферы. К хлорфторуглеродам относятся, в частности, фреоны — химически инертные на поверхности Земли вещества. Они уже более 60 лет используются как хладагенты в холодильниках и кондиционерах, пропелленты для аэрозольных смесей (в бытовых аэрозольных баллончиках), иенообразующие агенты в огнетушителях, очистители для электронных приборов, при химической чистке одежды, при производстве пенопластиков.

Почти весь производимый в мире фреон (или фторорганические соединения) в конечном счете поднимается в верхние слои атмосферы и разлагается там под влиянием ультрафиолетовых лучей, которые разрушают устойчивые в обычных условиях молекулы ХФУ. Последние распадаются на компоненты, обладающие высокой реакционной способностью, в частности атомный хлор. В ходе фотохимического разложения фреона в стратосфере ион хлора выступает как агент разрушения озона. Таким образом, ХФУ переносят хлор с поверхности Земли через тропосферу и нижние слои атмосферы, где менее инертные соединения хлора разрушаются, в стратосферу, к слою с наибольшей концентрацией озона. Осколки фреоновых молекул разрушительно действуют на слой атмосферного озона. ХФУ уже разрушили от 3 до 5 % озонового слоя атмосферы.

Рис. 6. Схема разрушения озонового экрана

Очень важно, что при разрушении озона хлор действует подобно катализатору: в ходе химического процесса его количество не уменьшается. Вследствие этого один атом хлора может разрушить до 100 000 молекул озона, прежде чем он будет дезактивирован или вернется в тропосферу. Сейчас выбросы ХФУ в атмосферу исчисляются миллионами тонн, но следует заметить, что даже в случае полного прекращения производства и использования ХФУ немедленного результата достичь не удастся: действие уже попавших в атмосферу ХФУ будет продолжаться еше несколько десятилетий.

Для использования в качестве пропеллента в аэрозолях уже найден неплохой заменитель ХФУ — пропан-бутановая смесь. По физическим параметрам она практически не уступает фреонам, но, в отличие от них, огнеопасна. Тем не менее такие аэрозоли уже производятся во многих странах, в том числе в России. Сложнее обстоит дело с холодильными установками — вторыми по величине потребителями фреонов. Дело в том, что из-за полярности молекулы ХФУ имеют высокую теплоту испарения, что очень важно для рабочего тела в холодильниках и кондиционерах. Лучшим известным на сегодня заменителем фреонов является аммиак, но он токсичен и все же уступает ХФУ по физическим параметрам. Неплохие результаты получены для полностью фторированных углеводородов. Во многих странах ведутся разработки новых заменителей, но полностью эта проблема еще не решена.

Уменьшение плотности озонового щита планеты влечет за собой снижение урожаев сельскохозяйственных культур и продуктивности животноводства, резкое уменьшение биологической продуктивности приповерхностного слоя Мирового океана, а следовательно, уловов рыбы, существенный рост заболеваемости людей раком кожи. Ясно, что без знания общих экологических законов дальнейший прогресс человечества и поступательное развитие экономики невозможны.

На основании научных исследований было выяснено, что основной причиной являются фреоны, широко используемые в холодильной технике и в аэрозольных баллончиках.

Международным сообществом был принят ряд мер, направленных на предотвращение разрушения озонового слоя. В 1977 г. в Программе ООН по окружающей среде был принят план действий по озоновому слою, а в 1985 г. в Вене состоялась конференция, принявшая Конвекцию по охране озонового слоя. Был установлен список веществ, отрицательно влияющих на озоновый слой, и принято решение о взаимном информировании государств о производстве и использованию этих веществ и о принимаемых мерах.

Таким образом, было официально заявлено о пагубном воздействии изменений озонового слоя на здоровье людей и окружающую среду, и что меры по охране озонового слоя требуют международного сотрудничества.

Решающим стало подписание Монреальского протокола в 1987 г., в соответствии с которым устанавливался контроль за производством и использованием фреонов. Протокол подписало большинство стран мира, в том числе и Россия. По этим соглашениям производство фреонов должно было быть прекращено к 2010 г. Однако соглашение и к 2011 г. полностью не выполнено. Озоновая же дыра над Арктикой в 2011 г., по последним данным, составляет 2 млн км2. Но до конца не ясно; только ли за счет антропогенных факторов она появляется!


Рекомендуемые страницы:

lektsia.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *