Кто изобрел лазер? Факты и теоретическое обоснование
Главный вопрос, на который дается ответ сегодня: кто изобрел лазер? Также здесь приводится краткое теоретическое обоснование и причины для создания столь полезного устройства.
Применение лазера
Современная жизнь немыслима без маленьких пучков когерентного излучения, которые генерирует лазер. Его создание привело к революции, прежде всего, в информационной сфере. Раньше данные надо было наносить непосредственно на поверхность какого-то материала – бумаги, глины, камня. Теперь же любой текст, формула или таблица умещаются на очень маленьком кусочке оптического диска. Тому, кто изобрел лазер, мы обязаны современными методами передачи учебной и научной информации, общения, развлечений и путешествий. Запись и считывание букв и цифр теперь не требует непосредственного участия человеческого глаза, за людей это делает лазерный привод.
Непосредственно устройство используется и во множестве других видов деятельности:
- для резки дерева, железа, пластика на производстве;
- для сварки материалов между собой;
- для нанесения символов и знаков на металлические детали;
- для проведения хирургических операций.
Преимущества применения этой технологии неоспоримы. Расскажем, с какими теоретическими и практическими трудностями столкнулся изобретатель лазера.
Теоретические основы
В начале двадцатого века квантовая физика дала толчок к исследованию микромира. Например, к середине пятидесятых годов были известны конфигурации электронных облаков всех доступных химических элементов. Ученые умели рассчитать длину волны фотона, образованного любым переходом. Среди прочих больших открытий Эйнштейн предсказал явление вынужденного излучения: электрон находится в возбужденном состоянии, мимо пролетает соответствующий фотон и «заставляет» электрон переходить на более низкий уровень, даже если время его жизни на прежнем еще не закончилось. Особенностью такого явления стал удивительный факт: второй фотон будет идентичен первому. Получить поток одинаковых частиц было очень заманчиво. Но требовалось решить ряд практических задач.
Путь к созданию первого устройства
Сказать однозначно, кто изобрел лазер, можно легко. Это был Теодор Харальд Майман, физик из Лос-Анджелеса. Он первым смог продемонстрировать работающий прототип на искусственном гранате. Однако до него другими учеными было сделано немало:
- А. Эйнштейн в 1916 году предсказал вынужденное излучение.
- П. Дирак в теории, разработанной в 1927-1930 годах, математически описал возможность вынужденного излучения.
- Р. Ланденбург и Г. Копферманн в 1928-м подтвердили существование вынужденного излучения экспериментально.
- В. Фабрикант и Ф. Бутаева в 1940 году предположили, что усилить вынужденное электромагнитное излучение поможет уровень с инверсной населенностью электронов.
- А. Кастлер в 1950-м предложил создавать инверсную населенность с помощью оптической накачки. За это он получил Нобелевскую премию.
- Н.Г. Басов, А.М. Прохоров, Ч. Таунс в 1954 году продемонстрировали генератор микроволн на аммиаке. Они добавили положительную обратную связь в виде резонатора. Это достижение также принесло ученым Нобелевскую премию.
- Т. Мейман в 1960-м наконец представил первое устройство на искусственном рубине, легированном хромом.
Таким образом, говорить, что тот, кто изобрел лазер в 1960 году, сделал это единолично, не совсем верно.
Технические помехи на пути изобретения
Согласно одному известному анекдоту, физики-теоретики расходуют очень мало оборудования. Им нужны только бумага, карандаш и ластик. Но предсказанные ими явления требуют подтверждения на практике. Часто это бывает очень сложно. Например, подтвердить наличие гравитационных волн смогли только в XXI веке, хотя Эйнштейн предположил их наличие еще в начале XX. Изобретатель лазера и его предшественники решали следующие технические задачи:
- Поиск материалов с инверсной заселенностью уровней.
- Отбор стабильно работающих источников для оптической накачки.
- Выращивание кристаллов с заданными оптическими свойствами для рабочего тела лазера.
- Нанесение на торцы кристалла напыления с заданным коэффициентом отражения для создания оптического резонатора.
На данный момент все эти задачи успешно решаются и не представляют для ученых каких-либо трудностей.
Лазер и космос
Как только все сложности остались позади, и устройства прочно вошли в повседневность, познания человечества о космосе расширились в десятки раз. Если вспомнить, в каком году изобрели лазер, то сразу станет понятно, почему с 1960-х так активно начала развиваться космическая программа многих стран. Помимо значительного уменьшения веса оборудования за счет полупроводниковых и лазерных приборов, спектральная чистота и когерентность генерируемых пучков помогли улучшить наши знания об окружающем Землю пространстве. Благодаря современным устройствам ученым теперь точно известен состав всех планет, астероидов и комет Солнечной системы. Также способы определения расстояния до звезд и галактик теперь намного точнее. А потенциальные возможности применения лазеров безграничны.
fb.ru
Что такое лазер? Принцип работы и применение.
Сложно в наше время найти человека, который никогда не слышал бы слова «лазер», однако чётко представляют, что это такое, весьма немногие.
За полвека с момента изобретения лазеры разных видов нашли применение в широком спектре направлений, от медицины до цифровой техники. Так что же такое лазер, каков принцип его действия, и для чего он нужен?
Что такое лазер?
Возможность существования лазеров была предсказана Альбертом Эйнштейном, который ещё в 1917 году опубликовал работу, говорящую о возможности излучения электронами квантов света определённой длины. Это явление было названо вынужденным излучением, но долгое время оно считалось нереализуемым с технической точки зрения.
Однако с развитием технических и технологических возможностей создание лазера стало делом времени. В 1954 году советские учёные Н. Басов и А. Прохоров получили Нобелевскую премию за создание мазера – первого микроволнового генератора, работающего на аммиаке. А в 1960 году американец Т. Мейман изготовил первый квантовый генератор оптических лучей, названный им лазером (Light Amplification by Stimulated Emission of Radiation). Устройство преобразовывает энергию в оптическое излучение узкой направленности, т.е. световой луч, поток квантов света (фотонов) высокой концентрации.
Принцип функционирования лазера
Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.
Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.
Классификация лазеров
По мере исследования природы и свойств лазеров были открыты различные виды этих лучей. По виду состояния исходного вещества лазеры могут быть:
- газовыми;
- жидкостными;
- твердотельными;
- на свободных электронах.
В настоящее время разработано несколько способов получения лазерного луча:
- при помощи электрического тлеющего либо дугового разряда в газовой среде – газоразрядные;
- при помощи расширения горячего газа и создания инверсий населённости – газодинамические;
- при помощи пропускания тока через полупроводник с возбуждением среды – диодные или инжекционные;
- путём оптической накачки среды лампой-вспышкой, светодиодом, другим лазером и т. д.;
- путём электронно-лучевой накачки среды;
- ядерной накачкой при поступлении излучения из ядерного реактора;
- при помощи особых химических реакций – химические лазеры.
Все они обладают своими особенностями и отличиями, благодаря которым находят применение в различных сферах промышленности.
Практическое использование лазеров
На сегодняшний день лазеры разных типов применяются в десятках отраслей промышленности, медицины, IT технологий и других сферах деятельности. С их помощью осуществляются:
- резка и сварка металлов, пластмасс, других материалов;
- нанесение изображений, надписей и маркировка поверхности изделий;
- сверление сверхтонких отверстий, прецизионная обработка полупроводниковых кристаллических деталей;
- формирование покрытий изделий напылением, наплавкой, поверхностным легированием и т.д.;
- передача информационных пакетов при помощи стекловолокна;
- выполнение хирургических операций и других лечебных воздействий;
- косметологические процедуры омоложения кожи, удаления дефектных образований и др.;
- наведение на цель различных видов вооружений, от стрелкового до ракетного оружия;
- создание и использование голографических методов;
- применение в различных научно-исследовательских работах;
- измерение расстояний, координат, плотности рабочих сред, скорости потоков и многих других параметров;
- запуск химических реакций для проведения различных технологических процессов.
Существует ещё немало направлений, в которых лазеры уже используются или найдут применение в самое ближайшее время.
www.vseznaika.org
Принцип действия лазера: особенности лазерного излучения
Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).
Первопроходцы
Теодор Мейман был первым, кто продемонстрировал принцип действия рубинового лазера, основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.
В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.
В 1962 году Р. Н. Холл продемонстрировал первый диодный лазер из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.
Устройство и принцип действия лазеров
Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.
Двухуровневые среды
Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E2 и базовый Е1. Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E2, то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E2 — E1. Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором – спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:1033), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.
Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.
Многоуровневые системы
Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν02 накачивает большое количество атомов с самого низкого уровня энергии E0 до верхнего Е2. Безызлучательный переход атомов с E2 до E1 устанавливает инверсию населенности между E1 и E0, что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E1, и переход от Е2 до Е1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E0 и E1 достигается инверсия населенности и происходит усиление фотонов энергией Е1-Е0 индуцированного излучения. Более широкий уровень E2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.
Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.
В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.
Твердотельный лазер
Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti+3, Cr+3, V+2, Со+2, Ni+2, Fe+2, и т. д.), редкоземельных ионов (Ce+3, Pr+3, Nd+3, Pm+3, Sm+2, Eu+2,+3, Tb+3, Dy+3, Ho+3, Er+3, Yb+3, и др.), и актиноидов, подобных U+3. Энергетические уровни ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и тепловое расширение, имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни. Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.
Гольмиевый лазер
Примером твердотельного лазера является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов. Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями. Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.
Полупроводниковый квантовый генератор
Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды – вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.
Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря показателю преломления слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.
Соединение, образованное полупроводниковыми материалами одного типа, называется гомопереходом, а созданное соединением двух разных – гетеропереходом.
Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.
Газовый лазер
Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.
Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.
Молекулярный лазер
Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, — несколько вращательных.
Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями — в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.
Эксимерные лазеры
Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.
Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar+ и отрицательные F— реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.
Жидкостный лазер
По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.
Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью – перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.
Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.
fb.ru
Лазер | Virtual Laboratory Wiki
Файл:Laser.jpg
Ла́зер (англ. laser, сокр. от Light Amplification by Stimulated Emission of Radiation — «Усиление света с помощью вынужденного излучения») — устройство, использующее квантовомеханический эффект вынужденного (стимулированного) излучения для создания когерентного потока света. Луч лазера может быть непрерывным, с постоянной амплитудой, или импульсным, достигающим экстремально больших пиковых мощностей. Во многих конструкциях рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника. Усиленный сигнал очень точно совпадает с исходным по длине волны, фазе и поляризации, что очень важно в устройствах оптической связи.
Обычные источники света, такие как лампа накаливания, излучают свет в разных направлениях с широким диапазоном длин волн. Большинство из них также некогерентны, то есть фаза излучаемой ими электромагнитной волны подвержена случайным флуктуациям. Излучение обычного источника не может, без применения специальных мер, дать устойчивую интерференционную картину. Кроме того, излучение нелазерных источников обычно не обладает фиксированой поляризацией. Напротив, излучение лазера монохроматично и когерентно, то есть имеет постоянную длину волны и предсказуемую фазу, а также хорошо определённую поляризацию.
С другой стороны, некоторые типы лазеров, например жидкостные лазеры на растворах красителей или полихроматические твердотельные лазеры, могут генерировать целый набор частот (мод оптического резонатора) в широком спектральном диапазоне; это свойство делает возможной генерацию сверхкоротких импульсов порядка нескольких фемтосекунд (10−15 с) с помощью синхронизации мод.
Лазеры созданы на стыке двух наук — квантовой механики и термодинамики, но фактически, многие типы лазеров были созданы методом проб и ошибок.
Принцип работы и история изобретения Править
Файл:Laser.svg- Основная статья: Устройство лазера
Первый работающий лазер был сделан Теодором Майманом в 1960 году в исследовательской лаборатории компании Хьюза (Hughes Aircraft), которая находилась в Малибу, штат Калифорния с привлечением групп Таунса из Колумбийского Университета и Шалоу из компании Bell laboratories. Майман использовал рубиновый стержень с импульсной накачкой, который давал красное излучение с длиной волны 694 нанометра. Примерно в то же время иранский физик Али Яван представил газовый лазер. Позднее за свою работу он получил премию имени Альберта Эйнштейна.
Основная идея работы лазера заключается в инверсии электронной населённости путём «накачки» рабочего тела, подводя к нему энергию, например в виде световых или электрических импульсов. Рабочее тело помещается в оптический резонатор, при циркуляции волны в котором её энергия экспоненциально возрастает благодаря механизму вынужденного излучения. При этом энергия накачки должна превышать определённый порог, иначе потери в резонаторе будут превышать усиление и выходная мощность будет крайне мала.
Файл:Laser DSC09088.JPGИнверсия электронной населённости также лежит в основе работы мазеров, которые принципиально похожи на лазеры, но работают в микроволновом диапазоне. Первые мазеры были сделаны в 1953—1954 гг. Н. Г. Басовым и А.М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».
Излучение лазера может быть настолько мощным, что им можно резать сталь и другие металлы. Несмотря на то, что луч лазера можно сфокусировать в очень маленькую точку, она всегда будет иметь конечный ненулевой размер вследствие дифракции. С другой стороны, размер сфокусированного лазерного луча всегда будет значительно меньше луча, созданного любым другим способом. Например, луч небольшого лабораторного гелий-неонового лазера разойдётся всего примерно на 1,5 километра на расстоянии от Земли до Луны. Конечно, некоторые лазеры, особенно полупроводниковые, благодаря малым размерам, создают сильно расходящийся луч. Однако эту проблему можно решить применением линз.
Влияние дифракции можно обойти, применяя волноводы, в данном случае оптоволоконные линии.
Использование лазеров Править
Файл:Classical spectacular laser effects.jpgС самого момента разработки лазер называли устройством, которое само ищет решаемые задачи. Лазеры нашли применение в самых различных областях — от коррекции зрения до управления транспортными средствами, от космических полётов до термоядерного синтеза. Лазер стал одним из самых важных изобретений XX века.
Исключительно широкое использование лазеров в науке и промышленности объясняется их уникальными свойствами — когерентностью, монохроматичностью и возможностью достижения высочайшей плотности мощности излучения. Например, когерентность лазерного луча позволяет сфокусировать его в точку, практически совпадающую по размеру с дифракционным пределом, который для видимого спектра составляет всего несколько сотен нанометров. Это позволяет лазерным записывающим устройствам хранить гигабайты информации на оптических дисках, например, формата DVD. Хорошо сфокусированный луч позволяет достичь громадной плотности излучения, достаточной для резки, плавления и даже испарения самых тугоплавких материалов. К примеру, лазер на алюмо-иттриевом гранате с неодимовым легированием в режиме удвоения частоты работает на длине волны 532 нм (зелёный участок спектра) и при мощности всего 10 Ватт позволяет достичь энергий порядка нескольких мегаватт на квадратный сантиметр.
Популярные заблуждения Править
Вся современная поп-культура, особенно боевики и научная фантастика, полны заблуждений о лазерных технологиях. Например, вопреки фильмам, луч лазера абсолютно невидим в вакууме и в большинстве случаев на воздухе (фильм Звёздные Войны не относится к данному утверждению, так как там используется плазменное оружие[источник?]</sup>). Луч «пылает» только рассеиваясь на каких-либо частицах, например, пыли — точно также, как лучи солнца видны в запыленной атмосфере или в тумане. Однако лучи очень высокой мощности все же могут быть видны в чистом воздухе благодаря рэлеевскому или рамановскому рассеянию.
Кроме того, в фантастических фильмах луч распространяется довольно медленно, так что его движение можно проследить глазом, совсем как трассирующий снаряд. На самом деле, луч лазера распространяется со скоростью света и мы должны увидеть его сразу по всей длине.
Ещё пример — во многих фильмах герой обнаруживает и обходит контур лазерной защиты, распыляя какое-либо вещество в воздухе. На самом деле, инфракрасные лазерные диоды сделать проще и дешевле, чем излучающие видимый свет. Именно поэтому использовать лазеры с видимым излучением в охранных системах совершенно бессмысленно.
Лазером в кино обычно режут всё, что попадётся под руку. Удивительно, но никто не обращает внимания, что мощности отражённого луча, который взрезает стальные двери, вполне достаточно, чтобы повредить сетчатку глаза взломщика, который не надевает очков.
Безопасность лазеров Править
Даже маломощные лазеры (с выходной мощностью несколько милливатт) могут быть опасны для зрения. Для видимых длин волн (400—700 нм), которые хорошо пропускаются и фокусируются хрусталиком, попадание лазерного луча в глаз, даже на несколько секунд, может привести к частичной или даже полной потере зрения. А лазеры большей мощности могут приводить даже к повреждению кожных покровов.
Лазеры делятся на 4 класса безопасности, от 1 — практически безопасный, до 4, у которого даже рассеянный луч может стать причиной ожога глаза или кожи.
- Файл:Laser warrning sticker.jpg Класс 1. Лазеры и лазерные системы малой мощности, которые не могут излучать уровень мощности, превышающий максимально разрешённое облучение. Лазеры и лазерные системы Класса 1 не способны причинить повреждение человеческому глазу.
- Класс 2. Маломощные лазеры, способные причинить повреждение человеческому глазу в том случае, если смотреть непосредственно на лазер на протяжении длительного периода времени. Такие лазеры не следует использовать на уровне головы.
- Класс 3a. Лазеры и лазерные системы, которые обычно не представляют опасность, если смотреть на лазер невооружённым взглядом только на протяжении кратковременного периода. Лазеры могут представлять опасность, если смотреть на них через оптические инструменты (бинокль, телескоп).
- Класс 3b. Лазеры и лазерные системы, которые представляют опасность, если смотреть непосредственно на лазер. Это же относится и к зеркальному отражению лазерного луча.
- Класс 4. Лазеры и лазерные системы большой мощности, которые способны причинить сильное повреждение человеческому глазу короткими импульсами (<0,25 с) прямого лазерного луча, а также зеркально или диффузно отражённого. Лазеры и лазерные системы данного класса способны причинить значительное повреждение коже человека, а также оказать опасное воздействие на легко воспламеняющие и горючие материалы.
Классификация лазеров Править
- Лазеры на углекислом газе (9,6 мкм и 10,6 мкм) используются в промышленности для резки и сварки материалов, имеют мощность до 100 кВт
- Лазеры на монооксиде углерода. Требуют дополнительного охлаждения, однако имеют большую мощность — до 500 кВт
- Эксимерные газовые лазеры, дающие ультрафиолетовое излучение. Используются при производстве микросхем(фотолитография) и в установках коррекции зрения. F2 (157 нм), ArF (193 нм), KrCl (222 нм), KrF (248 нм), XeCl (308 нм), XeF (351 нм)
- Твердотельные лазеры
- рубиновые (694 нм), александритовые (755 нм), Nd:YAG (1064 нм), Ho:YAG (2090 нм), Er:YAG (2940 нм). Используются в медицине.
- Алюмо-иттриевые твердотельные лазеры с неодимовым легированием (Nd:YAG) — инфракрасные лазеры большой мощности, используемые для точной резки, сварки и маркировки изделий из металлов и других материалов
- Кристаллические лазеры с иттербиевым легированием, такие как Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, или на основе иттербиевого стекловолокна; обычно работают в диапазоне 1020—1050 нм; потенциально самые высокоэффективные благодаря малому квантовому дефекту; наибольшая мощность сверхкоротких импульсов достигнута на Yb:YAG-лазере. Волоконные лазеры с иттербиевым легированием обладают рекордной непрерывной мощностью среди твердотельных лазеров (десятки киловатт)
- алюмо-иттриевые с эрбиевым легированием, 1645 нм
- алюмо-иттриевые с тулиевым легированием, 2015 нм
- алюмо-иттриевые с гольмиевым легированием, 2096 нм, Эффективный ИК-лазер, излучение поглощается влажными материалами толщиной менее 1 мм. Обычно работает в импульсном режиме и используется в медицине.
- Титан-сапфировые лазеры. Хорошо перестраиваемый по длине волны инфракрасный лазер, используемый для генерации сверхкоротких импульсов и в спектроскопии
- Лазеры на эрбиевом стекле, изготавливаются из специального оптоволокна и используются как усилители в оптических линиях связи.
- Микрочиповые лазеры. Компактные интегрированные импульсные твердотельные лазеры, наиболее широко используются в сверхъярких лазерных указках
- Файл:Laser from printer.jpg полупроводниковые лазерные диоды
- Самый распространенный тип лазеров: используются в лазерных указках, лазерных принтерах, телекоммуникациях и оптических носителях информации(CD/DVD). Мощные лазерные диоды используются для накачки современных твердотельных лазеров.
- Лазеры с внешним резонатором (External-cavity lasers), используются для создания высокоэнергетических импульсов
- Лазеры на красителях Тип лазеров, использующий в качестве активной среды раствор органических красителей в этиловом спирте или этиленгликоле. Позволяют осуществлять пререстройку длины волны излучения в диапазоне от 350 нм до 850 нм (в зависимости от типа красителя). Применение — спектроскопия, медицина (в том числе фотодинамическая терапия), фотохимия.
- Лазеры с квантовым каскадом
- Лазеры на свободных электронах
- Лазеры на свободных электронах
- Лазер с солнечным возбуждением
Расшифровка обозначений
Длины волн распространённых лазеров
Sam’s Laser FAQ (на английском языке)
История изобретения Лазера
ru.vlab.wikia.com
Всё о лазерах и лазерной технике
На форуме ежемесячно проходят бесплатные розыгрыши призов для зарегистрированных и активно общающихся форумчан. Вы можете выиграть не только различные лазерные указки и другое лазерное оборудование, но и фонарики, зарядные устройства, аккумуляторы и другие аксессуары известных брендов, а также фонари и компоненты от известных кастомщиков и мелкосерийных производителей. Также разыгрываются и другие призы, такие как мультитулы, ножи, рюкзаки и другое снаряжение. Все проходящие розыгрыши призов являются действительно абсолютно бесплатными для самих участников, т.к. все расходы берут на себя организаторы (т.е. владельцы данного форума) и сами спонсоры, которые предоставляют тот или иной приз для наших розыгрышей призов. Форумчане не несут никаких имущественных рисков, связанных с участием в данных розыгрышах (т.е. вы ничего не оплачиваете и ничем не рискуете). Вам достаточно нажать кнопку «Принять участие» и ждать результата!На данный момент проходит 1 розыгрыш призов.
1. Зарядное устройство XTAR XP4 Panzer + 2 аккумулятора Panasonic NCR18650B 3400 мАч
Рекомендуем Вам подписаться на тему (оптимальнее с уведомлением на ваш E-mail), где публикуется информация о новых розыгрышах призов.
Подробная информация по ссылке
Что Вам даст регистрация на нашем проекте:
— Возможность участия во всевозможных акциях, конкурсах и лотереях постоянно проходящих на форуме
— Возможность пользоваться скидками и бонусами, которые предоставляют различные популярные магазины специально для наших форумчан
— Возможность побывать в роли тестеров новейших разработок в области лазерной техники и их комплектующих
— Возможность неограниченного доступа к закрытой технической информации и некоторым интересным разделам форума
и много других приятных привилегий
Искренне надеемся, что Вам у нас понравится!
Если вы хотите финансово поддержать работу проекта LASERS.FONAREVKA.RU, будем искренне благодарны!
Даже самая малая сумма поможет дальнейшему развитию и прогрессу нашего с вами уже общего проекта.
lasers.fonarevka.ru
Лазеры и их применение — часть 2
Лазеры являются самыми мощными источниками светового излучения. В узком интервале спектра (в течение промежутка времени, продолжительностью порядка 10-13 с) у некоторых типов лазеров достигается мощность излучения порядка 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7*103 Вт/см2, причём суммарно по всему спектру. На узкий же интервал l=10-6 см (это ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Если задача заключается в преодолении порога в 1017 Вт/см2, то прибегают к различным методам повышения мощности.
Для повышения мощности излучения необходимо увеличить число атомов, участвующих в усилении светового потока за счет индуцированного излучения, и уменьшить длительность импульса.
1.2 ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР
В 60-х годах, было установлено, что полупроводники — превосходный материал для лазеров.
Если соединить вместе две пластины из полупроводников разных типов, то посередине образуется переходная зона. Атомы вещества, находящиеся в ней, способны возбуждаться при прохождении электрического тока поперек зоны и генерировать свет. Зеркалами, необходимыми для получения лазерного излучения, могут служить полированные и посеребренные грани самого кристалла полупроводника.
Среди этих лазеров лучшим считается лазер на основе арсенида галлия — соединения редкого элемента галлия с мышьяком. Его инфракрасное излучение имеет мощность до десяти ватт. Если этот лазер охладить до температуры жидкого азота (—200°), мощность его излучения можно увеличить в десять раз. Это значит, что при площади излучающего слоя в 1 см2 мощность излучения достигла бы миллиона ватт. Но полупроводник с переходным слоем такого размера изготовить пока невозможно по техническим причинам.
Можно возбуждать атомы полупроводника пучком электронов (как в твердотельных лазерах — лампой-вспышкой). Электроны проникают глубоко внутрь вещества, возбуждая большее количество атомов; ширина излучающей зоны оказывается в сотни раз шире, чем при возбуждении электрическим током. Поэтому мощность излучения таких лазеров с электронной накачкой достигает уже двух киловатт.
Малые размеры полупроводниковых лазеров делают их очень удобными для применения там, где нужен миниатюрный источник света большой мощности.
1.3 ЖИДКОСТНЫЙ ЛАЗЕР
В твердых веществах можно создать большую концентрацию излучающих атомов и, значит, получить большую энергию с одного кубического сантиметра стержня. Но их трудно делать, они дороги и к тому же могут лопаться из-за перегрева во время работы.
Газы очень однородны оптически, рассеяние света в них мало, поэтому размер газового лазера может быть весьма внушительным: длина 10 метров при диаметре 10—20 сантиметров для него не предел. Но такое увеличение размера никого не радует. Это вынужденная мера, необходимая для того, чтобы компенсировать ничтожное количество активных атомов газа, находящегося в трубке лазера под давлением в сотые доли атмосферы. Прокачка газа несколько спасает дело, позволяя уменьшить размер излучателя.
Жидкости объединяют в себе достоинства и твердых и газообразных лазерных материалов: плотность их всего в два-три раза ниже плотности твердых тел (а не в сотни тысяч раз, как плотность газов). Поэтому количество их атомов в единице объема примерно одинаково. Значит, жидкостный лазер легко сделать таким же мощным, как лазер твердотельный. Оптическая однородность жидкостей не уступает однородности газов, а значит, позволяет использовать ее большие объемы. К тому же жидкость тоже можно прокачивать через рабочий объем, непрерывно поддерживая ее низкую температуру и высокую активность ее атомов.
1.3.1 ЛАЗЕРЫ НА КРАСИТЕЛЯХ
Называются они так потому, что их рабочая жидкость — раствор анилиновых красок в воде, спирте, кислоте и других растворителях. Жидкость налита в плоскую ванночку-кювету. Кювета установлена между зеркалами. Энергия молекулы красителя накачивается оптически, только вместо лампы-вспышки сначала использовались импульсные рубиновые лазеры, а позднее — лазеры газовые. Лазер-накачку внутрь жидкостного лазера не встраивают, а помещают вне лазера, вводя его луч в кювету через окошко в корпусе. Сейчас удалось добиться генерации света и с импульсной лампой, но не на всех красителях. Растворы могут излучать импульсы света различной длины волны — от ультрафиолета до инфракрасного света — и мощностью от сотен киловатт до нескольких мегаватт (миллионов ватт), в зависимости от того, какой краситель налит в кювету. Лазеры на красителях обладают одной особенностью. Все лазеры излучают строго на одной длине волны. Это их свойство лежит в самой природе вынужденного излучения атомов, на котором основан весь лазерный эффект. В больших и тяжелых молекулах органических красителей вынужденное излучение возникает сразу в широкой полосе длин волн. Чтобы добиться от лазера на красителях монохроматичности, на пути луча становится светофильтр. Это не просто окрашенное стекло. Он представляет собой набор стеклянных пластин, которые пропускают только свет одной длины волны. Меняя расстояние между пластинами, можно слегка изменить длину волны лазерного излучения. Такой лазер называется перестраиваемым. А для того, чтобы лазер мог генерировать свет в разных участках спектра — переходить, скажем, от синего к красному свету или от ультрафиолетового к зеленому, — достаточно сменить кювету с рабочей жидкостью. Наиболее перспективны они оказались для исследования структуры вещества. Перестраивая частоту излучения, можно узнать, свет какой длины волны поглощается или рассеивается на пути луча. Таким способом можно определить состав атмосферы и облаков на расстоянии до двухсот километров, измерить загрязненность воды или воздуха, указав сразу, какого размера частицы его загрязняют. То есть можно построить прибор, автоматически и непрерывно контролирующий чистоту воды и воздуха.
Но наряду с широкополосными жидкостными лазерами существуют и такие, у которых, наоборот, монохроматичность гораздо выше, чем у лазеров на твердом теле или на газе.
Длина волны света лазера может изменяться, укорачиваясь и удлиняясь примерно на одну сотую (у хороших лазеров). Чем меньше расстояние между зеркалами, тем эта полоса шире. У полупроводниковых лазеров, например, она составляет уже несколько длин волн, а у лазера на основе солей неодима эта полоса — одна десятитысячная. Такое постоянство длины волны можно получить только у больших газовых лазеров, да и то, если принять всяческие необходимые для этого меры: обеспечить устойчивость температуры трубки, силы тока, ее питающего, и включить в схему лазера систему автоматической подстройки длины волны излучения. Мощность излучения при этом должна быть минимальной: при ее повышении полоса расширяется. Зато в жидкостном неодимовом лазере узкая полоса излучения получается сама собой и сохраняется даже при заметном повышении мощности излучения, а это крайне важно для всякого рода точных измерений.
Поэтому от того, насколько точно выдерживается длина волны света, излучаемого лазером, зависит и точность измерений. Уменьшение полосы излучения лазера в сто раз сулит стократное увеличение точности измерения длин.
1.4 ХИМИЧЕСКИЙ ЛАЗЕР И ДРУГИЕ
Поиск новых лазеров, новых путей повышения мощности лазерного излучения, ведется в разных направлениях. В их числе, например, квантовый генератор с химической накачкой, первый вариант которого был создан в Институте химической физики АН СССР в лаборатории члена-корреспондента Академии наук В. Л. Тальрозе. В таком лазере в процессе реакции соединения фтора F с водородом Н2 или дейтерием D2 образовавшиеся молекулы HF или DF переходят на высокий энергетический уровень. Спускаясь с этого уровня, они и создают лазерное излучение — молекулы HF на волне 2700 нм, молекулы DF — на волне 3600 нм. В лазерах этого типа достигаются мощности до 10 кВт.
В одном из сравнительно мощных импульсно-периодических газовых лазеров в качестве рабочего вещества используются пары меди при температуре 1500°С или в более простом варианте пары солей меди при температуре 400°С. Накачка осуществляется энергией электронов, движущихся в газовом разряде. Лазерное излучение происходит при переходе атомов меди из возбужденного состояния в одно из двух метастабильных состояний, и при этом возможно излучение на двух длинах волн 510,6 нм и 578,2 нм, соответствующих двум оттенкам зеленого цвета. В резонаторе, который представляет собой интенсивно прокачиваемую трубу диаметром 5 см и длиной 1 м, достигнута мощность в импульсе 40 кВт при продолжительности импульсов 15—20 не, частоте следования 10—100 кГц, средней мощности в несколько десятков ватт и кпд более 1%- Ведется работа по повышению средней мощности «медного» лазера до 1 кВт.
Особый класс образуют мощные лазеры на красителях, главное достоинство которых — возможность плавного изменения частоты. Используемые в них жидкие среды имеют «размытые» энергетические уровни и допускают генерацию на многих частотах. Выбор одной из них может производиться изменением параметров резонатора, например, поворотом призмы внутри него. Если для накачки использовать мощные источники излучения, в частности, импульсные лазеры и осуществить интенсивную циркуляцию жидкого красителя, то становится реальным создание лазеров с перестраиваемой частотой со средней мощностью порядка 100 Вт и частотой повторения импульсов 10—50 кГц.
mirznanii.com
ЛАЗЕР — это… Что такое ЛАЗЕР?
ЛАЗЕР — (оптический квантовый генератор), устройство, генерирующее когерентные эл. магн. волны за счёт вынужденного испускания или вынужденного рассеяния света активной средой, находящейся в оптич. резонаторе. Слово «Л.» аббревиатура слов англ. выражения … Физическая энциклопедия
Лазер — в научной лаборатории. ЛАЗЕР (оптический квантовый генератор; аббревиатура от начальных букв английских слов Light Amplification by Stimulated Emission Radiation усиление света в результате вынужденного излучения), источник оптического… … Иллюстрированный энциклопедический словарь
ЛАЗЕР — (оптический квантовый генератор; аббревиатура от начальных букв английских слов Light Amplification by Stimulated Emission Radiation усиление света в результате вынужденного излучения), источник оптического когерентного излучения,… … Современная энциклопедия
ЛАЗЕР — (аббревиатура слов английской фразы: Light Amplification by Simulated Emission of Radiation усиление света искусственным излучением), оптический МАЗЕР, источник интенсивного, когерентного, с одинаковыми длинами волн узкого луча света… … Научно-технический энциклопедический словарь
ЛАЗЕР — [англ. laser, сокр. Словарь иностранных слов русского языка
ЛАЗЕР — (оптический квантовый генератор) (аббревиатура слов английской фразы: Light Amplification by Stimulated Emission of Radiation усиление света в результате вынужденного излучения) источник оптического когерентного излучения, характеризующегося… … Большой Энциклопедический словарь
ЛАЗЕР — [зэ ], а, муж. (спец.). 1. Оптический квантовый генератор, устройство для получения мощных узконаправленных пучков света. Импульсный л. Л. непрерывного действия. 2. Пучок света, луч, получаемый при помощи такого генератора. Лечение лазером.… … Толковый словарь Ожегова
лазер — сущ., кол во синонимов: 3 • луч (11) • нанолазер (1) • хемолазер (1) Словарь синонимов ASIS … Словарь синонимов
Лазер — источник электромагнитных волн видимого, инфракрасного или ультрафиолетового диапазонов, основанный на принципе вынужденного (индуцированного) излучения квантовых систем атомов, молекул и др. В иностранных ВС применяется для локации, связи,… … Морской словарь
лазер — – лазерный стенд развала. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь
ЛАЗЕР — (англ. laser аббревиатура словосочетания Light Amplification by Stimulated Emission of Radiation усиление света с помощью вынужденного излучения) оптический квантовый генератор, источник оптического когерентного излучения, характеризующегося… … Российская энциклопедия по охране труда
dic.academic.ru