Содержание

Чем отличаются атомная, ядерная и водородная бомбы

Для точного ответа на вопрос придётся серьёзно углубиться в такую отрасль человеческого знания, как ядерная физика — и разобраться с ядерно-/термоядерными реакциями.

Изотопы

Из курса общей химии мы помним, что материя вокруг состоит из атомов разных «сортов», причём их «сортность» определяет, как именно они будут вести себя в химреакциях. Физика добавляет, что происходит это по причине тонкого строения атомного ядра: внутри ядра находятся протоны и нейтроны, его формирующие — а вокруг по «орбитам» безостановочно «носятся» электроны. Протоны обеспечивают положительный заряд ядра, а электроны — отрицательный, его компенсирующий, из-за чего атом обычно электронейтрален.

Ядро Урана

С химической точки зрения «функция» нейтронов сводится к тому, чтобы «разбавить» единообразие ядер одного «сорта» ядрами с несколько различающейся массой, поскольку на химические свойства повлияет лишь заряд ядра (через число электронов, за счёт которых атом может образовывать химсвязи с другими атомами). С точки же зрения физики нейтроны (как и протоны) участвуют в сохранении атомных ядер за счёт специальных и очень мощных ядерных сил — в противном бы случае ядро атома мгновенно разлетелось бы из-за кулоновского отталкивания одноимённо заряженных протонов. Именно нейтроны позволяют существовать изотопам: ядрам с одинаковыми зарядами (то есть идентичными химсвойствами), но при этом отличным по массе.

Важно, что создавать ядра из протонов/нейтронов произвольным образом нельзя: есть их «магические» комбинации (на самом деле магии тут нет никакой, просто физики условились так называть особенно энергетически выгодные ансамбли из нейтронов/протонов), которые невероятно стабильны — но «отходя» от них всё дальше можно получить радиоактивные ядра, которые «разваливаются» сами собой (чем дальше они отстоят от «магических» комбинаций — тем их распад вероятнее со временем).

Нуклеосинтез

Чуть выше выяснилось, что согласно определённым правилам можно «конструировать» атомные ядра, создавая из протонов/нейтронов всё более тяжёлые. Тонкость же в том, что процесс этот энергетически выгоден (то есть протекает с выделением энергии) лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс (нуклеосинтез) идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит.

Условная «граница эффективности» проходит по синтезу ядер железа: синтез более тяжёлых ядер энергозатратен и железо в итоге «убивает» звезду, а более тяжёлые ядра образуется либо в следовых количествах из-за захвата протонов/нейтронов, либо массово в момент гибели звезды в виде катастрофической вспышки сверхновой, когда потоки излучений достигают поистине чудовищных величин (одной световой энергии в момент вспышки типичная сверхновая выделяет столько, сколько наше Солнце за примерно миллиард лет своего существования!)

Ядерные/термоядерные реакции

Итак, теперь уже можно дать необходимые определения:

Термоядерная реакция (она же реакция синтеза или по-английски nuclear fusion) — такой вид ядерной реакции, где более лёгкие ядра атомов за счёт энергии их кинетического движения (тепла) сливаются в более тяжёлые.

Термоядерная реакция

Ядерная реакция деления (она же реакция распада или по-английски nuclear fission) — такой вид ядерной реакции, где ядра атомов спонтанно либо под действием частицы «снаружи» распадаются на осколки (обычно две-три более лёгкие частицы либо ядра).

Ядерная реакция деления

В принципе, в обеих типах реакций высвобождается энергия: в первом случае из-за прямой энергетической выгодности процесса, а во втором — высвобождается та энергия, которая во время «смерти» звезды потратилась на возникновение атомов тяжелее железа.

Сущностное отличие ядерной и термоядерной бомб

Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной) — такое, где основная доля энергии произведена посредством реакции термоядерного синтеза. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной.

Ядерная бомба

Строго говоря, все ныне существующие водородные бомбы «попутно» являются ядерными, поскольку «поджигающей спичкой» в них выступает «запальный» ядерный заряд, на краткое мгновение инициирующий примерно такие же условия, как внутри звезды — чтобы термоядерные реакции могли на этот миг «запуститься». Водородная бомба имеет намного большую и разрушительную мощность, чем ядерная бомба. Водородные бомбы не стоят на вооружении не в одной стране мира.

Водородная бомба

vchemraznica.ru

устройство. Первая термоядерная бомба. Испытание термоядерной бомбы :: SYL.ru

Наша статья посвящена истории создания и общим принципам синтеза такого устройства, как термоядерная бомба, иногда называемой водородной. Вместо выделения энергии взрыва при расщеплении ядер тяжелых элементов, вроде урана, она генерирует даже большее ее количество путем слияния ядер легких элементов (например, изотопов водорода) в один тяжелый (например, гелий).

Почему предпочтительнее слияние ядер?

При термоядерной реакции, заключающейся в слиянии ядер участвующих в ней химических элементов, генерируется значительно больше энергии на единицу массы физического устройства, чем в чистой атомной бомбе, реализующей ядерную реакцию деления.

В атомной бомбе делящееся ядерное топливо быстро, под действием энергии подрыва обычных взрывчатых веществ объединяется в небольшом сферическом объеме, где создается его так называемая критическая масса, и начинается реакция деления. При этом многие нейтроны, освобождающиеся из делящихся ядер, будут вызывать деление других ядер в массе топлива, которые также выделяют дополнительные нейтроны, что приводит к цепной реакции. Она охватывает не более 20 % топлива, прежде чем бомба взрывается, или, возможно, гораздо меньше, если условия не идеальны: так в атомных бомбах Малыш, сброшенной на Хиросиму, и Толстяк, поразившей Нагасаки, КПД (если такой термин вообще можно к ним применять) были всего 1,38 % и 13%, соответственно.

Слияние (или синтез) ядер охватывает всю массу заряда бомбы и длится, пока нейтроны могут находить еще не вступившее в реакцию термоядерное горючее. Поэтому масса и взрывная мощность такой бомбы теоретически неограниченны. Такое слияние может продолжаться теоретически бесконечно. Действительно, термоядерная бомба является одним из потенциальных устройств конца света, которое может уничтожить всю человеческую жизнь.

Что такое реакция слияния ядер?

Топливом для реакции термоядерного синтеза служат изотопы водорода дейтерий или тритий. Первый отличается от обычного водорода тем, что в его ядре, кроме одного протона содержится еще и нейтрон, а в ядре трития уже два нейтрона. В природной воде один атом дейтерия приходится на 7000 атомов водорода, но из его количества. содержащегося в стакане воды, можно в результате термоядерной реакции получить такое же количество теплоты, как и при сгорании 200 л бензина. На встрече в 1946 году с политиками, отец американской водородной бомбы Эдвард Теллер подчеркнул, что дейтерий дает больше энергии на грамм веса, чем уран или плутоний, однако стоит двадцать центов за грамм в сравнении с несколькими сотнями долларов за грамм топлива для ядерного деления. Тритий в природе в свободном состоянии вообще не встречается, поэтому он гораздо дороже, чем дейтерий, с рыночной ценой в десятки тысяч долларов за грамм, однако наибольшее количество энергии высвобождается именно в реакции слияния ядер дейтерия и трития, при которой образуется ядро атома гелия и высвобождается нейтрон, уносящий избыточную энергию в 17,59 МэВ

D + T → 4Не + n + 17,59 МэВ.

Схематически эта реакция показана на рисунке ниже.Много это или мало? Как известно, все познается в сравнении. Так вот, энергия в 1 МэВ примерно в 2,3 миллиона раз больше, чем выделяется при сгорании 1 кг нефти. Следовательно слияние только двух ядер дейтерия и трития высвобождает столько энергии, сколько выделяется при сгорании 2,3∙106∙17,59 = 40,5∙106 кг нефти. А ведь речь идет только о двух атомах. Можете представить, как высоки были ставки во второй половине 40-х годов прошлого века, когда в США и СССР развернулись работы, результатом которых стала термоядерная бомба.

Как все начиналось

Еще летом 1942 г. в начале реализации проекта создания атомной бомбы в США (Манхэтенский проект) и позднее в аналогичной советской программе, задолго до того, как была построена бомба, основанная на делении ядер урана, внимание некоторых участников этих программ было привлечено к устройству, которое может использовать гораздо более мощную термоядерную реакцию слияния ядер. В США сторонником этого подхода, и даже, можно сказать, его апологетом, был уже упомянутый выше Эдвард Теллер. В СССР это направление развивал Андрей Сахаров, будущий академик и диссидент.

Для Теллера его увлечение термоядерным синтезом в годы создания атомной бомбы сыграло скорее медвежью услугу. Будучи участником Манхэтенского проекта, он настойчивые призывал к перенаправлению средств на реализацию собственных идей, целью которых была водородная и термоядерная бомба, что не понравилось руководству и вызвало напряженность в отношениях. Поскольку в то время термоядерное направление исследований не было поддержано, то после создания атомной бомбы Теллер покинул проект и занялся преподавательской деятельностью, а также исследованиями элементарных частиц.

Однако начавшаяся холодная война, а больше всего создание и успешное испытание советской атомной бомбы в 1949 г., стали для яростного антикоммуниста Теллера новым шансом реализовать свои научные идеи. Он возвращается в Лос-Аламосскую лабораторию, где создавалась атомная бомба, и совместно со Станиславом Уламом и Корнелиусом Эвереттом приступает к расчетам.

Принцип термоядерной бомбы

Для того чтобы началась реакция слияния ядер, нужно мгновенно нагреть заряд бомбы до температуры в 50 миллионов градусов. Схема термоядерной бомбы, предложенная Теллером, использует для этого взрыв небольшой атомной бомы, которая находится внутри корпуса водородной. Можно утверждать, что было три поколения в развитии ее проекта в 40-х годах прошлого века:

  • вариант Теллера, известный как «классический супер»;
  • более сложные, но и более реальные конструкции из нескольких концентрических сфер;
  • окончательный вариант конструкции Теллера-Улама, которая является основой всех работающих поныне систем термоядерного оружия.

Аналогичные этапы проектирования прошли и термоядерные бомбы СССР, у истоков создания которых стоял Андрей Сахаров. Он, по-видимому, вполне самостоятельно и независимо от американцев (чего нельзя сказать о советской атомной бомбе, созданной совместными усилиями ученых и разведчиков, работавших в США) прошел все вышеперечисленные этапы проектирования.

Первые два поколения обладали тем свойством, что они имели последовательность сцепленных «слоев», каждый из которых усиливал некоторый аспект предыдущего, и в некоторых случаях устанавливалась обратная связь. Там не было четкого разделения между первичной атомной бомбой и вторичной термоядерной. В отличие от этого, схема термоядерной бомбы разработки Теллера-Улама резко различает первичный взрыв, вторичный, и при необходимости, дополнительный.

Устройство термоядерной бомбы по принципу Теллера-Улама

Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба (т. е. первичный заряд) используется для генерации излучения, сжимает и нагревает термоядерное топливо. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал «третьей идеей».

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития.

Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы (эта идея сначала была использована в СССР) просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой (или урановой) оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.

Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд – сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок.

Последовательность термоядерного взрыва

Когда первичная атомная бомба детонирует, то в первые мгновения этого процесса генерируется мощное рентгеновское излучение (поток нейтронов), которое частично блокируется щитом нейтронной защиты, и отражается от внутренней облицовки корпуса, окружающего вторичный заряд, так что рентгеновские лучи симметрично падают на него по всей его длине.

На начальных этапах термоядерной реакции нейтроны от атомного взрыва поглощаются пластиковым заполнителем, чтобы не допустить чересчур быстрого разогрева топлива.

Рентгеновские лучи вызвают появление вначале плотной пластиковой пены, заполняющей пространство между корпусом и вторичным зарядом, которая быстро переходит в состояние плазмы, нагревающей и сжимающей вторичный заряд.

Кроме того, рентгеновские лучи испаряют поверхность контейнера, окружающего вторичный заряд. Симметрично испаряющееся относительно этого заряда вещество контейнера приобретает некоторый импульс, направленный от его оси, а слои вторичного заряда согласно закону сохранения количества движения получают импульс, направленный к оси устройства. Принцип здесь тот же, что и в ракете, только если представить, что ракетное топливо разлетается симметрично от ее оси, а корпус сжимается внутрь.

В результате такого сжатия термоядерного топлива, его объем уменьшается в тысячи раз, а температура достигает уровня начала реакции слияния ядер. Происходит взрыв термоядерной бомбы. Реакция сопровождается образованием ядер трития, которые сливаются с ядрами дейтерия, изначально имеющимися в составе вторичного заряда.

Первые вторичные заряды были построены вокруг стержневого сердечника из плутония, неофициально называемого «свечой», который вступал в реакцию ядерного деления, т. е. осуществлялся еще один, дополнительный атомный взрыв с целью еще большего поднятия температуры для гарантированного начала реакции слияния ядер. В настоящее время считается, что более эффективные системы сжатия устранили «свечу», позволяя дальнейшую миниатюризацию конструкции бомбы.

Операция Плющ

Так назвались испытания американского термоядерного оружия на Маршалловых островах в 1952 г. во время которых была взорвана первая термоядерная бомба. Она называлась Плющ Майк и была построена по типовой схеме Теллера-Улама. Ее вторичный термоядерный заряд был помещен в цилиндрический контейнер, представляющий собой термически изолированный сосуд Дьюара с термоядерным топливом в виде жидкого дейтерия, вдоль оси которого проходила «свеча» из 239-плутония. Дьюар, в свою очередь, был покрыт слоем 238-урана весом более 5 метрических тонн, который в процессе взрыва испарялся, обеспечивая симметричное сжатие термоядерного топлива. Контейнер с первичным и вторичным зарядами был помещен в стальной корпус 80 дюймов шириной и 244 дюйма длиной со стенками в 10-12 дюймов толщиной, что было крупнейшим примером кованого изделия до того времени. Внутренняя поверхность корпуса был выстлана листами свинца и полиэтилена для отражения излучения после взрыва первичного заряда и создания плазмы, разогревающей вторичный заряд. Все устройство весило 82 тонны. Вид устройства незадолго до взрыва показан на фото ниже.

Первое испытание термоядерной бомбы состоялось 31 октября 1952 г. Мощность взрыва составила 10,4 мегатонны. Аттол Эниветок, на котором он был произведен, был полностью разрушен. Момент взрыва показан на фото ниже.

СССР дает симметричный ответ

Термоядерное первенство США продержалось недолго. 12.08.1953 г. на Семипалатинском полигоне была испытана первая советская термоядерная бомба РДС-6, разработанная под руководством Андрея Сахарова и Юлия Харитона.Из описания выше становится ясно, что американцами на Эниветоке была взорвана собственно не бомба, как вид готового к применению боеприпаса, а скорее лабораторное устройство, громоздкое и весьма несовершенное. Советские же ученые, несмотря на небольшую мощность всего 400 кг, испытали вполне законченный боеприпас с термоядерным топливом в виде твердого дейтерида лития, а не жидкого дейтерия, как у американцев. Кстати, следует отметить, что в составе дейтерида лития используется только изотоп 6Li (это связано с особенностями прохождения термоядерных реакций), а в природе он находится в смеси с изотопом 7Li. Поэтому были построены специальные производства для разделения изотопов лития и отбора только 6Li.

Достижение предельной мощности

Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30.10.1961 г. в СССР над полигоном Новая Земля в воздухе на высоте около 4 км была взорвана самая мощная термоядерная бомба, которая когда-либо была построена и испытана, известная на Западе как «Царь-бомба».

Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн.Внешний вид бомбы показан на фото ниже.

Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км. Фото момента взрыва показано ниже.

При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить.

Современная Россия унаследовала ядерный арсенал СССР. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны.

Солнце как термоядерный реактор

Общеизвестно, что температура Солнца, точнее его ядра, достигающая 15000000 °К, поддерживается за счет непрерывного протекания термоядерных реакций. Однако все, что мы могли почерпнуть из предыдущего текста, говорит о взрывном характере таких процессов. Тогда почему Солнце не взрывается как термоядерная бомба?

Дело в том, что при огромной доле водорода в составе солнечной массы, которая достигает 71 %, доля его изотопа дейтерия, ядра которого только и могут участвовать в реакции термоядерного синтеза, ничтожно мала. Дело в том, что ядра дейтерия сами образуются в результате слияния двух ядер водорода, да не просто слияния, а с распадом одного из протонов на нейтрон, позитрон и нейтрино (т. наз. бета-распад), что является редким событием. При этом образующиеся ядра дейтерия распределены по объему солнечного ядра довольно равномерно. Поэтому при её огромных размерах и массе отдельные и редкие очаги термоядерных реакций относительно небольшой мощности как бы размазаны по всему его ядру Солнца. Выделяемого при этих реакциях тепла явно недостаточно, чтобы мгновенно выжечь весь дейтерий в Солнце, но хватает для его нагрева до температуры, обеспечивающей жизнь на Земле.

www.syl.ru

Атомная Бомба — Спартакопедия

«Атомная бомба? Водородная бомба? Нейтронная бомба? Электронная бомба? Резиновая бомба? Каучуковая бомба? Бомба, которая никогда не взорвётся? Бомба, которая везде продаётся? Бомба, которой боится народ? Бомба, которая упадёт в огород? Бомба, которой нет на свете? Бомба, с которой играют дети? Бомба с дырочкой в правом боку? Бомба с дырочкой в левом боку? Бомба с кисточкой? Бомба с хвостиком? Бомба с пружинкой? Бомба без пружинки?
Мужик в шляпе? Мужик без шляпы? Девочка Лена? Мыльная пена? Крокодил Гена? Телевизионная антенна? Цирковая арена? Флакон ацетилена? Тюбик крема? Диагноз олигофрена? Стог сена? Город Вена? Рыба мурена? Набедренная повязка аборигена? Хуй по колено?
Мальчик Миша? Бочка гашиша? Девочка Зина? Часовая мина? Болотная тина? Дырявая шина? Глоток бензина? Кепка грузина? Проститутка Мальвина? Заряд тротила? Маньяк Чикатило? Резиновый сапог? Хеви-метал рок? Новая Земля? Брейк-диско и волна? Берёзовая роща? Злая тёща? Тифозные вши? Зелёные камыши? Спокойной ночи, малыши? «Жи-ши» пиши через «и»? Побеги бамбука? Бяка и бука? Ворона Каркуша? Розовый поросёнок Хрюша? Заяц Степашка? Бандит Промокашка? Хищник Чебурашка? Самопальный коньяк? Старуха Шапокляк?
Крылатые ракеты? Хунта Пиночета? Постановление Моссовета? Конец света? Александр Невский? Александр Македонский? Александр царь-батюшка? Одеколон «Саша»? Саша с Уралмаша? Шуры-муры? Алла Пугачёва? Раиса Горбачёва? Катя Лычёва? Сраные кошки Куклачёва? Режим тори? Режим Бори? Режим Гриши? Режим Миши? Птички на ветке? Шоколадные конфетки? Хорошие отметки? Медицинские пипетки? Кошачьи котлетки? Детки в клетке?
Блатная спецшкола? Безалкогольная кола? Шотландские виски? Жанна Фриске? Её обвисшие сиськи? Метрополитеновские крыски? Давид Кипиани? Повесть Толстого «В бане»? Велосипедные педали? Картина Репина «Не ждали»? Правила коммунистической морали? Институт сплавов и стали? Пустая бутылка из-под «Цинандали»? Полные баки? Красные раки? Обезьяны макаки? Летчик Коккинаки? Хельсинская конвенция? Кинофильм «Интервенция»?
Русский квас? Портвейн «Кавказ»? Коктейль «Экстаз»? Антиалкогольный указ? Молдавский портвейн? Саддам Хуссейн? Проститутка Бронштейн? Чеченский абрек? Дом, который построил Джек? Обрывки матраса? Команда Гондураса? Лысина Филимона-пидораса? Мятая папироса? Кость абрикоса? Знак вопроса? Мастер доноса? Закон предложения и спроса?
Женщина, которая поёт? Женщина, которая даёт? Женщина, которая раком встаёт? «Арарат»? «Кайрат»? «Шахтёр»? «Пахтакор»? «Нефтчи»? Спартачи? «Динамо» Минское? «Динамо» Грузинское? «Динамо» Кировское? «Динамо» Киевское? «Динамо» Омское? «Динамо» Томское? «Динамо» Батумское? «Динамо» Сухумское? «Динамо» Усть-Илимское? «Динамо» Махачкалинское?
И всё-таки, всё-таки, всё-таки, всё-таки! Наш родной, наш дорогой, Красно-Синий, обладатель Кубка УЕФА, Центральный ордена Ленина, всемогущий, всех в рот ебущий, Спортивный Клуб Армии?!»

spartakopedia.ru

Бомба Андрея Сахарова. Cтатьи. Наука и техника

Сергей ЛЕСКОВ

12 августа 1953 года на полигоне в Семипалатинске была испытана первая в мире водородная бомба. Это было четвертое по счету советское испытание ядерного оружия. Мощность бомбы, которая имела секретный код «изделие РДС-6 с», достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР. После испытания Курчатов с глубоким поклоном обратился к 32-летнему Сахарову: «Тебе, спасителю России, спасибо!»

Что лучше – «Би Лайн» или МТС? Один из самых острых вопросов российской повседневности. Полвека назад в узком кругу физиков-ядерщиков столь же остро стоял вопрос: что лучше – атомная бомба или водородная, она же термоядерная? Атомная бомба, которую американцы сделали в 1945 году, а мы – в 1949-м, построена на принципе освобождения колоссальной энергии при разделении тяжелых ядер урана или искусственного плутония. Термоядерная бомба построена на другом принципе: энергия выделяется при слиянии легких изотопов водорода, дейтерия и трития. Материалы на основе легких элементов не имеют критической массы, что было большой конструкционной сложностью в атомной бомбе. Кроме того, при синтезе дейтерия и трития выделяется в 4,2 раза больше энергии, чем при делении ядер такой же массы урана-235. Словом, водородная бомба – гораздо более мощное оружие, чем атомная бомба.

В те годы разрушительная сила водородной бомбы никого из ученых не отпугивала. Мир вступил в эпоху «холодной» войны, в США бушевал маккартизм, в СССР поднялась очередная волна разоблачений. Демарши позволял себе лишь Петр Капица, который не явился даже на торжественное заседание в Академии наук по поводу 70-летия Сталина. Обсуждался вопрос о его исключении из рядов академии, но положение спас президент АН Сергей Вавилов, заметивший, что первым надо исключить писателя-классика Шолохова, который манкирует всеми без исключения заседаниями.

В создании атомной бомбы, как известно, ученым помогли данные разведки. Но водородную бомбу наша агентура чуть не загубила. Добытые у знаменитого Клауса Фукса сведения привели в тупик и американцев, и советских физиков. Группа под командой Зельдовича потеряла 6 лет на проверку ошибочных данных. Разведка предоставила и мнение знаменитого Нильса Бора о нереальности «сверхбомбы». Но в СССР были свои идеи, доказать перспективность которых Сталину и Берии, вовсю «гнавшим» атомную бомбу, было непросто и рискованно. Это обстоятельство нельзя забывать в бесплодных и глупых спорах о том, кто больше потрудился над ядерным оружием – советская разведка или советская наука.

Работа над водородной бомбой стала первой интеллектуальной гонкой в истории человечества. Для создания атомной бомбы было важно, прежде всего, решить инженерные задачи, развернуть масштабные работы на рудниках и комбинатах. Водородная же бомба привела к появлению новых научных направлений – физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые пришлось прибегнуть к помощи математического моделирования. Отставание от США в области компьютеров (за океаном уже были в ходу аппараты фон Неймана) наши ученые компенсировали остроумными вычислительными методами на примитивных арифмометрах.

Словом, это была первая в мире битва умов. И эту битву выиграл СССР. Альтернативную схему водородной бомбы придумал Андрей Сахаров, рядовой сотрудник группы Зельдовича. Еще в 1949 году он предложил оригинальную идею так называемой «слойки», где в качестве эффективного ядерного материала использовался дешевый уран-238, который рассматривался при производстве оружейного урана как мусор. Но если эти «отходы» бомбардируют нейтроны термоядерного синтеза, в 10 раз более энергоемкие, чем нейтроны деления, то уран-238 начинает делиться и стоимость получения каждой килотонны во много раз уменьшается. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют «сахаризацией». В качестве горючего Виталий Гинзбург предложил дейтерид лития.

Работы по атомной и водородной бомбе шли параллельно. Еще до испытаний атомной бомбы в 1949 году Вавилов и Харитон информировали Берию о «слойке». После печально знаменитой директивы президента Трумэна в начале 1950 года на заседании Спецкомитета под председательством Берии решено было ускорить работы по сахаровской конструкции с тротиловым эквивалентом 1 мегатонна и сроком испытания в 1954 году.

1 ноября 1952 года на атолле Элугелуб США испытали термоядерное устройство «Майк» с энерговыделением 10 мегатонн, в 500 раз мощнее бомбы, сброшенной на Хиросиму. Однако «Майк» не был бомбой – гигантская конструкция размером с двухэтажный дом. Но мощность взрыва поражала воображение. Поток нейтронов был настолько велик, что удалось открыть два новых элемента – эйнштейний и фермий.

На водородную бомбу бросили все силы. Работу не затормозили ни смерть Сталина, ни арест Берии. Наконец, 12 августа 1953 года в Семипалатинске была испытана первая в мире водородная бомба. Экологические последствия оказались ужасающими. На долю первого взрыва за все время ядерных испытаний в Семипалатинске приходится 82% стронция-90 и 75% цезия-137. Но тогда о радиоактивном заражении, как и вообще об экологии, никто не думал.

Первая водородная бомба послужила причиной бурного развития советской космонавтики. После ядерных испытаний ОКБ Королева получило задание разработать межконтинентальную баллистическую ракету для этого заряда. Эта ракета, названная «семеркой», вывела в космос первый искусственный спутник Земли, на ней стартовал первый космонавт планеты Юрий Гагарин.

6 ноября 1955 года впервые было проведено испытание водородной бомбы, сброшенной с самолета Ту-16. В США сброс водородной бомбы состоялся лишь 21 мая 1956 года. Но оказалось, что первая бомба Андрея Сахарова – тоже тупиковый путь, больше она не испытывалась. Еще раньше – 1 марта 1954-го у атолла Бикини США подорвали заряд неслыханной мощности – 15 мегатонн. В его основу была положена идея Теллера и Улама о сжатии термоядерного узла не механической энергией и нейтронным потоком, а излучением первого взрыва, так называемого инициатора. После испытания, обернувшегося жертвами среди мирного населения, Игорь Тамм потребовал от коллег отказаться от всех прежних идей, даже от национальной гордости «слойки» и найти принципиально новый путь: «Все, что мы делали до сих пор, никому не нужно. Мы безработные. Я уверен, что через несколько месяцев мы достигнем цели».

И уже весной 1954 года советские физики пришли к идее взрывного инициатора. Авторство идеи принадлежит Зельдовичу и Сахарову. 22 ноября 1955 года Ту-16 сбросил над Семипалатинским полигоном бомбу проектной мощности 3,6 мегатонны. Во время этих испытаний были погибшие, радиус разрушений достиг 350 км, пострадал Семипалатинск.

Впереди была гонка ядерных вооружений. Но в 1955 году стало ясно, что СССР достиг ядерного паритета с США.

 

Ранее опубликовано:

Лесков С. Бомба Андрея Сахарова. Известия науки.

См. также:

Андрей Сахаров (биография нобелевского лауреата). НиТ, 1998.

Дата публикации:

9 августа 2003 года

n-t.ru

Водородная бомба

                 Водородная бомба

     Как известно,  еще в середине 20-х годов английский астрофизик Эддингтон выс-
казал предположение, что источником энергии  звезд могут быть ядерные реакции син-
теза  (слияние  легких атомных  ядер в более тяжелые.  Сверхвысокие  температура и
давление  в недрах  звезд  создают  необходимые  для этого  условия.  В нормальных
(земных) условиях кинетическая энергия ядер  легких атомов  слишком мала для того,
чтобы они, преодолев электростатическое отталкивание,  могли сблизиться и вступить
в ядерную реакцию. Однако это отталкивание можно преодолеть, сталкивая разогнанные
до больших скоростей ядра легких элементов. Д.Кокрофт и Э.Уолтон использовали этот
метод в своих экспериментах, проводившихся в 1932г. в Кембридже  (Великобритания).
Ускоренные в электрическом поле протоны, «обстреливали»  литиевую мишень  при этом
наблюдалось взаимодействие протонов с ядрами лития.  В 1938г. тремя физиками неза-
висимо друг от друга были открыты два цикла термоядерных реакций превращения водо-
рода в гелий, являющиеся  источником  энергии звезд:- протон-протонный (Г. Бете  и
Ч.Критчфилд) и углеродно-азотный (Г.Бете и К.Вейцзеккер).
     Таким образом теоретическая возможность получения энергии путем ядерного син-
теза была известна еще до войны.  Вопрос состоял в том чтобы создать работоспособ-
ное техническое устройство которое бы позволило создать на Земле условия необходи-
мые для начала  реакций синтеза.  Для этого  требовались миллионные  температуры и
сверхвысокие давления.  В 1944г. в Германии в лаборатории Дибнера велись работы по
инициированию термоядерного синтеза путем сжатия ядерного топлива подрывом кумуля-
тивных зарядов  обычного  взрывчатого  вещества (см. «Урановый  проект  Фашистской
Германии»).  Работы эти  не дали  однако желаемого  результата как  теперь понятно
из-за недостаточности  давления и температуры.  
                                   США
     Идея бомбы основанной на термоядерном синтезе,  инициируемом  атомным зарядом
была предложена Э.Ферми его коллеге Э.Теллеру (который и  считается «отцом» термо-
ядерной  бомбы)  еще в  1941г.  В 1942г.  между  Оппенгеймером  и Теллером  возник
конфликт поскольку  последний  был «обижен»  тем, что  место главы  теоретического
отдела было отдано не ему.  В результате Оппенгеймер отстранил  Теллера от проекта
атомной бомбы  и перевел на  изучение возможности  использования  реакции  синтеза
гелия из ядер тяжелого  водорода (дейтерия)  для создания  нового оружия.   Теллер
принялся за создание  устройства, получившего название «классический супер» (в со-
ветском варианте «труба»).  Идея состояла в разжигании термоядерной реакции в жид-
ком дейтерии при помощи тепла от взрыва атомного заряда. Но вскоре выяснилось, что
атомный  взрыв  недостаточно  горяч, и не  обеспечивает  необходимых  условий  для
«горения» дейтерия. Для начала реакций синтеза требовалось введение в смесь трития.
Реакция дейтерия с тритием должна была обеспечить повышение температуры до условий
дейтериево-дейтериевого  синтеза.  Но тритий, ввиду своей  радиоактивности (период
полураспада  всего 12 лет) в природе  практически  не встречается и его приходится
получать искусственным путем в реакторах деления. Это делало его на порядок дороже
оружейного плутония.  Кроме того каждые 12 лет  половина полученного трития просто
исчезала в результате  радиоактивного  распада.   Применение газообразных дейтерия
и трития в качестве ядерного топлива было невозможно  и приходилось применять сжи-
женный газ, что делало взрывные устройства малопригодными для практического приме-
нения.  Исследования  проблем «классического супера» продолжалось в США  до  конца
1950г.  когда  выяснилось  что даже  несмотря на большие количества трития достичь
стабильного  термоядерного  горения  в таком устройстве  невозможно.  Исследования
зашли в тупик.
     В апреле 1946г. в Лос-Аламосе проходило секретное совещание на котором обсуж-
дались итоги американских  работ по водородной  бомбе в нем участвовал Клаус Фукс.
Через какое-то время после совещания он передал материалы, связанные с этими рабо-
тами, представителям  советской разведки  и они попали  к нашим физикам.  В начале
1950г.  К.Фукс был арестован и этот источник информации «иссяк». 
     В конце августа 1946г. Э.Теллер выдвинул  идею, альтернативную «классическому 
суперу»,  которую он  назвал «Alarm Clock».  Этот вариант  был использован  в СССР
А.Сахаровым под названием «слойка», а в США никогда не реализовывался.  Идея заклю-
чалась в  окружении ядра  делящейся  атомной бомбы слоем термоядерного горючего из
смеси дейтерия с тритием.  Излучение от  атомного взрыва способно сжать 7-16 слоев
горючего, перемежающегося со слоями делящегося материала и нагреть его примерно до
такой же температуры, как  и само делящиеся ядро.  Это опять же требовало  исполь-
зования очень дорогого и неудобного трития. Термоядерное топливо окружала оболочка
из урана-238 которая на первом этапе выполняла роль теплоизолятора, не давая энер-
гии выйти  за пределы  капсулы  с топливом.  Без нее горючие, состоящие  из легких
элементов было бы абсолютно прозрачно для теплового излучения, и не  прогрелось бы
до высоких температур. Непрозрачный уран, поглощая эту энергию, возвращал часть ее
обратно в топливо.  Кроме того, они увеличивают сжатие  горючего путем сдерживания
его теплового расширения. На втором этапе, уран подвергался распаду за счет нейтро-
нов, появившихся при синтезе, выделяя дополнительную энергию.
     В сентябре 1947г. Теллер  предложил использовать новое термоядерное горючее - 
дейтерид  лития-6  являющееся при  нормальных  условиях  твердым веществом.  Литий
поглощая  нейтрон делился на гелий и тритий с выделением  дополнительной  энергии,
что еще больше повышало температуру, помогая начаться синтезу.    
     Идею «слойки»,  использовали  и британские физики  при создании  при создании
своей первой бомбы.   Но будучи тупиковой ветвью развития  термоядерных систем эта
схема отмерла. 
     Перевести разработку термоядерного оружия в  практическую плоскость позволила 
предложенная  в 1951г.  сотрудником Теллера  Станиславом Уламом  новая схема.  Для
инициирования термоядерного синтеза  предполагалось  сжимать термоядерное топливо,
используя излучение от первичной реакции расщепления, а не ударную волну(т.н. идея
«радиационной имплозии»), а также разместить  термоядерный  заряд отдельно от пер-
вичного ядерного компонента бомбы - триггера (двуступенчатая схема).  Учитывая что
при обычном атомном взрыве 80% энергии выделяется в виде рентгеновского излучения,
а около 20 в виде кинетической энергии осколков деления  и что, рентгеновские лучи
намного опережают  расширяющиеся (со скоростью около 1000 км/с.) остатки плутония,
такая  схема  позволяла сжать  емкость с  термоядерным горючим  второй  ступени до
начала его интенсивного нагрева. Эта модель американской водородной бомбы получила
название Улама-Теллера. 

             

     На практике все  происходит следующим образом.  Компоненты бомбы помещаются в 
цилиндрический корпус с триггером на одном конце.  Термоядерное топливо в виде ци-
линдра или  эллипсоида помещается  в корпус из  очень плотного  материала – урана,
свинца или вольфрама.  Внутри  цилиндра  аксиально помещен  стержень из Pu-239 или
U-235, 2-3 см. в диаметре.  Все оставшееся пространство корпуса заполняется пласт-
массой.  При подрыве  триггера испускаемые  рентгеновские  лучи нагревают урановый
корпус бомбы он  начинает расширяться  и охлаждаться путем уноса  массы (абляции).
Явление уноса, подобно  струе кумулятивного  заряда направленного  внутрь капсулы,
развивает огромное давление на термоядерное горючие. Два других источника давления
движение плазмы  (после срабатывания  первичного  заряда корпус  капсулы как и всё
устройство  представляет  собой ионизированную  плазму)  и давление  рентгеновских
фотонов  не оказывают  значительного влияния  на обжатие.  При обжатии  стержня из
делящегося материала  он переходит  в надкритическое состояние.  Быстрые нейтроны,
образующиеся  при делении  триггера и  замедленные  дейтеридом  лития до  тепловых
скоростей начинают  цепную  реакцию  в стержне.  Происходит еще один атомный взрыв
действующий наподобие «запальной свечи» и  вызывающий еще большее увеличивает дав-
ления и температуры в центре капсулы, делая их достаточными для  разжигания термо-
ядерной реакции. Урановый корпус мешает выходу теплового излучения за его пределы,
значительно  увеличивая  эффективность  горения.  Температуры, возникающие в  ходе
термоядерной реакции многократно превышают образующиеся при цепном делении (до 300
млн. вместо 50-100млн. град.). Все это происходит примерно за несколько сотен нано-
секунд.  Описанная выше  последовательность процессов  на этом заканчивается, если
корпус заряда  изготовлен из вольфрама (или свинца). Однако если изготовить его из
U-238  то образующиеся  при синтезе быстрые нейтроны, вызывают деление ядер U-238.
Деление одной тонны U-238  дает энергию, эквивалентную 18 Мт.  При этом обраэуется
много радиоактивных продуктов деления . Все это и составляет радиоактивные осадки,
сопровождающие взрыв  водородной бомбы.  Чисто термоядерные  заряды создают значи-
тельно меньшее заражение обусловленное только взрывом  триггера. Такие бомбы полу-
чили название «чистых»/
     Двухступенчатая схема Теллера-Улама  позволяет создавать столь мощные заряды,
на сколько хватит мощности триггера для сверхбыстрого  обжатия большого количества
горючего.  Для дальнейшего увеличения величины заряда  можно использовать  энергию
второй ступени для сжатия третьей.  На каждой стадии в таких  устройствах возможно
усиление мощности в 10-100 раз. Модель требовала большого количества трития, и для
его производства американцы построили новые реакторы. Работы шли в большой спешке,
ведь Советский Союз  к тому  времени уже создал атомную бомбу.  Штатам  оставалось
только надеяться, что СССР пошел  по украденному  Фуксом тупиковому  пути (который
был арестован в Англии в январе 1950г.). И эти надежды  оправдались.
     Первые термоядерные устройства были взорваны в ходе операции Greenhouse (Оран-
жерея) на атолле Эниветок (Маршалловы острова). Операция включала четыре испытания.
В ходе первых двух «Dog»  и «Easy» в апреле1951г. были испытаны  две новые атомные
бомбы: Mk.6 - 81Кт.  и Mk.5 - 47Кт.  8 мая 1951г. было  проведено первое испытание
термоядерного устройства «George» мощностью 225Кт. Это был чисто исследовательский
эксперимент  по изучению  термоядерного горения дейтерия. Устройство  представляло
собой  ядерный  заряд в виде тора 2,6м. в  диаметре и 0,6м.  толщиной  с небольшим
(несколько граммов)  количеством жидкой  дейтериево-тритиевой  смеси, помещенным в
центре. Выход энергии от  синтеза в этом  устройстве очень  невелик по сравнению с
выходом энергии от деления ядер урана. 25 мая 1951г. было проведено испытание тер-
моядерного устройства «Item».  В нем в качестве  термоядерного топлива использова-
лась смесь  дейтерия  с тритием, охлажденная до  жидкого  состояния, и находящаяся
внутри ядра из  обогащенного урана.  Устройство создавалось для испытания принципа
увеличения мощности атомного заряда за счет дополнительных нейтронов возникающих в
реакции  синтеза.  Эти нейтроны, попадая  в зону  реакции  деления, увеличивали их
интенсивность (увеличивалась доля  ращепившихся ядер урана) а следовательно и силу
взрыва. 
     Для ускорения разработок в июле 1952г. правительство  США организовало второй
оружейный  ядерный  центр - Ливерморскую  национальную  лабораторию им. Лоуренса в
Калифорнии. 
     1 ноября 1952г. на атолле Эниветок  проведено испытание «Ivy Mike»  мощностью
10,4Мт.  Это было первое устройство, созданное  по принципу Теллера-Улама.  Весило
оно около 80т. и занимало помещение размером с двухэтажный дом. Термоядерное горю-
чее  (дейтерий – тритий) находилось в жидком состоянии  при температуре, близкой к
абсолютному нулю в дьюаровском сосуде по центру которого проходил плутониевый стр-
ежень.  Сам сосуд окружал корпус-толкатель  из природного урана, массой  более 5т.
Целиком сборка помещалась в огромную  стальную оболочку, 2м. в  диаметре и 6,1м. в
высоту, со стенками толщиной 25-30см.  Эксперимент стал промежуточным шагом амери-
канских физиков на пути к созданию транспортабельного водородного оружия.   77% (8
Мт.) выхода энергии обеспечило деление уранового корпуса заряда и только (2.4Мт.),
приходился на реакцию синтеза. 

             «Ivy Mike»

     Смесь жидких изотопов водорода не имела  практического применения для термоя-
дерных боеприпасов, и последующий прогресс в развитии  термоядерного оружия связан
с использованием твердого топлива - дейтерида лития-6 ( Li6). В этом плане впереди
оказались советские  ученые,  использовавшие дейтерид  Li6  уже в первой советской
термоядерная бомбе испытанной в августе 1953г.  Американский же завод по производ-
ству Li6 в Ок-Ридже был пущен в эксплуатацию только  к середине 1953г. (строитель-
ство началось в мае 1952г.). После операции «Ivy Mike» оба ядерных  центра (в Лос-
Аламосе и Калифорнии) приступили к спешной  разработке более компактных  зарядов с
использованием дейтерида лития, которые  возможно было бы применять в боевых усло-
виях.  
     В 1954г. в ходе операции «Castle» на атолле Бикини планировалось провести ис-
пытания экспериментальных  образцов  термоядерных зарядов  ставшие прототипами для
первых серийных бомб.  Однако для скорейшего оснащения вооруженных сил новым  ору-
жием три типа устройств, были сразу, без испытаний, изготовлены малой серией (по 5
изделий). Одним из них стла бомба EC-16 (ее испытание под именем «Jughead» планиро-
валось провести  в ходе  операции  «Castle»).  Это была  транспортабельная  версия
криогенной  системы «Mike» (масса бомбы 19т. мощность 8Мт.). Но после первых успеш-
ных испытаний  устройств с  дейтеридом лития EC-16  моментально устарела и даже не
испытывалась.  EC-17 и ЕС-14 были серийными  версиями устройств  «Runt I» и «Alarm
Clock».
     1 марта 1954г.(здесь и далее дата указана по местному времени) состоялось ис-
пытание «Castle Bravo» в ходе которого было взорвано устройство «Shrimp».  Это был
двухступенчатый заряд с дейтеридом лития обогащенным изотопом Li6 до 40%(остальное
составлял природный Li7). Такое горючие применялось в США впервые поэтому мощность
взрыва сильно превысила  ожидаемую  в 4-8Мт. и  составила 15Мт. (10Мт.  выделилось
при делении  оболочки  из U-238 и 5 Мт.  от реакции синтеза).  Причина  неожиданно
высокой мощности  состояла в Li7 который по ожиданиям  должен был быть  достаточно
инертным, но в  действительности при  поглощении  быстрых  нейтронов атом Li7 тоже
делился на тритий и гелий.  Этот «незапланированный»  тритий и обеспечил 2-х крат-
ное усиление мощности.  Кратер от взрыва получился 2км. в диаметре и глубиной 75м.
Масса устройства составляла 10.5т.  длина 4,5м. диаметр 1,35м.  Успешный результат
первого  испытаня  привел  к отказу  от криогенных  проектов  «Jughead»  (EC-16) и
«Ramrod» (криогенного близнеца устройства «Morgenstern»).   
     Из-за дефицита обогащенного Li6 в следующем  испытани  «Castle Romeo» исполь-
зовался заряд из  природного (7.5% Li6) лития.  Термоядерное устройство под именем
«Runt I» было взорвано 26 Марта 1954г. Одновременно это было контрольное испытание
термоядерной бомбы  получившей обозначение EC-17.  Мощность взрыва составила 11Мт.
из которых на реакции синтеза пришлось 4Мт. Как и в случае с «Bravo», выделившаяся
мощность намного  превысила  ожидаемые 1.5-7Мт.  Масса  устройства - 18т.  длина –
5,7м. диаметр – 1,55м.
      26 Апреля 1954г. в  ходе испытания  «Castle Union»  было взорвано устройство
«Alarm Clock» (EC-14) с содержанием Li6-95%.  Энерговыделение – 6,9 Мт. из которых
1,6Мт. (27.5%) образовались  за счет реакций синтеза.  Взрыв оставил на дне лагуны
кратер 100м. шириной  и 30м. глубиной.  Масса устройства – 12,5 т. длина – 3,86 м.
диаметр – 1,55м.  
      7 апреля 1954г. проведено испытание «Castle Koon» в ходе которого было взор-
вано изделие «Morgenstern» являвшееся первой термоядерной разработкой  Калифорний-
ского ядерного центра и последним оружейным проектом, над которым работал Э.Теллер.
Испытание было  неудачным.  Вместо планировавшейся 1Мт. мощность  взрыва составила
лишь 110кт.  из которых  только 10кт. за приходилось  на термоядерный синтез.  Это
произошло из-за того, что нейтронный поток от триггера достиг второй ступени, пред-
варительно разогрев ее и помешав эффективному обжатию.  Остальные изделия, испытан-
ные в «Castle», содержали бор-10, служащий хорошим поглотителем нейтронов и снижа-
ющим эффект предварительного разогрева термоядерного топлива.
      5 Мая 1954г. произведено испытание «Castle Yankee». Испытываемый заряд назы-
вался  «Runt II» и являлся  прототипом для бомбы EC-24  и близнецом «Runt I».  Это
изделие было полностью  аналогично испытанному  в «Romeo», но в нем вместо природ-
ного применялся обогащенный (до 40% Li6) литий. Это дало прибавку мощности в 2.5Мт.
Мощность взрыва составила 13.5 Мт. (при ожидаемых 7.5-15Мт.) из которых на реакции
синтеза пришлось 6,5Мт. Масса «Runt II» 17,8т. длина-5,6м.  диаметр -1,52м.  Вклю-
чение в график испытания этого заряда произошло из-за чрезвычайного успеха «Castle
Romeo» и исключения  испытаний устройств «Ramrod» и «Jughead».
      14 Мая 1954г. состоялось испытание «Castle Nectar» в ходе которого было взор-
вано изделие «Zombie»  представлявшее собой  прототип  облегченного  термоядерного
заряда TX-15.  По сравнению с весом  остальных зарядов, эта бомба  выглядит совсем
небольшой  масса - 2.9т. мощность - 1.7 Мт, длина – 2,8м. диаметр- 0,88 м. Первона-
чально она разрабатывалось  как чисто атомная бомба с мощностью  в диапазоне сотен
килотонн в которой применялось радиационное обжатие одного атомного заряда другим.
Идея была сохранена но в проект добавили  термоядерное горючее для увеличения мощ-
ности.  В итоге  получилась  радиационно обжимаемая  атомная бомба  с термоядерным
усилением (80% энергии  выделяется за счет деления урана).  Проект выиграл в весе,
но применение в нем дорогого и отсутствующего  на тот момент в должных количествах
материала - высокообогащенного лития сдерживало его производство до 1955г. 
     Таким образом  на вооружение США  уже в 1954г  поступили в ограниченном коли-
честве первые  термоядерные бомбы.  Это были  огромные и  тяжелые мастодонты ЕС-14
(«Alarm  Clock»)  масса 14т.  мощность 7Мт.  получивший обозначение  Мк.14,  ЕС-17
(«Runt I»)  масса 19 т. мощность 11 Мт. диаметр – 1,6 м.  длина – 7,5м  получивший
обозначение Мк.17.  Эти заряды изготовлены сериями по 5 шт. Кроме того, имелось 10
зарядов EC 24 («Runt II») получивших обозначение Мк.24.  Термоядерная  бомба Mk.17
стала крупнейшей бомбой из созданных в США. Взять ее в полет мог только B-36.  Для
ее эксплуатации требовались специальные машины, средства и приспособления.  Подве-
сить ее в самолет могли лишь на одной авиабазе, что было крайне неудобно и снижало
гибкость применения этого оружия. Поэтому все пять Mk.17 были  сняты  с вооружения
в 1957г.  
     После операции «Castle» было развернуто  серийное производство  новых термоя-
дерных зарядов, начавших поступать на вооружение в 1955г. Серийная версия «Zombie»
(«Castle Nectar»)- Mk.15 длина - 3,5м. масса - 3447кг. мощность - 1.69Мт.  В 1955-
1957гг. было изготовлено 1200шт. сняты с вооружения в 1965г. Mk.21 с ядром, содер-
жащим 95% лития-6: длина – 3,75м. масса – 8т. мощность 5Мт.  В 1955 – 56гг. произ-
ведено 275 шт. сняты с вооружения в 1957г. Наследник «Castle Yankee» - Mk.24 длина
– 7,42м. масса 19т. мощность 15Мт.  В 1954-55 гг. изготовлено 105шт. сняты с воору-
жения в 1956г.  В 1956г. состоялось  испытание «Redwing Cherokee» (дальнейшее раз-
витие бомбы Mk.15).  Энерговыделение составило 3.8Мт.  масса 3,1т.  длина – 3,45м.
диаметр - 0,88м.  Важное отличие  этого заряда от  испытанных ранее то, что он был
сразу конструктивно оформлен в виде авиабомбы и впервые в США было произведено бом-
бометание термоядерного устройства с самолета.
     Самая мощная американская бомба  была разработана по  программе B-41.  Работы
начались в 1955г. в  Калифорнийскрм ядерном  центре на основе разрабатываемой  там
экспериментальной трехступенчатой термоядерной системы. Прототипы бомбы TX-41, ис-
пытывался в тестах "Sycamore", "Poplar" и "Pine" операции "Hardtack" на полигоне в
Тихом океане, между 31 маем и 27 июлем 1958г. среди них  были только  чистые вари-
анты. В результете была создана самая мощная американская термоядерная бомба Mk.41.
Она имела  ширину 1,3м. (1,85м. по хвостовому  оперению) длину 3,7м. и массу 4,8т.
За период 1960-62гг. было изготовлено 500 шт. (снята с вооружения в 1976г.).
     Этот трехступенчатый термоядерный заряд производился в двух вариантах. «Гряз-
ная» с оболочкой третьей ступени из U-238 - Y1 и «чистая» со  свинцовой  оболочкой
-Y2 мощностью менее 10 Мт.  и 25 Мт. соответственно.  В качестве топлива использо-
вался  дейтерид  лития с 95% Li-6.  Среди всех  американских  проектов, в этом был
достигнут  наибольший  удельный  энерговыход: 5.2 кт/кг.  (по словам  Тейлора  для
термоядерного оружия предел отношения мощности заряда к массе - около 6 кт/кг.).
     В 1979г. после тяжелого сердечного приступа Э.Теллер сделал неожиданное заяв-
ление   «…первую конструкцию  (водородной бомбы)  создал  Дик Гарвин». В интервью,
посвященном той же теме, Гарвин вспоминал  что в 1951г. в Лос-Аламосе Теллер  рас-
сказал ему  о научной идее, лежащей  в основе создания будущего оружия, и попросил 
сконструировать ядерное взрывное устройство.  Рэй Киддер, один из основоположников
атомного оружия прокомментировал это заявление так: «Всегда существовало противоре-
чие подобного типа: у кого возникла идея создания водородной бомбы и кто ее создал.
Теперь все  сказано.  Это  исключительно  правдоподобно и, смею  заметить, точно».
Однако  среди  ученых нет  единодушия в отношении  вклада 23-хлетнего  (в ту  пору
Гарвина в разработку термоядерной бомбы.
                               СССР
Как уже говорилось СССР через своего агента - английского физика  Клауса Фукса
(до его ареста в 1950г.) получал  практически  все материалы  по американским раз-
работкам как говорится из "первых рук". Но он был не единственным нашим источником
и после 1950г. информация продолжала поступать  (может быть не том количестве).  С
ней, в строжайшей тайне, знакомился только Курчатов. Никто (из физиков) кроме него
об этой информации не знал. Со стороны это выглядело как гениальное озарение  Но к
идее использования  термоядерного  синтеза  для создания  бомбы  советские  ученые
похоже  пришли  самостоятельно.  В 1946г. И. Гуревич,  Я. Зельдович,  И.Померанчук
и Ю. Харитон передали  Курчатову совместное  предложение в форме открытого отчёта.
Суть их предложения заключалась в использовании атомного взрыва в качестве детона-
тора для обеспечения  взрывной реакции  в дейтерии.  При этом  подчёркивалось, что 
„желательна наибольшая возможная плотность дейтерия“, а для облегчения возникнове-
ния ядерной детонации полезно  применение массивных  оболочек, замедляющих разлёт.
Гуревич позднее назвал факт незасектеченности  этого отчета «... наглядным доказа-
тельством  того,  что мы ничего не знали об американских  разработках.»  Но Сталин
и Берия во всю гнали создание атомной бомбы и на предложение малоизвстных ученых
не обратили внимания.  Далее  события развивались следующим образом.
     В июне 1948г. по постановлению Правительства в ФИАНе под руководством И.Тамма
была создана специальная группа, в которую был включен А.Сахаров  в задачу которой
входило исследование возможности создания водородной бомбы. При этом ей поручалась
проверка и уточнение тех расчётов, которые проводились в московской группе Я. Зель-
довича в Институте химической физики. Надо сказать, что в тот период группа Я.Зель-
довича разрабатывала проект «труба». 
      Уже в конце 1949г. Сахаров предложил новую модель водородной бомбы. Это была
гетерогенная конструкция из чередующихся  слоев расщепляющегося материала  и слоев
топлива синтеза (дейтерия в смеси с тритием). Схема получила наименование «слойка»
или схема Сахарова-Гинзбурга (непонятно каким образом  «слойку»  внедрялись жидкие
дейтерий и тритий).  Эта модель имела некоторые  недостатки - водородный компонент
бомбы был незначителен, что ограничивало мощность взрыва.  Эта мощность могла быть
максимум в двадцать-сорок раз выше мощности обычной плутониевой бомбы.  Кроме того
только тритий был очень дорог и для его производства требовалось много времени. По
предложению В. Гинзбурга в  качестве источника  дейтерия и  трития был использован
литий, имевший к тому же дополнительные преимущества -твёрдое агрегатное состояние
и дешевизну.
      В феврале 1950г.  было принято постановление Совета Министров СССР ставившее
задачу  организовать  расчетно-теоретические, экспериментальные  и конструкторские
работы по созданию изделий РДС-6с («слойка») и РДС-6т («труба»). Таким  образом  у
нас параллельно развивались два направления - «труба» и «слойка». В первую очередь
должно было быть создано изделие РДС-6с весом до 5т. для усиления мощности в дейте-
рид лития вводилось небольшое количество трития.  Был установлен срок изготовления
первого экземпляра  изделия  РДС-6с - 1954г.  К 1 мая 1952г. следовало  изготовить

модель изделия РДС-6с и провести в июне ее полигонное
испытание, а  к октябрю  предоставить предложения  по
конструкции  полномасштабного изделия.  Научным руко-
водителем  работ  по  созданию водородной  бомбы  был
назначен  Ю. Харитон, его  заместителями - И. Тамм  и
Я.Зельдович. В течении 1950г. создавались предприятия
по производству трития и лития-6. В конце 1951г. срок
мспытаний РДС-6с отложен на март 1953г. 15 июня 1953г.
выходит конструкторское  обоснование  изделия  РДС-6с
его мощность оценивалась в 200-400Кт.


        РДС-6с
РДС-6с была испытана 12 августа 1953г. на Семипалатинском полигоне,получив на Западе наименование «Джо-4». Это была именно перемещаемая бомба, а не стационарное устройство, как у американцев. Заряд имел несколько больший вес и те же габариты, что и первая советская атомная бомба, испытанная в 1949г. Испытание решено было провести в стационарных условиях на стальной башне высотой 40м. (заряд устанавли- вался на высоте 30м.). Мощность взрыва была эквивалентна 400Кт. при кпд всего 15 — 20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750Кт. Выделяемая мощность распределялась следующим образом 40 кт. - триггер, 60-80 кт. синтез, остальное - деление оболочек из U-238. Л.Феоктистов вспоминает: «В 1953г. мы ... были уверены, что ... «слойкой» мы не только догоняем, но даже перегоняем Америку. ... Конечно, мы уже тогда слышали об испытании «Майк», но...в то время мы думали, что богатые американцы взорвали «дом» с жидким дейтерием... по схеме, близкой к «трубе» Зельдовича» . Бомба имела два существенных недостатка, обусловленные наличием трития - высокая стоимость и ограниченный (до полугода) срок годности. В дальнейщем от трития отказались, что привело к некоторому снижению мощности. Испытание нового заряда было проведено 6 ноября 1955г. Причем впервые водорордная бомба была сброшена с самолета. В начале 1954г. состоялось специальное совещание в Министерстве среднего маши- ностроения с участием министра В. Малышева по «трубе». Было принято решение о полной бесперспективности этого направления (в США к такому же выводу пришли еще в 1950г.). Дальнейшие исследования сконцентрировались на том, что у нас получило название «атомного обжатия» (АО) идея которого заключалась использовать для обжа- тия основного заряда не продуктов взрыва, а излучения (схема Улама-Теллера). В связи с этим 14 января 1954г. Зельдович собственноручно написал записку Харитону, сопроводив её поясняющей схемой: «В настоящей записке сообщаются предварительная схема устройства для АО сверхъизделия и оценочные расчёты её действия. Применение АО было предложено В. Давиденко». В своих «Воспоминаниях» Сахаров отмечал что к этой идее «…одновременно пришли несколько сотрудников наших теоретических отделов. Одним из них был я... Но также, несомненно, очень велика была роль Зельдовича, Трутнева и некоторых...». К началу лета 1955г. расчётно-теоретические работы были завершены, был выпущен отчёт. Но изготовление экспериментального заряда завершилось лишь к осени. Он был успешно испытан 22 ноября 1955г. Это была первая советская двухступенчатая водородная бомба небольшой мощности, получившая обозначение РДС-37. При ее испы- тании пришлось заменить часть термоядерного горючего на инертное вещество, чтобы снизить мощность ради безопасности самолёта и жилого городка, находившегося при- мерно в 70км. от места взрыва. Мощность взрыва составила 1,6Мт. Решение о создании водородной бомбы мощностью 100Мт. Хрущев принял в 1961г. дабы показать империалистам «кузькину мать». До этого максимальным зарядом, испытанным в СССР заряд мощностью 2.9 Мт. К разработке устройства получившего обозначение А602ЭН группа Сахарова приступила сразу после совещания с Хрущевым 10 июля 1961г. на котором было объявлено о начале проведения осенью 1961г. серии испытаний устройств в 4, 10 и 12.5 Мт. Разработка шла ускоренными темпами. Из готовившегося испытания не делали тайны. Публичное заявление по поводу планирующе- гося супервзрыва было сделано Хрущевым 1 сентября 1961г. (в тот же день произве- дено первое испытание серии). Ядерный заряд разрабатывался в ВНИИЭФ (Арзамас-16), собиралась бомба в РФЯЦ-ВНИИТФ (Челябинск-70). Бомба имела трехступенчатую схему. Около 50% мощности обеспечивалось термоядерной частью, а 50% - делением корпусов третьей и второй ступеней из урана-238. Для испытаний было решено ограничить мак- симальную мощность бомбы до 50 Мт. Для этого урановую оболочку третьей ступени заменили на свинцовую что снизило вклад урановой части с 51.5 до 1.5 Мт. Для обеспечения безопасного (для экипажа) применения «супербомбы» с самолета-носителя в НИИ парашютно-десантных систем была создана тормозная парашютная система с пло- щадью основного купола 1600 кв.м. Бомба имела длину около 8 м. диаметр около 2 м. массу 27т. Груз таких габаритов не помещался ни в один из существующих бомбарди- ровщиков и только Ту-95 на пределе грузоподъемности мог поднять его в воздух. Но и в егов бомбоотсек бомба не помещалась. На заводе-изготовителе стратегический бомбардировщик Ту-95 подвергли доработке, вырезав часть фюзеляжа и все-таки в полете бомба больше чем наполовину торчала наружу. Такая подвеска и немалый вес груза привели к тому, что самолет сильно сбавил в дальности и скорости - становясь практически негодным к боевому применению. Весь корпус самолета, даже лопасти его винтов, были покрыты специальной белой краской, защищающей от световой вспышки при взрыве. Все было готово уже через 112 дней после встречи с Хрущевым. Утром 30 октября 1961г. Ту-95 поднялся в воздух и взял курс на Новую Землю. Экипажем самолета командовал майор А.Дурновцев (после испытания он получил звание Героя СССР и повы- шение до подполковника). Бомба отделилась на высоте 10500м. и снижалась на замед- ляющем парашюте до 4000м. За время падения самолет успел удалиться на относительно безопасное расстояние в 40-50км. Взрыв произошел в 11:32 по московскому времени. Вспышка оказалась настолько ярка, что ее можно было наблюдать с расстояния до 1000 км. на 300-километровом удалении был слышен мощный рев. Светящийся огненный шар достиг земли и имел размеры около 10км. в диаметре. Гиганский гриб поднялся на высоту в 65 км. После взрыва из-за ионизации атмосферы на 40 мин. было прервано радиосообщение с Новой Землей. Зона полного уничтожения представляла собой круг в 25км. в радиусе 40км. были разрушены деревянные и сильно повреждены каменные дома, на расстоянии 60 км. можно было получить ожоги третьей степени (с омертвлением верхних слоев кожи), а окна, двери, крыши срывало и на больших расстояниях. При полной мощности в 100 Мт. зона полного уничтожения имела бы радиус 35 км. зона серьезных повреждений - 50 км. ожоги третьей степени можно было бы п олучить на дистанции в 77 км. С полной уверенностью можно утверждать, что использование такого оружия в военных условиях было невозможно и испытание имело сугубо политическое и психоло- гическое значение. Дальнейшие работы по бомбе были прекращены серийное производ- ство не велось. Великобритания В Великобритании разработка термоядерного оружия была начата в 1954г. в Олдер- мастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Ман- хэттенском проекте в США. В целом информированность британской стороны по термо- ядерной проблеме находилась на весьма зачаточном уровне, так как США не делились информацией, ссылаясь на закон об Атомной энергии 1946г. В 1957г. Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300Кт. оказавшееся значительно слабее советских и аме- риканских аналогов. В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана самая мощная из когда-либо созданных атомная бомба мощностью 700Кт. Почти все свидетели испытаний (включая экипаж самолета, который ее сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил 117кг. плутония, а годовое производство плутония в Велико- британии составляло в то время 120 кг. В сентябре 1957г. была проведена вторая серия испытаний. Первым в испытании под названием «Grapple Х Round» 8 ноября было взорвано двухступенчатое устройство с небольшим термоядерным зарядом. Мощность взрыва составила приблизительно 1.8 Мт. 28 апреля 1958г. в ходе испытаний «Grapple Y» над островом Рождества была сброшена самая мощная британская термоядерная бомба мощностью 3 Мт. 2 сентября 1958 г. был взорван облегченный вариант этого устройства мощностью около 1,2 Мт. 11 сентября 1958 г. в ходе последнего испытания под наименованием "Halliard 1" было взорвано трехступенчатое устройство мощностью около 800Кт. Франция В ходе испытаний «Канопус» во Французской Полинезии в августе 1968 г. Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6Мт. Подроб- ности о развитиии французской программы малоизвестны. Это фотографии испытаний первой французской термоядерной бомбы. Китай КНР испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,31Мт. в июне 1967г. (известно также под наименованием «Испытание номер 6»). Испы- тание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной прог- раммы от реакции расщепления к синтезу. Это стало возможным благодаря США откуда в то время были высланы по подозрению в шпионаже работавшие там китайские физики. Наверх

rocketpolk44.narod.ru

Водородная бомба — это… Что такое Водородная бомба?

Термоя́дерное ору́жие — тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно ядро атома гелия), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного большую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, особенно, по отношению к мощности взрыва. Это дало основания называть термоядерное оружие «чистым». Термин этот, появившийся в англоязычной литературе, к концу 70-х годов вышел из употребления.

Общее описание

Термоядерное взрывное устройство может быть построено, как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Для того, чтобы создать необходимые для начала термоядерной реакции нейтроны и температуру (порядка 50 млн градусов), в водородной бомбе сначала взрывается небольшая по мощности атомная бомба. Взрыв сопровождается резким ростом температуры, электромагнитным излучением, а также возникновением мощного потока нейтронов. В результате реакции нейтронов с изотопом лития образуется тритий.

Наличие дейтерия и трития при высокой температуре взрыва атомной бомбы инициирует термоядерную реакцию (234), которая и дает основное выделение энергии при взрыве водородной (термоядерной) бомбы. Если корпус бомбы изготовлен из природного урана, то быстрые нейтроны (уносящие 70 % энергии, выделяющейся при реакции (242)) вызывают в нем новую цепную неуправляемую реакцию деления. Возникает третья фаза взрыва водородной бомбы. Подобным образом создается термоядерный взрыв практически неограниченной мощности.

Дополнительным поражающим фактором является нейтронное излучение, возникающее в момент взрыва водородной бомбы.

Устройство термоядерного боеприпаса

Термоядерные боеприпасы существуют как в виде авиационных бомб (водородная или термоядерная бомба), так и боеголовок для баллистических и крылатых ракет.

История

1 ноября 1952 США взорвали первый термоядерный заряд на атолле Эневетак. Первая советская водородная бомба была взорвана 12 августа 1953 года. Однако следует заметить, что американская «бомба» представляла собой лабораторный образец, фактически «дом, наполненный жидким дейтерием», выполненный в виде специальной конструкции, а советская бомба была законченным устройством, пригодным к практическому применению. Впрочем, мощность взорванного американцами устройства составляла 10 мегатонн, в то время как мощность бомбы конструкции академика Сахарова — 400 килотонн. Самая крупная когда-либо взорванная водородная бомба — советская 50-мегатонная «царь-бомба», взорванная 30 октября 1961 года на полигоне архипелага Новая Земля. Никита Хрущёв в последствии публично пошутил, что первоначально предполагалось взорвать 100-мегатонную бомбу, но заряд уменьшили, «чтобы не побить все стёкла в Москве». Конструктивно бомба действительно была рассчитана на 100 мегатонн и этой мощности можно было добиться заменой свинцового тампера на урановый. Бомба была взорвана на высоте 4000 метров над полигоном «Новая Земля». Ударная волна после взрыва три раза обогнула земной шар. Несмотря на успешное испытание, бомба на вооружение не поступила, тем не менее, создание и испытание сверхбомбы имели большое политическое значение, продемонстрировав, что СССР решил задачу достижения практически любого уровня мегатоннажа ядерного арсенала. Любопытно отметить, что после этого прекратился рост мегатоннажа ядерного арсенала США.

СССР

Первый советский проект термоядерного устройства напоминал слоеный пирог, в связи с чем получил условное наименование «Слойка». Проект был разработан в 1949 году (еще до испытания первой советской ядерной бомбы) Андреем Сахаровым и Виталием Гинзбургом и имел конфигурацию заряда, отличную от ныне известной раздельной схемы Теллера-Улама. В заряде слои расщепляющегося материала чередовались со слоями топлива синтеза — дейтерида лития в смеси с тритием («первая идея Сахарова»). Заряд синтеза, располагающийся вокруг заряда деления малоэффективно увеличивал общую мощность устройства (современные устройства типа «Теллер-Улам» могут дать коэффициент умножения до 30 раз). Кроме того, области зарядов деления и синтеза перемежались с обычным взрывчатым веществом — инициатором первичной реакции деления, что дополнительно увеличивало необходимую массу обычной взрывчатки. Первое устройство типа «Слойка» было испытано в 1953 году, получив наименование на Западе «Джо-4» (первые советские ядерные испытания получали кодовые наименования от американского прозвища Иосифа (Джозефа) Сталина «Дядя Джо»). Мощность взрыва была эквивалентна 400 килотоннам при кпд всего 15 — 20 %. Расчёты показали, что разлёт непрореагировавшего материала препятствует увеличению мощности свыше 750 килотонн.

После проведения Соединенными Штатами испытаний «Иви Майк» в ноябре 1952, которые доказали возможность создания мегатонных бомб, Советский Союз стал разрабатывать другой проект. Как упоминал в своих мемуарах Андрей Сахаров, «вторая идея» была выдвинута Гинзбургом еще в ноябре 1948 года и предлагала использовать в бомбе дейтерид лития, который при облучении нейтронами образует тритий и высвобождает дейтерий.

В конце 1953 года физик Виктор Давиденко предложил располагать первичный (деление) и вторичный (синтез) заряды в отдельных объемах, повторив таким образом схему Теллера-Улама. Следующий большой шаг был предложен и развит Сахаровом и Яковом Зельдовичем весной 1954. Он подразумевал использовать рентгеновское излучение от реакции деления для сжатия дейтерида лития перед синтезом («лучевая имплозия»). «Третья идея» Сахарова была проверена в ходе испытаний «РДС-37» мощностью 1.6 мегатонн в ноябре 1955 года. Дальнейшее развитие этой идеи подтвердило практическое отсутствие принципиальных ограничений на мощность термоядерных зарядов.

Советский Союз продемонстрировал это испытаниями в октябре 1961 года, когда на Новой Земле была взорвана бомба мощностью 50 мегатонн, доставленная бомбардировщиком Ту-95. КПД устройства составил почти 97 %, и изначально оно было рассчитано на мощность в 100 мегатонн, урезанных впоследствии волевым решением руководства проекта вдвое. Это было самое мощное термоядерное устройство, когда-либо разработанное и испытанное на Земле. Настолько мощное, что его практическое применение в качестве оружия теряло всякий смысл, даже с учетом того, что оно было испытано уже в виде готовой бомбы.

США

Идея бомбы с термоядерным синтезом, инициируемым атомным зарядом была предложена Энрико Ферми его коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Значительную часть своей работы в ходе Манхэттенского проекта Теллер посвятил работе над проектом бомбы синтеза, в некоторой степени пренебрегая собственно атомной бомбой. Его ориентация на трудности и позиция «адвоката дьявола» в обсуждениях проблем заставили Оппенгеймера увести Теллера и других «проблемных» физиков на запасной путь.

Первые важные и концептуальные шаги к осуществлению проекта синтеза сделал сотрудник Теллера Станислав Улам. Для инициирования термоядерного синтеза Улам предложил сжимать термоядерное топливо до начала его нагрева, используя для этого факторы первичной реакции расщепления, а также разместить термоядерный заряд отдельно от первичного ядерного компонента бомбы. Эти предложения позволили перевести разработку термоядерного оружия в практическую плоскость. Исходя из этого, Теллер предположил, что рентгеновское и гамма излучение, порожденные первичным взрывом могут передать достаточно энергии во вторичный компонент, расположенный в общей оболочке с первичным, чтобы осуществить достаточную имплозию(обжатие) и инициировать термоядерную реакцию. Позднее Теллер, его сторонники и противники обсуждали вклад Улама в теорию, лежащую в основе этого механизма.

В 1951 году была проведена серия испытаний под общим наименованием «Operation Greenhouse» (Операция Оранжерея), в ходе которой отрабатывались вопросы миниатюризации ядерных зарядов при увеличении их мощности. Одним из испытаний в этой серии стал взрыв под кодовым наименованием «Джордж», в котором было взорвано экспериментальное устройство, предсталявшее собой ядерный заряд в виде тора с небольшим количеством жидкого водорода, помещенным в центре. Основная часть мощности взрыва была получена именно за счет реакции синтеза водорода, что подтвердило на практике общую концепцию двухступенчатых устройств.

1 ноября 1952 года на атолле Эниветок (Маршалловы острова) под наименованием «Иви Майк» было проведено полномасштабное испытание двухступенчатого устройства с конфигурацией Теллера-Улама. Мощность взрыва составила 10,4 мегатонны, что в 450 раз превысило мощность бомбы, сброшенной в 1945 году на японский город Нагасаки. Устройство общей массой 62 тонны включало в себя криогенную емкость со смесью жидких дейтерия и трития и обычный ядерный заряд, расположенный сверху. По центру криогенной емкости проходил плутониевый стрежень, являвшийся «свечой зажигания» для термоядерной реакции. Оба компонента заряда были помещены в общую оболочку из урана массой 4,5 тонны, заполненную полиэтиленовой пеной, игравшей роль проводника для рентгеновского и гамма излучения от первичного заряда к вторичному.

Смесь жидких изотопов водорода не имела практического применения для термоядерных боеприпасов, и последующий прогресс в развитии термоядерного оружия связан с использованием твердого топлива — дейтерида лития-6. В 1954 эта концепция была проверена на атолле Бикини в ходе испытаний «Bravo» из серии «Operation Castle» при взрыве устройства под кодовым названием «Креветка». Термоядерным топливом в устройстве служила смесь 40 % дейтерида лития-6 и 60 % дейтерида лития-7. Расчеты предусматривали, что литий-7 не будет участвовать в реакции, однако некоторые разработчики подозревали и такую возможность, предсказывая увеличение мощности взрыва до 20 %. Реальность оказалась гораздо более драматичной: при расчётной мощности в 6 мегатонн реальная составила 15, и это испытание стало самым мощным взрывом из когда-либо произведённых Соединёнными Штатами.

Вскоре развитие термоядерного оружия в Соединённых Штатах было направлено в сторону миниатюризации конструкции Теллер-Улама, которой можно было бы оснастить межконтинентальные баллистические ракеты (МБР/ICBM) и баллистические ракеты подводных лодок (БРПЛ/SLBM). К 1960 году на вооружение были приняты боеголовки мегатонного класса W47 развернутые на подводных лодках, оснащенных баллистическими ракетами Поларис. Боеголовки имели массу 700 фунтов (320 кг) и диаметр 18 дюймов (50 см). Более поздние испытания показали низкую надежность боеголовок, установленных на ракеты Поларис и необходимость их доработок. К середине 70-х годов миниатюризация новых версий боеголовок по схеме Теллера-Улама позволила размещать 10 и более боеголовок в габаритах боевой части ракет с разделяющимися головными частями (РГЧ/MIRV).

Великобритания

В Великобритании разработки термоядерного оружия были начаты в 1954 в Олдермастоне группой под руководством сэра Уильяма Пеннея, ранее участвовавшего в Манхэттенском проекте в США. В целом информированность британской стороны по термоядерной проблеме находилась на весьма зачаточном уровне, так как Соединенные Штаты не делились информацией, ссылаясь на закон об Атомной энергии 1946 года. Тем не менее британцам разрешали вести наблюдения, и они использовали самолет для отбора проб в ходе проведения американцами ядерных испытаний, что давало информацию о продуктах ядерных реакций, получавшихся во вторичной стадии лучевой имплозии. Из-за этих трудностей в 1955 британский премьер-министр Энтони Иден согласился с секретным планом, предусматривавшим разработку очень мощной атомной бомбы в случае неудачи Олдермастонского проекта или больших задержек в его реализации.

В 1957 году Великобритания провела серию испытаний на островах Рождества в Тихом океане под общим наименованием «Operation Grapple» (Операция Схватка). Первым под наименованием «Short Granite» (Хрупкий Гранит) было испытано опытное термоядерное устройство мощностью около 300 килотонн, оказавшееся значительно слабее советских и американских аналогов. Тем не менее, британское правительство объявило об успешном испытании термоядерного устройства.

В ходе испытания «Orange Herald» (Оранжевый вестник) была взорвана усовершенствованная атомная бомба мощностью 700 килотонн — самая мощная из когда-либо созданных на Земле атомных бомб. Почти все свидетели испытаний (включая экипаж самолета, который ее сбросил) считали, что это была термоядерная бомба. Бомба оказалась слишком дорогой в производстве, так как в ее состав входил заряд плутония массой 117 килограмов, а годовое производство плутония в Великобритании составляло в то время 120 килограммов. Другой образец бомбы был взорван в ходе третьих испытаний — «Purple Granite» (Фиолетовый Гранит), и его мощность составила приблизительно 150 килотонн.

В сентябре 1957 была проведена вторая серия испытаний. Первым в испытании под названием «Grapple X Round C» 8 ноября было взорвано двухступенчатое устройство с более мощным зарядом деления и более простым зарядом синтеза. Мощность взрыва составила приблизительно 1.8 мегатонны. 28 апреля 1958 в ходе испытаний «Grapple Y» над островом Рождества была сброшена бомба мощностью 3 мегатонны — самое мощное британское термоядерное устройство.

2 сентября 1958 года был взорван облегченный вариант устройства, испытанного под наименованием «Grapple Y», его мощность составила около 1,2 мегатонны. 11 сентября 1958 года в ходе последнего испытания под наименованием Halliard 1 было взорвано трехступенчатое устройство мощностью около 800 килотонн. На эти испытания были приглашены американские наблюдатели. После успешного взрыва устройств мегатонного класса (что подтвердило способности британской стороны самостоятельно создавать бомбы по схеме Теллера-Улама) Соединенные Штаты пошли на ядерное сотрудничество с Великобританией, заключив в 1958 соглашение о совместной разработке ядерного оружия. Вместо разработки собственного проекта британцы получили доступ к проекту малых американских боеголовок Mk 28 с возможностью изготовления их копий.

Китай

Китайская Народная Республика испытала своё первое термоядерное устройство типа «Теллер-Улам» мощностью 3,31 мегатонны в июне 1967 года (известно также под наименованием «Испытание номер 6»). Испытание было проведено спустя всего 32 месяца после взрыва первой китайской атомной бомбы, что является примером самого быстрого развития национальной ядерной программы от реакции расщепления к синтезу. Эта феноменальная скорость стала парадоксальным результатом маккартизма: китайские физики, работавшие в США, были высланы по подозрению в шпионаже и, вернувшись на родину, способствовали его усилению.

Франция

В ходе испытаний «Канопус» в августе 1968 года Франция взорвала термоядерное устройство типа «Теллер-Улам» мощностью около 2,6 мегатонны. Подробности о развитиии французской программы известны слабо.

Другие страны

Детали развития проекта Теллер-Улам в других странах менее известны.

Происшествия с термоядерными боеприпасами

Испания, 1966

17 января 1966 года американский бомбардировщик B-52 столкнулся с самолётом-заправщиком над Испанией, при этом погибло семь человек. Из четырёх термоядерных бомб, находившихся на борту самолёта, три были обнаружены сразу, одна — после двухмесячных поисков.

Гренландия, 1968

21 января 1968 года вылетевший с аэродрома в Платтсбурге (штат Нью-Йорк) самолёт B-52 в 21:40 по среднеевропейскому времени врезался в ледяной панцирь залива Северная Звезда (Гренландия) в пятнадцати километрах от авиабазы ВВС США Туле (en:Thule Air Base). На борту самолёта находилось 4 термоядерные авиабомбы.

Пожар способствовал детонации вспомогательных зарядов во всех четырёх атомных бомбах, находящихся на вооружении бомбардировщика, но не привел к взрыву непосредственно ядерных устройств, поскольку они не были приведены в боеготовность экипажем. Более чем 700 датских гражданских и американских военных лиц работали в опасных условиях без средств личной защиты, устраняя ядерное загрязнение. В 1987 г. почти 200 из датских рабочих неудачно попытались предъявить иск Соединённым Штатам. Однако некоторая информация была выпущена американскими властями согласно Закону о свободе информации. Но Kaare Ulbak, главный консультант датского Национального института радиационной гигиены, сказал, что Дания тщательно изучила здоровье рабочих в Туле и не нашла свидетельств увеличенния смертности или заболеваемости раком.

Пентагон опубликовал информацию о том, что все из четырех атомных боезарядов были найдены и уничтожены. Но в ноябре 2008 года в связи с истечением срока секретности информация, находящаяся под грифом «Секретно», была раскрыта. В документах было сказано, что разбившийся бомбардировщик нёс четыре боезаряда, но в течение нескольких недель учёным удалось по фрагментам обнаружить только 3 боезаряда. В апреле 1968 подводная лодка «Star III» была отослана на базу для поисков утерянной бомбы, серийный номер которой 78252, в море. Но найдена она не была до сих пор. Во избежание паники среди населения Соединённые Штаты опубликовали информацию о четырёх найденных уничтоженных бомбах.

Ссылки

Примечания

См. также

Wikimedia Foundation. 2010.

dikc.academic.ru

Водородная бомба Википедия

Схема Теллера-Улама

Термоя́дерное ору́жие (водородная бомба) — тип ядерного оружия, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия), при которой выделяется энергия.

Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую возможную мощность взрыва (теоретически, она ограничена только количеством имеющихся в наличии компонентов). Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (при этом используемый уран-238 делится под действием быстрых нейтронов и даёт радиоактивные осколки; сами нейтроны производят наведённую радиоактивность) позволяет намного (до пяти раз) повысить общую мощность взрыва, но и значительно (в 5—10 раз) увеличивает количество радиоактивных осадков[1].

Общее описание[ | код]

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6. Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях — газ) при обычных условиях, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, 6Li — единственный промышленный источник получения трития:

36Li+01n→13H+24He+E1.{\displaystyle {}_{3}^{6}\mathrm {Li} +{}_{0}^{1}n\to {}_{1}^{3}\mathrm {H} +{}_{2}^{4}\mathrm {He} +E_{1}.}
Дейтерий-тритиевая реакция

Эта же реакция происходит и в дейтериде лития-6 в термоядерном устройстве при облучении быстрыми нейтронами; выделяющаяся энергия E1 = 4,784 МэВ. Образовавшийся тритий (3H) далее вступает в реакцию с дейтерием, выделяя энергию E2 = 17,59 МэВ:

13H+12H→24He+01n+E2,{\displaystyle {}_{1}^{3}\mathrm {H} +{}_{1}^{2}\mathrm {H} \to {}_{2}^{4}\mathrm {He} +{}_{0}^{1}n+E_{2},}

причём образуется нейтрон с кинетической энергией не менее 14,1 МэВ, который может вновь инициировать первую реакцию на ещё одном ядре лития-6, либо вызвать деление тяжёлых ядер урана или плутония в оболочке или триггере с испусканием ещё нескольких быстрых нейтронов.

В ранних термоядерных боеприпасах США использова

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *