Атомный и ядерный взрыв в чем разница. Атомная бомба и водородная бомба: отличия. Сравнение преобразования энергии

На вопрос Чем отличаются ядерные реакции от химических? заданный автором Ёабзали Давлатов лучший ответ это Химические реакции происходят на молекулярном уровне, а ядерные- на атомарном.

Ответ от Боевое Яйцо [гуру]
При химических реакциях одни вещества превращаются в другие, но превращения одних атомов в другие не происходит. При ядерных реакциях происходит превращение атомов одних химических элементов в другие.

Ответ от Zvagelski michael-michka [гуру]
Ядерная реакция. — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, часто приводящий к выделению колоссального количества энергии. Спонтанные (происходящие без воздействия налетающих частиц) процессы в ядрах — например, радиоактивный распад — обычно не относят к ядерным реакциям. Для осуществления реакции между двумя или несколькими частицами необходимо, чтобы взаимодействующие частицы (ядра) сблизились на расстояние порядка 10 в минус 13 степени см, то есть характерного радиуса действия ядерных сил.

Ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Реакции первого типа, экзотермические, служат основой ядерной энергетики и являются источником энергии звёзд. Реакции, идущие с поглощением энергии (эндотермические) , могут происходить только при условии, что кинетическая энергия сталкивающихся частиц (в системе центра масс) выше определённой величины (порога реакции) .

Химическая реакция. — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции) — химические соединения. В отличии от ядерных реакций, при химических реакциях не изменяется общее число атомов в реагирующей системе, а также изотопный состав химических элементов.
Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ) , действии света (фотохимические реакции) , электрического тока (электродные процессы) , ионизирующих излучений (радиационно-химические реакции) , механического воздействия (механохимические реакции) , в низкотемпературной плазме (плазмохимические реакции) и т.

п. Превращение частиц (атомов, молекул) осуществляется при условии, что они обладают энергией, достаточной для преодоления потенциального барьера, разделяющего исходное и конечное состояния системы (Энергия активации) .
Химические реакции всегда сопровождаются физическими эффектами: поглощением и выделением энергии, например в виде теплопередачи, изменением агрегатного состояния реагентов, изменением окраски реакционной смеси и др. Именно по этим физическим эффектам часто судят о протекании химических реакций.

Для точного ответа на вопрос придётся серьёзно углубиться в такую отрасль человеческого знания, как ядерная физика — и разобраться с ядерно-/термоядерными реакциями.

Изотопы

Из курса общей химии мы помним, что материя вокруг состоит из атомов разных «сортов», причём их «сортность» определяет, как именно они будут вести себя в химреакциях. Физика добавляет, что происходит это по причине тонкого строения атомного ядра: внутри ядра находятся протоны и нейтроны, его формирующие — а вокруг по «орбитам» безостановочно «носятся» электроны. Протоны обеспечивают положительный заряд ядра, а электроны — отрицательный, его компенсирующий, из-за чего атом обычно электронейтрален.

С химической точки зрения «функция» нейтронов сводится к тому, чтобы «разбавить» единообразие ядер одного «сорта» ядрами с несколько различающейся массой, поскольку на химические свойства повлияет лишь заряд ядра (через число электронов, за счёт которых атом может образовывать химсвязи с другими атомами). С точки же зрения физики нейтроны (как и протоны) участвуют в сохранении атомных ядер за счёт специальных и очень мощных ядерных сил — в противном бы случае ядро атома мгновенно разлетелось бы из-за кулоновского отталкивания одноимённо заряженных протонов. Именно нейтроны позволяют существовать изотопам: ядрам с одинаковыми зарядами (то есть идентичными химсвойствами), но при этом отличным по массе.

Важно, что создавать ядра из протонов/нейтронов произвольным образом нельзя: есть их «магические» комбинации (на самом деле магии тут нет никакой, просто физики условились так называть особенно энергетически выгодные ансамбли из нейтронов/протонов), которые невероятно стабильны — но «отходя» от них всё дальше можно получить радиоактивные ядра, которые «разваливаются» сами собой (чем дальше они отстоят от «магических» комбинаций — тем их распад вероятнее со временем).

Нуклеосинтез

Чуть выше выяснилось, что согласно определённым правилам можно «конструировать» атомные ядра, создавая из протонов/нейтронов всё более тяжёлые. Тонкость же в том, что процесс этот энергетически выгоден (то есть протекает с выделением энергии) лишь до определённого предела, после чего на создание всё более тяжёлых ядер требуется потратить больше энергии чем выделяется при их синтезе, а сами они становится весьма неустойчивыми. В природе этот процесс (нуклеосинтез) идёт в звёздах, где чудовищные давления и температуры «утрамбовывают» ядра так плотно, что некоторая их часть сливается, образуя более тяжёлые и выделяя энергию, за счёт которой звезда светит.

Условная «граница эффективности» проходит по синтезу ядер железа: синтез более тяжёлых ядер энергозатратен и железо в итоге «убивает» звезду, а более тяжёлые ядра образуется либо в следовых количествах из-за захвата протонов/нейтронов, либо массово в момент гибели звезды в виде катастрофической вспышки сверхновой, когда потоки излучений достигают поистине чудовищных величин (одной световой энергии в момент вспышки типичная сверхновая выделяет столько, сколько наше Солнце за примерно миллиард лет своего существования!)

Ядерные/термоядерные реакции

Итак, теперь уже можно дать необходимые определения:

Термоядерная реакция (она же реакция синтеза или по-английски nuclear fusion ) — такой вид ядерной реакции, где более лёгкие ядра атомов за счёт энергии их кинетического движения (тепла) сливаются в более тяжёлые.

Ядерная реакция деления (она же реакция распада или по-английски nuclear fission ) — такой вид ядерной реакции, где ядра атомов спонтанно либо под действием частицы «снаружи» распадаются на осколки (обычно две-три более лёгкие частицы либо ядра).

В принципе, в обеих типах реакций высвобождается энергия: в первом случае из-за прямой энергетической выгодности процесса, а во втором — высвобождается та энергия, которая во время «смерти» звезды потратилась на возникновение атомов тяжелее железа.

Сущностное отличие ядерной и термоядерной бомб

Ядерной (атомной) бомбой принято называть такое устройство взрывного типа, где основная доля высвобождаемой энергии при взрыве выделяется за счёт ядерной реакции деления, а водородной (термоядерной) — такое, где основная доля энергии произведена посредством реакции термоядерного синтеза. Бомба атомная — синоним бомбы ядерной, бомба водородная — термоядерной.

Согласно сообщениям новостей, Северная Корея угрожает протестировать водородную бомбу над Тихим океаном. В ответ президент Трамп назначает новые санкции для частных лиц, компаний и банков, которые ведут бизнес с страной.

«Я думаю, что это может быть испытание водородной бомбы на беспрецедентном уровне, возможно, над Тихоокеанским регионом», — сказал на этой неделе в ходе встречи на Генеральной Ассамблее Организации Объединенных Наций в Нью-Йорке министр иностранных дел Северной Кореи Ри Йонг Хо. Ри добавил, что «это зависит от нашего лидера».

Атомная и водородная бомба: отличия

Водородные бомбы или термоядерные бомбы являются более мощными, чем атомные или «делящие» бомбы. Отличия между водородными бомбами и атомными бомбами начинается с атомного уровня.

Атомные бомбы, как и те, которые использовались для опустошения японских городов Нагасаки и Хиросимы во время Второй мировой войны, работают путем расщепления ядра атома. Когда нейтроны или нейтральные частицы ядра расщепляются, некоторые попадают в ядра соседних атомов, разделяя их тоже. Результатом является очень взрывная цепная реакция. По данным Союза ученых, бомбы упали на Хиросиму и Нагасаки с мощностью 15 килотонн и 20 килотонн т.э.

Напротив, первое испытание термоядерного оружия или водородной бомбы в Соединенных Штатах в ноябре 1952 года привело к взрыву порядка 10 000 килотонн тротила. Термоядерные бомбы начинаются с той же реакции деления, которая управляет атомными бомбами, — но большая часть урана или плутония в атомных бомбах фактически не используется. В термоядерной бомбе дополнительный шаг означает, что появляется больше взрывной мощности бомбы.

Во-первых, воспламеняющийся взрыв сжимает сферу плутония-239, материал, который затем будет делиться. Внутри этой ямы плутония-239 находится камера газообразного водорода. Высокие температуры и давления, создаваемые делением плутония-239, заставляют атомы водорода сливаться. Этот процесс синтеза высвобождает нейтроны, которые возвращаются в плутоний-239, расщепляя больше атомов и усиливая цепную реакцию деления.

Смотрите видео: Атомная и водородная бомбы,какая мощнее? И в чём их отличие?

Ядерные испытания

Правительства во всем мире используют глобальные системы мониторинга для обнаружения ядерных испытаний в рамках усилий по обеспечению соблюдения Договора о всеобъемлющем запрещении ядерных испытаний 1996 года.

Есть 183 участника этого договора, но он не действует, поскольку ключевые страны, включая Соединенные Штаты, не ратифицировали его.

С 1996 года Пакистан, Индия и Северная Корея провели ядерные испытания. Тем не менее в договоре была введена система сейсмического мониторинга, которая может отличать ядерный взрыв от землетрясения. Международная система мониторинга также включает в себя станции, которые обнаруживают инфразвук — звук, частота которого слишком низкая для ушей человека для обнаружения взрывов. Восемьдесят станций радионуклидного мониторинга по всему миру измеряют атмосферные осадки, которые могут доказать, что взрыв, обнаруженный другими системами мониторинга, был по сути ядерным.

Природа развивается в динамике, живое и инертное вещество непрерывно проходит процессы трансформации. Наиболее важными преобразованиями являются те, которые влияют на состав вещества. Формирование пород, химическая эрозия, рождение планеты или дыхание млекопитающих все это наблюдаемые процессы, влекущие за собой изменения других веществ.

Несмотря на различия, все они составляют нечто общее: изменения на молекулярном уровне.

  1. В ходе химических реакций элементы не теряют свою идентичность. В этих реакциях участвуют только электроны внешней оболочки атомов, в то время как ядра атомов остаются неизменными.
  2. Реакционная способность элемента к химической реакции зависит от степени окисления элемента. В обычных химических реакциях Ра и Ра 2+ ведут себя совершенно по-разному.
  3. Различные изотопы элемента имеют почти такую же химическую реакционную способность.
  4. Скорость химической реакции в значительной степени зависит от температуры и давления.
  5. Химическая реакция может быть отменена.
  6. Химические реакции сопровождаются относительно небольшими изменениями энергии.

Ядерные реакции

  1. В ходе ядерных реакций, ядра атомов претерпевают изменения и, следовательно, в результате образуются новые элементы.
  2. Реакционная способность элемента к ядерной реакции практически не зависит от степени окисления элемента. Например, Ra или Ra 2+ ионов в Ка С 2 ведут себя аналогичным образом при ядерных реакциях.
  3. В ядерных реакциях, изотопы ведут себя совершенно по-разному. Например, U-235 подвергается делению спокойно и легко, но U-238 этого не делает.
  4. Скорость ядерной реакции не зависит от температуры и давления.
  5. Ядерная реакция не может быть отменена.
  6. Ядерные реакции сопровождаются большими изменениями энергии.

Разница между химической и ядерной энергией

  • Потенциальная энергия, которая может быть преобразована в другие формы в первую очередь тепла и света когда образуются связи.
  • Чем сильнее связь, тем больше преобразованная химическая энергия.

  • Ядерная энергия не связана с образованием химических связей (которые обусловлены взаимодействием электронов)
  • Может быть преобразована в другие формы, когда происходит изменение в ядре атома.

Ядерное изменение происходит во всех трех основных процессах:

  1. Расщепление ядра
  2. Соединение двух ядер, чтобы сформировать новое ядро.
  3. Высвобождение высокой энергии электромагнитного излучения (гамма-излучение), создавая более стабильную версию того же ядра.

Сравнение преобразования энергии

Количество освобожденной химической энергии (или преобразованной) в химическом взрыве составляет:

  • 5кДж на каждый грамм тротила
  • Количество ядерной энергии в выпущенной атомной бомбе: 100млн кДж на каждый грамм урана или плутония

Одно из основных отличий между ядерной и химической реакцией связано с тем, как реакция происходит в атоме. В то время как ядерная реакция происходит в ядре атома, электроны в атоме отвечают за происходящую химическую реакцию.

Химические реакции включают:

  • Передачи
  • Потери
  • Усиление
  • Разделение электронов

Согласно теории атома материи объясняются в результате перегруппировки, чтобы дать новые молекулы. Вещества, участвующие в химической реакции и пропорции, в которых они образуются, выражаются в соответствующих химических уравнениях, лежащих в основе для выполнения различных видов химических расчетов. 3 кДж / моль в химических реакциях.

В то время как одни элементы преобразуются в другие в ядерной, число атомов остается неизменным в химических. В ядерной реакции, изотопы реагируют по-разному. Но в результате химической реакции, изотопы также вступают в реакцию.

Хотя ядерная реакция не зависит от химических соединений, химическая реакция, в значительной степени зависит от химических соединений.

Резюме

    Ядерная реакция происходит в ядре атома, электроны в атоме отвечают за химические соединения.
  1. Химические реакции охватывают – передачи, потери, усиление и разделение электронов, не вовлекая в процесс ядро. Ядерные реакции включают распад ядра и не имеют ничего общего с электронами.
  2. В ядерной реакции, протоны и нейтроны реагируют внутри ядра, в химических реакциях электроны взаимодействуют вне ядра.
  3. При сравнении энергий химическая реакция использует только низкое изменение энергии, тогда как ядерная реакция имеет изменение очень высокой энергии.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв.

Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и .

Немного о терминологии и принципах работы в картинках

Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.

Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.

Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента — дейтерий и тритий:

  • Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород;
  • Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.

Испытания термоядерной бомбы

, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.

Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва.

Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы

Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Радиоактивные осадки, которые неумолимо выпадут на цель сброса, увеличиваются на 1000%. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета.

Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых:

  1. Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.
  2. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было.
  3. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета.
  4. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах.
  5. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения.
  6. Те, кто выживут, не переживут последнего периода — необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа.

Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи — Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир.

Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана.

Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект.

Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба — это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества. Хотя между такими зарядами, как атомная и ядерная бомба различия есть, действие обеих разрушительно для всего живого.

Разница между водородной бомбой и атомной бомбой — Разница Между

Видео: Атомная и водородная бомбы,какая мощнее? И в чём их отличие?

Ключевая разница: Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез. Водородная бомба гораздо более опасна и опасна, чем атомная бомба.

Термин «атомная бомба» или «атомная бомба» обычно заставляет людей нервничать и даже бояться, и на то есть веские причины. Это разрушительное устройство, которое может убить миллионы людей за один раз и может выровнять целый город за считанные секунды, не считая лет радиоактивного излучения, которое он оставляет позади. Это не сила, которую каждый должен иметь над кем-то другим.

Одна из крупнейших разработанных атомных бомб имеет мощность разрушения до 500 килотонн в тротиловом эквиваленте. Для сравнения, первая в мире атомная бомба, использованная в военных целях в Хиросиме, Япония, в 1945 году имела взрывную мощность в 15 килотонн тротила. В то время как атомная бомба плохая, водородная бомба еще хуже. Он способен нанести гораздо больший урон, чем атомная бомба. Самая мощная водородная бомба, разработанная до настоящего времени, имеет мощность взрыва 15000 килотонн, что в тысячу раз хуже, чем у первой атомной бомбы. Технически говоря, нет предела взрывной мощности водородной бомбы, что делает ее еще более опасной.

Оба являются типами ядерного оружия, также широко известного как оружие массового уничтожения.Оба способны к великому разрушению; однако они отличаются тем, как они реагируют, чтобы вызвать это упомянутое разрушение. Атомная бомба является типом ядерного оружия на основе деления, что в основном означает, что она использует реакцию деления для создания тепла и энергии. Здесь энергия создается путем сборки обогащенного урана или плутония в сверхкритическую массу, а затем либо путем стрельбы одним куском материала с докритическими параметрами в другой, который называется методом пушки, либо путем сжатия с использованием взрывных линз докритической сферы материала с использованием химических взрывчатых веществ во много раз превышает его первоначальную плотность, которая известна как метод взрыва. Метод взрыва используется только для плутония и не работает с ураном. Для урана метод оружия более популярен.

Водородная бомба, с другой стороны, использует реакцию типа синтеза. Их также обычно называют термоядерным оружием. Солнце — это естественный термоядерный реактор, который излучает тепло и свет. Здесь энергия создается с помощью изотопа на основе водорода, наиболее часто дейтерия и трития. Процесс реакции синтеза фактически включает реакцию деления, которая необходима для запуска реакции синтеза. На самом деле, возможно, что значительное количество энергии, выделяющейся в реакции синтеза, происходит от реакции деления.

Энергия реакции деления используется для сжатия и нагревания термоядерного топлива, которое в основном состоит из изотопов водорода, прежде всего дейтерида трития, дейтерия или лития. Эти изотопы размещены в непосредственной близости в специальном, отражающем излучение контейнере. Гамма-излучение и рентгеновское излучение, которые выбрасываются из реакций деления, вынуждают изотопы водорода сжиматься, создавая таким образом огромное количество высокоскоростных нейтронов, которые затем могут вызвать деление в материалах, которые обычно не склонны к нему, таких как обедненный уран. Следовательно, можно сказать, что реакция синтеза происходит в две стадии. Первичная — это ядерная бомба, тогда как вторичная — это столица термоядерного синтеза.

Для сравнения, водородные бомбы намного мощнее атомных и могут привести к гораздо большему разрушению, чем просто атомная бомба. Кроме того, хотя атомные бомбы были вокруг некоторое время, по крайней мере, с 1940-х годов, водородные бомбы были разработаны гораздо позже. Благодаря тому, что есть успешные водородные бомбы, они никогда не использовались в войне, тогда как атомная бомба использовалась дважды, и оба раза во Второй мировой войне.

Сравнение между водородной бомбой и атомной бомбой:

 

Водородная бомба

Атомная бомба

Тип

Ядерное оружие, оружие массового уничтожения

Ядерное оружие, оружие массового уничтожения

реакция

Fusion Based

На основе деления

ядро

Изотопы водорода дейтерий и тритий

Уран и плутоний, в частности уран 235 и плутоний 239

 

 

 

Мощность

Более могущественный

Менее мощный

Взрывная мощность

До 15 000 килотонн, но технически не имеет ограничений.

Может варьироваться от одной тонны до 500 000 тонн (500 килотонн) тротила

Война использует

До войны не использовался на войне

Хиросима и Нагасаки во Второй мировой войне

Ссылка: Википедия, CGTN, NDTV, LiveScience, Science Alert, Энциклопедия

Термоядерная против атомной — DW — 03.09.2017

Первая термоядерная бомба, разработанная в США, была сброшена на остров Элугелаб в 1952 году. Она оставила массивный подводный кратер на том месте, где когда-то был остров. Изображение: picture-alliance/dpa/Министерство энергетики США

Наука

Льюис Сандерс IV

3 сентября 2017 г.

Северная Корея заявила о значительном прогрессе в испытаниях термоядерной бомбы. Но чем она отличается от атомной бомбы? DW рассматривает фундаментальные различия между двумя самыми разрушительными видами оружия в истории.

https://p.dw.com/p/2jH8L

Реклама

Северная Корея объявила в воскресенье, что она провела ядерное испытание с использованием усовершенствованной водородной бомбы, также известной как термоядерная бомба, что означает отход от своих экспериментов. с атомным оружием первого поколения. Но в чем разница между атомной бомбой и более совершенной водородной бомбой?

Подробнее: Северная Корея: от войны к ядерному оружию

Детонация

Принципиальное отличие водородной бомбы от атомной заключается в процессе детонации. Для атомной бомбы, такой как бомбы, сброшенные на Нагасаки и Хиросиму, ее взрывная мощность является результатом внезапного высвобождения энергии при расщеплении ядер тяжелого элемента, такого как плутоний. Этот процесс известен как деление.

Спустя годы после того, как в Нью-Мексико была разработана первая атомная бомба, США разработали оружие, основанное на технологии атомной бомбы, но расширившее процесс детонации для создания более сильного взрыва. Это оружие называется термоядерной бомбой.

Для термоядерной бомбы процесс детонации состоит из нескольких частей, начиная с детонации атомной бомбы. Первый взрыв создает температуру в миллионы градусов, обеспечивая достаточно энергии, чтобы сблизить два легких ядра настолько, чтобы они объединились на второй стадии, известной как синтез.

Форма

По мнению экспертов, последняя северокорейская бомба заметно отличалась от предыдущих, демонстрируя устройство с камерой, напоминающее двухступенчатую водородную бомбу.

«На фотографиях показана более полная форма возможной водородной бомбы с первичной ядерной бомбой и вторичной термоядерной ступенью, соединенными вместе в форме песочных часов», — сказал Ли Чун Гын, старший научный сотрудник государственного научно-исследовательского института. Институт технологической политики в Южной Корее.

Мощность

Мощность термоядерной бомбы может быть в сотни и тысячи раз выше, чем у атомной бомбы.

Подробнее: Кризис в Северной Корее: 10 вопросов, 10 ответов

Взрывная мощность атомной бомбы часто измеряется в килотоннах, или одной тысяче тонн тротила, тогда как термоядерные бомбы обычно измеряются в мегатоннах, или одном миллионе тонн тротила.

Реклама

Пропустить следующий раздел Главные новости DW

Страница 1 из 3

Пропустить следующий раздел Другие новости от DW

Перейти на домашнюю страницу

Водородная бомба и атомная бомба: в чем разница?

Когда вы покупаете по ссылкам на нашем сайте, мы можем получать партнерскую комиссию. Вот как это работает.

«Я думаю, что это может быть испытание водородной бомбы на беспрецедентном уровне, возможно, над Тихим океаном», — заявил журналистам на этой неделе министр иностранных дел Северной Кореи Ри Ён Хо во время собрания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. в новости CBS. Ри добавил, что «это зависит от нашего лидера».

Водородные бомбы, или термоядерные бомбы, более мощные, чем атомные или «делящиеся» бомбы. Разница между термоядерными бомбами и бомбами деления начинается на атомном уровне. [10 величайших взрывов]

Бомбы деления, подобные тем, которые использовались для разрушения японских городов Нагасаки и Хиросимы во время Второй мировой войны, действуют путем расщепления ядра атома. Когда нейтроны, или нейтральные частицы, ядра атома расщепляются, некоторые из них ударяются о ядра ближайших атомов, расщепляя и их. В результате получается очень взрывоопасная цепная реакция. По данным Союза обеспокоенных ученых, бомбы, сброшенные на Хиросиму и Нагасаки, взорвались мощностью 15 килотонн и 20 килотонн в тротиловом эквиваленте соответственно.

Напротив, первое испытание термоядерного оружия, или водородной бомбы, в Соединенных Штатах в ноябре 1952 г. привело к взрыву порядка 10 000 килотонн в тротиловом эквиваленте. Термоядерные бомбы начинаются с той же реакции деления, что и атомные бомбы, но большая часть урана или плутония в атомных бомбах фактически остается неиспользованной. В термоядерной бомбе дополнительный шаг означает, что становится доступной большая взрывная мощность бомбы.

Сначала воспламеняющий взрыв сжимает сферу из плутония-239, материал, который затем подвергнется делению. Внутри этой ямы с плутонием-239 находится камера газообразного водорода. Высокие температуры и давление, создаваемые делением плутония-239, вызывают слияние атомов водорода. Этот процесс синтеза высвобождает нейтроны, которые возвращаются обратно в плутоний-239, расщепляя большее количество атомов и ускоряя цепную реакцию деления.

Правительства всего мира используют глобальные системы мониторинга для обнаружения ядерных испытаний в рамках усилий по обеспечению соблюдения Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) 1996 года. Этот договор подписали 183 человека, но он не вступил в силу, поскольку его не ратифицировали ключевые страны, в том числе США. С 1996, Пакистан, Индия и Северная Корея провели ядерные испытания. Тем не менее договор ввел в действие систему сейсмического мониторинга, которая может отличить ядерный взрыв от землетрясения. В Международную систему мониторинга ДВЗЯИ также входят станции, которые улавливают инфразвук — звук, частота которого слишком низка для восприятия человеческим ухом — от взрывов. Восемьдесят станций мониторинга радионуклидов по всему миру измеряют атмосферные осадки, что может доказать, что взрыв, обнаруженный другими системами мониторинга, на самом деле был ядерным.

Оригинальная статья о Live Science.

Стефани Паппас — автор статей для журнала Live Science, освещающего самые разные темы — от геонаук до археологии, человеческого мозга и поведения. Ранее она была старшим автором журнала Live Science, но теперь работает внештатным сотрудником в Денвере, штат Колорадо, и регулярно публикует статьи в журналах Scientific American и The Monitor, ежемесячном журнале Американской психологической ассоциации.