Содержание

что показали испытания советской нейтронной бомбы — Российская газета

41 год назад Советский Союз объявил об испытаниях нейтронной бомбы, тем самым присоединившись к закрытому клубу обладателей этой разновидности ядерного оружия.

От обычной атомной бомбы нейтронная отличается дополнительным блоком, начиненным изотопом бериллия. Подрыв плутониевого заряда малой мощности запускает в дополнительном блоке термоядерную реакцию, ее результатом становится выброс потока быстрых нейтронов, губительных для всего живого. При этом сила ударной волны — и вызванных ею разрушений, — оказывается сравнительно невелика. А остаточная радиация быстро исчезает, поскольку нейтроны порождают короткоживущие изотопы.

Нейтронные мины

По расчетам, воздушный подрыв нейтронной бомбы мощностью в одну килотонну вызывает разрушения на расстоянии 300 метров от эпицентра, зато все живое будет уничтожено в радиусе 2,5 километра. Опасная для жизни радиация исчезает через 12 часов, поскольку нейтронный поток порождает изотопы с коротким периодом распада. Для сравнения, водородная бомба той же мощности создает долговременное радиоактивное загрязнение в радиусе семи километров. Все эти соблазнительные для военных факторы отлились в детском стишке: «…Город стоит, а в нем — никого».

Однако практические испытания показали, что для применения «по земле» нейтронное оружие мало подходит. Нейтронный поток эффективно рассеивается и поглощается земной атмосферой — в особенности водяным паром, — бетоном и некоторыми другими материалами, так что зона поражения новой бомбы сократилась до сотен метров. В 70-е годы Китай, СССР и США выпустили некоторое количество тактических нейтронных боеприпасов — в частности, самые большие в мире минометы «Тюльпан» имеют в арсенале нейтронные мины «Смола» и «Фата», — а на танках и другой бронетехнике появились дополнительные экраны для нейтрализации нейтронного потока.

Золотая ракета

Гораздо большие перспективы для нового оружия открылись в противоракетной обороне. Из-за недостаточной точности систем наведения времен холодной войны баллистические ракеты предполагалось уничтожать перехватчиками с атомным зарядом. Однако за пределами атмосферы ударная и тепловая волны ядерного взрыва не действуют. А ядерный взрыв в атмосфере оставляет нежелательное загрязнение.

Нейтронные потоки одинаково эффективно работают и в атмосфере, и за ее пределами. Проходя сквозь плутоний ядерной боеголовки, они вызывают в нем преждевременную цепную реакцию без достижения критической массы. В США это явление назвали «эффектом шипучки» — боеголовка мегатонного класса взрывалась, как хлопушка на детском празднике. Вдобавок работа нейтронного оружия сопровождается мягким рентгеновским излучением — оно моментально испаряет оболочку вражеского термоядерного заряда, распыляя его в атмосфере.

Принятая на вооружение в 1975 году американская противоракета LIM-49A Spartan несла пятимегатонную нейтронную боеголовку, для увеличения потока частиц ее внутренняя поверхность была покрыта слоем золота. Пришедшие на смену Spartan перехватчики также снабжены нейтронными боевыми частями. По данным из открытых источников, схожие технологии используются и в ракетах российской системы ПРО А-135 «Амур».

От простой войны до ядерной

В начале 90-х годов СССР и США официально отказались от разработки нейтронного оружия. Однако в марте 2018-го заместитель министра обороны США по перспективным разработкам Майк Гриффин рассказал о «большом будущем» систем вооружений, основанных на пучках направленной энергии  — в том числе нейтральных частиц. В ряде резолюций Генеральной Ассамблеи ООН указывается на опасность нейтронного оружия, поскольку оно стирает грань между обычной войной и ядерной, и содержатся призывы  к его запрещению.

Что такое водородная бомба: как устроена, испытание

Ядерный клуб

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • США;
  • Россия;
  • Великобритания;
  • Франция;
  • КНР;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Ядерный клуб

Ядерное оружие

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния — в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

Ядерное оружие

Устройство термоядерной бомбы по принципу Теллера-Улама

Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба (т. е. первичный заряд) используется для генерации излучения, сжимает и нагревает термоядерное топливо. Андрей Сахаров в Советском Союзе, по-видимому, независимо придумал аналогичную концепцию, которую он назвал «третьей идеей».

Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже.


Она имела цилиндрическую форму, с примерно сферической первичной атомной бомбой на одном конце. Вторичный термоядерный заряд в первых, еще непромышленных образцах, был из жидкого дейтерия, несколько позднее он стал твердым из химического соединения под названием дейтерид лития.

Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы (эта идея сначала была использована в СССР) просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой (или урановой) оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия.

Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже.

В ней первичный заряд сплюснут, как арбуз или мяч в американском футболе, а вторичный заряд – сферический. Такие формы гораздо более эффективно вписываются во внутренний объем конических ракетных боеголовок.

Немного истории

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Немного истории

Атомная бомба

Атомная бомба

или ядерная бомба относится к ядерному оружию. Механизм действия заключается в цепной ядерной реакции, которая становится неуправляемой и приводит к взрыву из-за переизбытка энергии, выделяемой при делении ядер.

По этой причине этот тип бомбы также называют бомбой деления. Слово «атомная» не совсем точное, так в механизме задействовано только ядро атома, участвует в делении его протоны и нейтроны, его субатомные частицы, а не атом в целом, его электроны не задействованы.

Материал, подвергающийся делению берут сверхкритической массы. Такое количество обеспечивает попадание выделяющихся нейтронов из делящихся ядер в соседние ядра, провоцируя их деление. Докритическую массу вещества провоцируют либо бомбардировкой другой докритической массы, либо непосредственно взрывчатым веществом, которое взрываясь сжимает исходный материал провоцируя начало цепной реакции.

Материал для атомной бомбы чаще всего состоит либо из обогащенного урана, либо плутония. Энергия, выделяющаяся от взрыва варьируется от тонны до 500 килотонн в тротиловом эквиваленте. Бомба также освобождает радиоактивные фрагменты, которые являются атомами тяжелых элементов. Именно они содержатся в радиоактивных осадках после взрыва.

Царь-бомба

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Царь-бомба

Ядерные боеприпасы

В дополнение к атомным бомбам и водородным бомбам, существуют и другие виды ядерного оружия, например, нейтронная бомба, кобальтовая бомба, «чистая» термоядерная бомба, электромагнитная бомба, гипотетически возможно создание бомбы с зарядом антивещества.

Нейтронная бомба

, как и водородная бомба, это термоядерное оружие. Вспышка от нейтронной бомбы относительно невелика, но высвобождается большое число нейтронов. Все живые организмы погибают от такой атаки, однако от взрыва нет физических разрушений.

Кобальтовая бомба

– это ядерная бомба, окруженная кобальтом, золотом, или другим материалом для того, чтобы детонация производила гораздо большее количество долгоживущих радиоактивных фрагментов. Этот тип оружия потенциально может служить в качестве оружия «судного дня». Потому что заражение от взрыва распространяется повсеместно. Она считается «грязным» оружием, потому что приводит к радиоактивному и нейтронному загрязнению.

«Чистая» термоядерная бомба

— это ядерное оружие, в котором происходит термоядерная реакция без помощи триггера атомной бомбы. Этот тип бомбы не приводит к радиоактивным осадкам.

Электромагнитная бомба

– этот вид оружия предназначен для производства ядерного электромагнитного импульса, который может привести к нарушению электронного оборудования. Ядерное устройство взорванное в атмосфере излучает электромагнитный импульс сферически. Целью такого оружия является повреждение электроники на больших расстояниях от взрыва.

Бомба с зарядом

– это очень мощное оружие, энергия этой бомбы рождается из разрушительной реакции взаимодействия материи и антиматерии. Такое устройство еще не было произведено из-за трудности синтезирования существенных количеств антиматерии.

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Водородная бомба

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Водородная бомба

Что такое атомная бомба?

Принцип действия атомной бомбы основан на использовании энергии, возникающей в результате нарастающей цепной реакции, вызванной делением (расщеплением) тяжелых ядер плутония или урана-235 с последующим образованием более легких ядер.

Сам процесс называют однофазным, и протекает он следующим образом:

  • После детонации заряда вещество, находящееся внутри бомбы (изотопы урана или плутония), переходит в стадию распада и начинает захват нейтронов.
  • Процесс распада нарастает, как снежная лавина. Расщепление одного атома приводит к распаду нескольких. Возникает цепная реакция, ведущая к разрушению всех атомов, находящихся в бомбе.
  • Начинается ядерная реакция. Весь заряд бомбы превращается в единое целое, и его масса переходит свою критическую отметку. Причем вся эта вакханалия длится очень недолго и сопровождается мгновенным выделением огромного количества энергии, что в конечном итоге и приводит к грандиозному взрыву.

Кстати, эта особенность атомного однофазного заряда – быстро набирать критическую массу – не позволяет бесконечно увеличивать мощность данного вида боеприпаса. Заряд может быть мощностью сотни килотонн, но чем ближе он к мегатонному уровню, тем меньше его эффективность. Он просто не успеет полностью расщепиться: произойдет взрыв и часть заряда так и останется неиспользованной – ее разметает взрывом. Эта проблема была решена в следующем виде атомного боеприпаса – в водородной бомбе, которая также называется термоядерной.

Последствия использования

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Последствия использования

Холодная Война

В послевоенные годы Соединенные Штаты были единственной страной с ядерным оружием. Сначала у СССР не хватало научных наработок и сырья для создания ядерных боеголовок.

Но, благодаря усилиям советских учёных, данным разведки и обнаруженным региональным источникам урана в Восточной Европе, 29 августа 1949 года СССР опробовал свою первую ядерную бомбу. Устройство водородной бомбы разработано академиком Сахаровым.

От атомного оружия к термоядерному

Соединенные Штаты ответили в 1950 запуском программы разработки более совершенного термоядерного оружия. Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза.

1952

в этом году, США провели взрыв термоядерной бомбы мощностью 10 мегатонн в тротиловом эквиваленте

1955 год — СССР ответил своим первым термоядерным испытанием — всего-то лишь 1,6 мегатонн. Но главные успехи советского ВПК были впереди. Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой.

Смотрите также статью Ядерное оружие России и его принцип действия

Ядерная зима

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Современные опасности

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Современные опасности

Проект «Манхэттен»

Проект «Манхэттен» — кодовое название американского проекта по разработке практической атомной бомбы во время Второй мировой войны. Проект «Манхэттен» был начат как ответ усилиям немецких ученых, работавших над оружием, использующим ядерную технологию, с 1930-х годов.

28 декабря 1942 года президент Франклин Рузвельт санкционировал создание Манхэттенского проекта для объединения различных ученых и военных должностных лиц, работающих над ядерными исследованиями.

Большая часть работы была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж. Роберта Оппенгеймера.

16 июля 1945 года в отдаленном пустынном месте недалеко от Аламогордо, штат Нью-Мексико, первая атомная бомба, эквивалентная по мощности 20 килотоннам тротила, была успешно испытана. Взрыв водородной бомбы создал огромное грибоподобное облако высотой около 150 метров и открыл атомный век.


Единственное фото первого в мире атомного взрыва, сделанное американским физиком Джеком Аэби

Водородная бомба в ФИАНе. Андрей Сахаров. Наука и свобода

Водородная бомба в ФИАНе

Атомная и водородная, или ядерная и термоядерная

Чем водородная бомба отличается от атомной? И термоядерная энергия от просто ядерной? Для советских карикатуристов это различие не представило больших трудностей: у толстого американского империалиста — при неизменной толстой сигаре во рту — на бомбе под мышкой вместо буквы «A» стали рисовать «H». Даже полностью написанные слова Atomic и Hydrogen сами ни о чем не говорят и не объясняют, почему слово «супербомба» вошло в употребление только для водородной бомбы. Атомная бомба, взорванная в Хиросиме, была в 20 000 раз мощнее самой большой обычной бомбы, взорванной во время Второй мировой войны. Неужели этого недостаточно для супер?!

Отличие просто ядерного от термоядерного сыграло слишком большую роль в судьбе Сахарова и в судьбе человечества, чтобы ограничиться карикатурным или этимологическим объяснением.

Полное объяснение можно дать только на языке физики, пользуясь буквами математики. Но если бы происходящее в атомном ядре совсем ничего общего не имело с миром житейского опыта, люди не проникли бы так далеко-глубоко за пределы этого опыта.

Несколько глав назад понадобилась первая порция ядерной физики — капелька ядерной физики, чтобы объяснить, чем, собственно, атомное ядро так интересовало Тамма. Сейчас понадобится еще несколько капель. А прежде всего пригодится само понятие капли.

Если вам приходилось когда-нибудь ронять ртутный термометр и при этом вы еще были достаточно юны и беззаботны, то, скорей всего, не сразу выкинули блестящие капли ртути, а понаблюдали за ними. Вы, должно быть, заметили, что самые маленькие капельки при соприкосновении охотно сливаются, а самые большие — наоборот — столь же охотно делятся на меньшие, если их побеспокоить даже слегка. Этого наблюдения достаточно, чтобы объяснить, «стоя на одной ноге», чем водородная бомба отличается от атомной.

Потому что атомные ядра похожи на капли.

В природе имеется 92 вида ядер, или химических элементов, расставленных по порядку Менделеевым. Самое маленькое ядро — водород, самое большое — уран.

Маленькие ядерные капли при соприкосновении тоже охотно сливаются, а большие охотно делятся, и это две разные ядерные реакции — слияния и деления. Слово «охотно» означает, что после слияния маленьких капель или деления больших высвобождается энергия. Сколько именно высвобождается, это уже дело формул, главная из которых — знаменитая эйнштейновская: E = mc2.

Работает эта формула так. Масса двух охотно сливающихся капелек больше массы ядерной капли, получающейся в результате их слияния. Если масса больше конечной на величину m, то при этой ядерной реакции выделяется энергия E = mc

2. Аналогично, масса охотно делящейся капли больше суммы масс, на которые исходная ядерная капля разделилась.

Иногда говорят о превращении массы в энергию. Это столь же правильно, как сказать о человеке, побывавшем в магазине, что деньги, исчезнувшие из его кошелька, превратились в пакет риса, который появился у него в сумке. Разница в том, что коэффициент между деньгами и количеством зерен — цена одного зерна — может меняться от магазина к магазину. А в физике энергетическая стоимость единицы массы — величина постоянная и огромная. Эта стоимость всегда равна c2, где c — это скорость света, а она так велика, что облететь вокруг Земли свет может за долю секунды. Лебедеву когда-то пришлось исхитряться в своих экспериментах со светом именно потому, что там надо было делить на этот огромный коэффициент. А в ядерных процессах на него надо умножать. Формула 

E = mc2 действует во всех физических процессах, однако вне ядерной физики — даже при взрыве тротила — уменьшение массы, на которую «куплена» энергия взрыва, не больше одной миллиардной доли.

В ядерных делениях и слияниях эта доля в миллионы и миллиарды раз больше. Во столько же раз мощнее, значит, может быть ядерная взрывчатка. Надо только придумать способ, чтобы все отдельные ядерные капельки разделились или слились одновременно.

В первом случае речь идет об атомной бомбе, или бомбе деления, где ядерной взрывчаткой должно быть вещество с большими ядрами — например, уран. Во втором случае речь идет о водородной бомбе, начиненной веществом с маленькими ядрами, например, изотопами водорода — дейтерием или тритием.

Но как сделать, чтобы все отдельные ядерные капельки разделились или слились не поодиночке, а разом — коллективно?

Для реакции деления природа подсказала такой способ через несколько месяцев после открытия самого деления в 1939 году (и за несколько месяцев до начала мировой войны). Оказалось, что при делении капли уранового ядра вылетают еще и несколько брызг-нейтронов, каждая из этих «брызг» способна побудить к делению другое ядро, и так далее — пойдет цепная реакция. Надо только собрать в одном месте достаточное количество урана, и атомный взрыв, какого не видал мир, обеспечен.

Но сначала надо было добыть достаточное количество этого редкого — и потому дороже золота — вещества: найти месторождения урана и очистить его в сложных процессах. Поэтому, прежде чем мир увидел такой взрыв в 1945 году, понадобились миллиарды долларов и несколько лет усилий многих тысяч людей.

Что касается ядерной реакции слияния, то она испокон веков шла перед глазами мира — в виде солнечного света и сияния других звезд на небе. По прихотливому историческому совпадению в том же самом 1939 году физики сумели объяснить, как именно энергия Солнца рождается в ходе постоянно идущего слияния ядер в солнечных недрах. В солнечной энергостанции ядерное горючее — самый распространенный элемент природы — водород, по два атома которого есть в каждой молекуле воды.

Однако воспроизвести этот естественный процесс в земных условиях оказалось гораздо труднее, чем устроить неестественный, не встречающийся в природе, процесс «коллективного» деления. Причина трудностей в том, что ядерные капли — в отличие от обычных — электрически заряжены и поэтому отталкиваются друг от друга. Это помогает делиться большим ядрам, но мешает слиянию маленьких. Соприкоснувшись, маленькие ядра очень бы энергично слились, но чтобы их «соприкоснуть», требуется огромная сила.

В земных условиях физикам удалось, разогнав отдельные ядерные капельки на ускорителе, дотронуться ими до ядер мишени и убедиться, что слияние при этом действительно происходит. Однако это лишь поштучно, а не с ощутимым количеством вещества.

Звездам, и Солнцу в их числе, справиться с этой задачей помогает гравитация — вещество в центре звезды сжато всем ее собственным звездным весом. А при температурах в миллионы градусов частицы вещества внутри звезды имеют скорости, сравнимые с теми, которые на ускорителе получаются лишь для считанных частиц.

Ядерные реакции, происходящие в таких высокотермических условиях, назвали термоядерными. Назвать-то нетрудно, а вот как воспроизвести звездные условия на Земле?

Легче ответить на вопрос, почему физики стали использовать приставку «супер» для термоядерной бомбы задолго до ее появления. Дело в том, что собирать уран в одном месте можно только до определенного предела в несколько килограммов. Этот предел называется критической массой, и если он достигнут, сама собой начинается взрывная цепная реакция деления. Для реакции слияния никаких критических масс нет, и значит, мощность термоядерного взрыва в принципе может быть как угодно большой. Сколь угодно больше чудовищного взрыва, испепелившего Хиросиму. Это и побудило говорить о супербомбе.

Специальная энергия в ФИАНе

С термоядерной суперпроблемы начал И.Е. Тамм свою статью «Внутриатомная энергия», опубликованную в газете «Правда» весной 1946 года.[170] Но для него вовсе не взрывы определяли важность проблемы:

Вряд ли можно сомневаться в том, что в не очень отдаленном будущем использование внутриядерной энергии преобразит экономическую и техническую основу человеческого существования.

Член-корреспондент Академии наук сообщил читателям «Правды», что энергия Солнца рождается ядерной реакцией, в которой «при превращении одного грамма водорода в гелий выделяется столько же энергии, сколько и при сгорании 15 тонн бензина».

С 1919 года, когда Резерфорд провел первую искусственную ядерную реакцию, «в лабораторных условиях осуществлено свыше тысячи различных ядерных реакций», но «до последнего времени их практическое использование было невозможно». Возможным оказалось лишь использование внутриатомной энергии урана — в атомных бомбах, «сброшенных американцами на Японию».

Однако запасы атомной энергии в других элементах неисчерпаемы, и если мы пока не знаем путей к их использованию, то не надо забывать, что самое расщепление урана было открыто только 7 лет тому назад. Мы находимся в самом начале научного проникновения в новые, неизведанные области явлений, и необычайно бурное развитие физики, несомненно, откроет человечеству новые неожиданные возможности.

Путь к этому лежит прежде всего в развитии «отвлеченных» исследований по всему фронту физики, ибо нельзя наперед предсказать, в чем будет состоять следующий этап в процессе овладения человеком силами природы.

<> Новая великая сила природы может преобразовать экономическую и техническую основу человеческого существования. Она должна быть направлена не на уничтожение, а на всеобщее благо.

Весной 1946 года «всеобщее благо» еще не успело стать рискованной космополитической целью, и тон статьи дышит оптимизмом. А содержание статьи говорит прежде всего о том, что к Советскому атомному проекту ее автор… не причастен. Потому что этот проект имел тогда одну практическую цель — сделать атомную бомбу, а не «исследования по всему фронту физики» по той лишь причине, что «нельзя наперед предсказать, в чем будет состоять следующий этап в процессе овладения человеком силами природы».

Для того чтобы сделать атомное оружие, нужны были вполне предсказанные научно-технические разработки. Человек освоил лук и стрелы задолго до изучения законов механики и сделал вполне приличный металлический топор без изучения микроскопических свойств металла. Для создания атомной бомбы был накоплен несравненно больший научный задел. Но помимо некоторых «неотвлеченных» измерений главным образом нужна была изобретательская работа — прикладная, техническая физика.

К этой работе Тамма не подпускали, и вряд ли он к этому стремился. Это был не его научный хлеб.

Общий энтузиазм вызывала сама стремительность превращения отвлеченной науки в технику, а также социальный потенциал, который видел в этом социалист Тамм. Осенью 1945 года он девять раз выступал с лекцией на тему «Атомная энергия», в том числе в Доме ученых и в редакции «Правды» (из этого выступления, возможно, и возникла его статья в «Правде»). Название «Внутри-атомная энергия» имеют еще две его популярные публикации 1946 года.[171]

То, что было объектом лекционного энтузиазма у главного теоретика ФИАНа, для директора института Вавилова стало предметом более практическим. Он стремился включить свой институт в проект, что открыло бы лучшие возможности государственного финансирования для развития «всего фронта» фиановской физики. Но сделать это было непросто даже президенту Академии наук.

Хотя Курчатовский институт и назывался Лабораторией Академии наук № 2, от академии его атомная империя практически не зависела. С самого начала атомного проекта — с 1943 года — Курчатов опирался на ленинградцев, «выпускников» школы Иоффе. Помимо естественно возникших в физтехе личных связей, у Курчатова и не было особых причин привлекать фиановских теоретиков. Они ведь были ориентированы на фундаментальные проблемы, а в проекте речь в сущности шла о прикладной физике, где физтеховская школа не имела себе равных в стране.

Вавилову вначале — с 1944 года — удалось лишь вовлечь нескольких фиановцев во вспомогательные урановые исследования. Среди них был соавтор Тамма по нобелевской работе 1937 года — И.М. Франк. В ФИАНе появились две секретные комнаты, куда другие сотрудники не заходили.[172]

Спецслужбы, разумеется, как и по всей стране, делали свое дело и бдительно проверяли и перепроверяли кадры. В 1946 году Тамм заполнил очередную огромную анкету. Он сообщил, что его брат Леонид, арестованный в Москве осенью 1936 года, «погиб в заключении в 1942 г.» и что отец, арестованный в 1944 году, был оправдан за отсутствием состава преступления.

Президент академии Вавилов не входил в руководящие структуры проекта, но нередко участвовал в заседаниях его Научно-технического совета. В апреле 1946 года он сам представил записку «Об организации исследований в разных областях науки в связи с проблемой использования энергии атомного ядра» — первое конкретное предложение по мирным применениям ядерной энергии.[173]

Еще более прямое свидетельство его усилий — фиановский документ, датированный 24 сентября 1947 года и адресованный в Госплан. Это обширный перечень научных задач и объяснительная записка к нему.[174] На документе есть обычная для секретного делопроизводства пометка о том, что черновик уничтожен, заверенная подписью И.М. Франка, причастного, стало быть, к этому. Сам документ — анонимный, и значит, высоко официальный, видимо, он сопровождался письмом С.И. Вавилова.

Документ озаглавлен невинно «Основные проблемы научно-исследовательской работы», но уже из первых строк ясно, что это за проблемы:

Исследование расщепления тяжелых элементов и возможности их использования для получения спец. энергии, исследование реакций легких элементов и возможности использования их синтеза для получения спец. энергии.

Речь идет, попросту говоря, или читая глазами Берии, об атомной и водородной бомбах.

Остальные проблемы касаются «всего фронта физики» — от теории ядерных сил до астрофизики, и от теоРии вычислительных машин до биофизики.

Перечень «Основных проблем» сопровождала объяснительная записка, в содержании которой можно опознать Руку Тамма. По поводу второго вида спецэнергии сказано лаконично:

Синтез легких элементов, несомненно, является одним из источников звездной энергии. Однако пути практического осуществления такого синтеза в лабораторных условиях сейчас неизвестны.

ФИАН предлагал не сбрасывать со счетов и еще один возможный источник спецэнергии —

возможность использования внутренней энергии самих элементарных частиц, из которых построено ядро, в процессах, аналогичных известному для аннигиляции позитрона электроном.

Только очень чистый и оптимистичный теоретик мог написать такое. Аннигиляция вещества и антивещества, если бы ее можно было всунуть в бомбовую оболочку, дала бы право на название «макси-бомба». Эффективность бомбы определяет доля массы, превращающейся в энергию по формуле E = mc2. Для урановой бомбы деления — это десятые доли процента, для водородной бомбы слияния — процент, а для аннигиляционной бомбы это практически 100%, потому и макси. Только одна закавыка — совершенно не понятно, как ее сделать. Зато макси-бомба была бы гораздо ближе к теории элементарных частиц, о которой мечтали теоретики. Так что макси-бомба, даже если она и недостижима, помогла бы заниматься замечательно интересными вещами — почему, скажем, электрон в 1836 раз легче протона.

Усилия Вавилова оказались не напрасны. 10 июня 1948 года постановление правительства обязало ФИАН

Организовать исследовательские работы по разработке теории горения вещества «120» по заданиям Лаборатории № 2 АН СССР (тт. Харитона и Зельдовича), для чего в двухнедельный срок создать в Институте специальную теоретическую группу работников под руководством чл.-кор. АН СССР Тамма и д. ф.-м. н. Беленького (зам. руководителя группы) и с участием акад. Фока.[175]

«120» — это кодовое обозначение дейтерия, а «горение дейтерия» — это термоядерное слияние легких ядер.

Президент академии не знал, что достигнуть цели — «в двухнедельный срок» — помог ему Клаус Фукс.

13 марта 1948 года в Англии Фукс встретился с советским разведчиком и передал ему сведения, относящиеся к супербомбе. Это была не первая такая передача. Первая произошла осенью 1945 года, когда Фукс еще работал в американском Лос-Аламосе. В июне 1946 года он вернулся в Англию и только весной 1948-го сообщил более подробные сведения об американских работах, возможно добавив к этому собственные мысли. появившиеся после отъезда из Лос-Аламоса.

20 апреля 1948 года русский перевод фуксовских материалов попал на стол Берии, и тот поручил их анализ Курчатову. Заключения, представленные 5 мая, стали основой решений правительства 10 июня. Новые разведданные. казалось, говорили о существенном американском продвижении и помалкивали о том, что продвижение это произошло до лета 1946-го, когда Фукс покинул США. Разведка, передавая научно-техническую информацию, укрывала источники — когда и от кого информация пришла.

Фукс считал перспективы супербомбы более реальными, чем они фактически были в ! 948 году в США. Он уже не был свидетелем того, что американские работы фактически застопорились. Американская атомная монополия не побуждала американское правительство заботиться о сомнительном проекте супербомбы.

А советское руководство, встревоженное сообщением об американском продвижении, отнеслось к нему всерьез и обязало Курчатова проверить — с участием ФИАНа — данные о возможности водородной бомбы. При этом тем не менее непроверенной возможности присвоили название РДС-6. Тогда больше года оставалось до экспериментальной проверки атомной бомбы, имевшей название РДС-1. Сохранились две народные расшифровки обозначения РДС — реактивный двигатель Сталина и Россия делает сама — по-разному неточные: в атомной бомбе не было ничего реактивного, и Россия делала ее при существенной, хотя и неявной, помощи США.

ФИАНовской группе надлежало работать «по заданиям тт. Харитона и Зельдовича». Юлий Харитон был научным руководителем КБ-11 — конструкторского бюро по разработке ядерного оружия, расположенного далеко от Москвы. Яков Зельдович был главным теоретиком советской атомной бомбы и к тому времени уже работал в КБ-11. К нему еще в 1945 году попала первая порция американских «секретов» о водородной супербомбе, и с 1946 года его группа в московском Институте химической физики начала изучать спецэнергию легких ядер. Однако главной для Зельдовича, как и для всего Советского атомного проекта, оставалась работа над атомной бомбой.

И вот в июне 1948 года в помощь группе Зельдовича создавалась теоретическая группа Тамма в вавиловском ФИАНе. Но, может быть, эта группа возникла вовсе не из-за усилий Вавилова, а только благодаря развединформации от Фукса? Просто потому что не было других теоретиков, способных помочь Зельдовичу?

Это не так. Еще в сентябре 1945 года Яков Френкель, главный теоретик в Ленинградском физтехе, написал письмо Курчатову:

Представляется интересным использовать высокие — миллиардные — температуры, развивающиеся при взрыве атомной бомбы, для проведения синтетических реакций (например, образование гелия из водорода), которые являются источником энергии звезд и которые могли бы еще более повысить энергию, освобождаемую при взрыве основного вещества (уран, висмут, свинец).[176]

Хотя Френкель не знал, что тяжелые ядра висмута и свинца не могут делиться, как уран, он фактически предложил принцип термоядерной бомбы в самой схематической форме: с помощью атомного взрыва создать звездные условия, в которых пойдет и звездная реакция слияния легких ядер. Во всяком случае Френкель, выдающийся физик, автор важной работы 1939 года по делению ядер, своей термоядерной инициативой делал себя, казалось бы, реальным кандидатом в термоядерный проект; Однако о нем не вспомнили, когда правительство решило организовать дополнительную теоретическую группу.

А ведь это книги Френкеля по квантовой механике и теории относительности увлеченно читал студент Сахаров. Помимо своих книг, Френкель был известен широтой физического захвата, легкостью на подъем мысли по весьма разным поводам — от физики ядра до искрения трамвайных дуг. Такие качества важнее для оружейно-ядерного дела, чем концентрированное внимание Тамма к первоосновам материи. Так думал, похоже, главный теоретик Американского атомного проекта Ганс Бете, который в статье 1946 года о перспективах создания атомной бомбы в других странах указал срок — 5 лет и назвал имена Капицы, Ландау и Френкеля (а не Тамма) как потенциальных отцов» советской атомной бомбы.[177]

Френкель и Тамм были ровесники, сходного научного статуса и близко дружили с начала 20-х годов. Почему же в помощь Зельдовичу взяли Тамма, а не Френкеля? Руководство вряд ли знало, что один из аспирантов Тамма с трудом оторвался от изобретательства в патронной технике ради чистой физики и что он так идеально подходит для нового задания, в котором техническое изобретательство должно было сочетаться с чистой наукой.

Главной причиной, похоже, была именно настойчивость президента Академии наук и директора ФИАНа Вавилова. Курчатов должен был реагировать на разведданные, полученные от Берии. И при этом мог пойти навстречу президенту академии. Тем более что проблема водородной бомбы после двухлетних усилий группы Зельдовича выглядела малообещающе, а задача создания атомной бомбы требовала главного внимания. Да и роль, отводившаяся группе Тамма, была сугубо вспомогательной — работать по заданиям Зельдовича.

«…чрезвычайно остроумна и физически наглядна». Первая и вторая идеи

Сахаров, как уже говорилось, дважды отказался от искушения покинуть ФИАН ради атомного проекта. В 1948 году проект сам пришел в ФИАН, и для Сахарова это выглядело так:

Игорь Евгеньевич Тамм с таинственным видом попросил остаться после семинара меня и другого своего ученика, Семена Захаровича Беленького. <> Он плотно закрыл дверь и сделал ошеломившее нас сообщение. В ФИАНе по постановлению Совета Министров и ЦК КПСС создается исследовательская группа. Он назначен руководителем группы, мы оба — ее члены. Задача группы <> — проверка и уточнение тех расчетов, которые ведутся в Институте химической физике в группе Зельдовича. <>

Через несколько дней, опрпвившись от шока, Семен Захарович меланхолически сказал:

— Итак, наша задача — лизать зад Зельдовича.

По этой реакции самостоятельного и не чрезмерно честолюбивого исследователя, доктора наук Беленького, можно сулить о несамостоятельности фиановской задачи. Вскоре в группу включили еще троих учеников Тамма — доктора наук Виталия Гинзбурга и аспирантов Юрия Романова и Ефима Фрадкина.

Одна из причин, по которой в группу Тамма включили Сахарова, зафиксирована в тексте упомянутого правительственного постановления: «предоставить в первоочередном порядке» жилье семерым участникам работ, в том числе, последним в списке «Сахарову А.Д. (комнату)».[178]

Что это означало для него? Безмерное счастье площадью в 14 квадратных метров.

Обеденного стола у нас не было (некуда было поставить), мы обедали на табуретках или на подоконнике. В длинном коридоре жило около 10 семей и была одна небольшая кухня, уборная на лестничной площадке (одна на две квартиры), никакой ванной, конечно. Но мы были безмерно счастливы. Наконец у нас свое жилье, а не беспокойная гостиница или капризные хозяева, которые в любой момент могли нас выгнать. Так начался один из лучших, счастливых периодов нашей семейной жизни с Клавой.

Лето 1948 года запомнилось Сахарову семейным благополучием в деревенском доме на берегу канала Москва— Волга, «блеском воды, солнцем, свежей зеленью, скользящими по водохранилищу яхтами» и напряженной работой в комнате теоротдела ФИАНа.

Тот мир, в который мы погрузились, был странно-фантастическим, разительно контрастировавшим с повседневной городской и семейной жизнью за пределами нашей рабочей комнаты, с обычной научной работой.

Наиболее видимый контраст был связан с секретностью.

Нам была выделена комната, куда, кроме нас, никто не имел права входить. Ключ от нее хранился в секретном отделе. Все записи мы должны были вести в специальных тетрадях с пронумерованными страницами, после работы складывать в чемодан и запечатывать личной печатью, потом все это сдавать в секретный отдел под расписку. Вероятно, вся эта торжественность сначала немного нам льстила, потом стала рутиной.

И все же необычно секретная эта работа была очень интересной. Ведь теоретики, вооруженные бумагой, карандашом и своими невидимыми математическими инструментами, попадали, можно сказать, в звездные недра и должны были научиться предсказывать, как поведет себя вещество при температурах в десятки миллионов градусов, недостижимых в лаборатории. Поэтому практической проверкой их расчетов мог стать только сам термоядерный взрыв — или невзрыв.

В подобных звездных условиях на первый план выходили самые глубинные законы природы, а частности и особенности, усложняющие физику повседневной реальности, отступали на второй план, а то и вовсе за сцену. Это упрощало жизнь теоретиков и в то же время ставило захватывающе новые задачи. «Превосходная физика», сказал о ядерном взрыве Энрико Ферми, превосходный физик по другую сторону железного занавеса.[179] Сахаров о том же выразился еще сильнее: «рай для теоретика».

Что же конкретно они делали в этом раю?

От Зельдовича фиановские теоретики получили конструкцию будущей водородной бомбы, точнее — схему конструкции. Это была труба, заполненная термоядерным горючим — дейтерием. В одном конце трубы помещался запал — атомная бомба. Предполагалось, что атомный взрыв подожжет термоядерную реакцию и та распространится дальше по трубе — «сама пойдет, подернет, подернет, да ухнет». Чем длиннее труба, тем сильнее ухнет.

С этой схемой в группе Зельдовича возились уже два года — без успеха. Можно было и дальше пробовать разные варианты, меняя размеры трубы, состав вещества в ней и рассчитывая процессы заново.

В такие расчеты сначала и погрузился Сахаров. Но уже через пару месяцев он почувствовал себя изобретателем и придумал совершенно другую конструкцию. Она была наглядно другой. Уже не труба, а шар. Сферические слои образовывали нечто вроде ореха, в котором ядрышко — атомная бомба, окруженная хитрой скорлупкой, несколькими разными слоями вещества. Поэтому сахаровскую конструкцию назвали Слойкой. Как будто специально для секретности. Ведь в русском языке слойка — это булочка из слоеного теста. Само название ничуть не помогает понять рецепт этой термоядерной булочки.

Сахаров придумал свой рецепт, опираясь на основные законы физики.

Чтобы помочь легким ядрам слиться, надо, как уже говорилось, их сблизить, сдавить. И без долгого изучения физики можно понять, что давление в некоем сосуде тем больше, чем больше там окажется частиц вещества, в этом легко убедиться, надувая резиновый воздушный шар. В данном случае «больше частиц вещества» означает «больше молекул воздуха». При этом не имеет значения устройство самой молекулы, что, скажем, молекула кислорода состоит из двух одинаковых атомов, в каждом из которых имеется ядро и восемь электронов. Все эти микрочастицы надежно упакованы внутри молекулы, и стенка воздушного шарика об их существовании не подозревает. Давление зависит только от числа свободно путешествующих молекул.

Запал, с которого начинается взрыв термоядерной Слойки, — атомная бомба. Перед глазами сразу возникает картина страшного грибовидного облака (хотя к 1948 году такие грибы еще не росли на территории СССР). Облако это образуется спустя секунды после взрыва, а Сахаров размышлял над тем, что происходит через микросекунды после начала взрыва, — после того как атомная зажигалка щелкнет. Микросекунда — это миллионная доля секунды, или, можно сказать, миллионная доля мига, если мигом называть время, за которое глаз успевает мигнуть. Сахаров придумал устройство, вся работа которого занимает считанные микросекунды.

В Трубе Зельдовича — сигаре, заполненной дейтерием, — атомная зажигалка приставлялась с краю. В сферической сахаровской Слойке зажигалка помешена в ее центре. Атомный заряд окружен слоем легкоядерного вещества, способного к слиянию (как дейтерий). А следующий слой Сахаров предложил сделать из вещества с тяжелыми ядрами и, соответственно, с большим числом электронов в каждом атоме. Например, из свинца, каждый атом которого содержит 82 электрона.

Взрыв атомной сердцевины выплескивает огромную энергию в виде вспышки радиации — нейтронов, фотонов и других частиц. Этот всплеск излучения на своем пути наружу за микросекунды превращает свинцовый слой не просто в пар, а в плазму — состояние вещества, в котором все внутриатомные связи разрываются. Мощное излучение отрывает электроны атома от ядра, и вместо одной частицы — атома свинца — получается 83: его ядро и 82 электрона. Но если число частиц выросло мгновенно в 83 раза, то и давление вырастает во столько же раз.

Огромное давление в слоях свинца сжимает прилегающий водородный слой, нагретый тем же излучением до звездных температур, и в водороде зажигается звездная — термоядерная — реакция слияния ядер. Это и есть взрыв водородной бомбы.

Способ сдавливания, придуманный Сахаровым, его термоядерные коллеги назвали «сахаризацией». Подсахаренная Слойка уже в первых теоретических эскизах выглядела очень аппетитно. Но рецепт Слойки стал еще более обещающим после того, как — всего спустя несколько недель — удачную начинку к ней придумал Виталий Гинзбург. Он придумал новое вещество для «водородного» слоя.

Необходимость водорода для водородной бомбы очевидна только на словесном уровне. А на уровне физики этот элемент в водородной бомбе вообще не используется. Водород — самый легкий элемент, но не самый склонный к слиянию. Условия, в которых слияние может идти, сильно различаются для разных ядер, и достижимее всего слияние не самого водорода, а его изотопов — дейтерия и трития, D и T.

Дейтерий, хоть и в малом количестве, подмешан ко всякому природному водороду и выделять его в чистом виде научились еще в довоенные годы. Потому-то в постановлении правительства в июне 1948 года говорилось о «горении дейтерия». Трития в природе практически нет вовсе, и получать его очень трудно, точнее, дорого. К тому же тритий — радиоактивен и, уже добытый, распадается со временем. Свойства дейтерия, и тем более трития, были недостаточно изучены, чтобы проводить точные расчеты. Однако точно было известно, что дейтерий и тритий — газы. Как же из газа сделать слой, окружающий центральный атомный шар в Слойке? Трудно.

Гинзбург предложил использовать для «водородного» слоя гораздо более удобное вещество — твердое и нерадиоактивное — химическое соединение дейтерия с литием — дейтерид лития, в химических символах LiD. К этим символам вскоре прибавили совсем нехимический суффикс и за новым термоядерным веществом закрепилось ласковое женское имя LiDочка.

Литий — тоже легкий элемент, но LiDочка — это уже не газ, а твердое вещество, с которым проще иметь дело. Однако Гинзбург преложил LiDочку по другой причине и сам не сразу понял, насколько новая термоядерная взрывчатка хороша. Для него вначале главным было то, что литий, облученный нейтронами от первичного атомного взрыва, добавляет некоторое количество энергии и тем самым дополнительно разогревает термоядерный слой, делая его более способным к слиянию ядер. То есть он говорил о реакции

Li6+n?T+He4 +4,8 МэВ

Литий+нейтрон?Тритий+Гелий+Энергия

и главное внимание обращал на слагаемое «энергия». Спустя несколько месяцев он догадается, что гораздо важнее слагаемое «тритий».

Свое предложение Гинзбург сформулировал в своем спецотчете, датированном 20 ноября 1948 года, и в этом же отчете впервые упомянул сахаровскую Слойку. Сам Сахаров изложил свою идею Слойки и соответствующие вычисления только в отчете от 20 января 1949 года.

Для вычислений, помимо математики, нужна была экспериментальная физика, — надо было измерить взаимодействие надлежащих ядер. Тогда знали уже неплохо, как взаимодействуют ядра дейтерия друг с другом, то есть чему равно D+D. А тритий был слишком нов. Экспериментаторы получили от теоретиков задание, но сами измерения требовали времени. Как написал Сахаров в своем отчете, «реакции D+T и T+T экспериментально не изучены, и все суждения об их сечениях гадательны». В ожидании результатов измерений Сахаров предположил, что D+T взаимодействуют примерно так же, как D+D.

Из этого же исходил Гинзбург в отчете «Использование Li6D в Слойке» 3 марта 1949 года. Теперь, однако, он обратил внимание на то, что LiDочка при облучении во время запального атомного взрыва производит тритий, который тут же может пойти в дело как термоядерное горючее. То есть можно не накапливать заранее дорогой, неудобный в обращении и радиоактивный тритий, а положить в бомбу гораздо более удобный полуфабрикат, из которого начальный атомный взрыв сам приготовит все, что нужно для взрыва термоядерного.

Если бы только фиановские теоретики знали, что на самом деле D взаимодействует с T в сотню раз охотнее, чем с D, что это взаимодействие уже давно измерено их американскими коллегами и что благодаря Клаусу Фуксу результаты этих измерений уже около года находятся в сейфе у Берии…

Только убедившись, что фиановцы сделали теоретический прорыв, руководство решило сообщить им эти разведданные, и 27 апреля сообщили Тамму данные американских экспериментов о взаимодействии D+T безо всякой ссылки на источник.

В таких предосторожностях, однако, уже не было надобности, — эти данные были рассекречены в США и опубликованы в главном тогда физическом журнале Physical Review за две недели до того, 15 апреля 1949 года! Познакомившись с этой публикацией, Гинзбург понял, что предложенная им термоядерная взрывчатка в сто раз лучше, чем он думал.

8 мая Ю.Б. Харитон в своем заключении поддержал работы по Слойке, отметив, что «основная идея предложения чрезвычайно остроумна и физически наглядна».[180]

Сахаров мог быть доволен собой. Хотя заместитель Зельдовича — А.С. Компанеец — усомнился сначала в его проекте, сам Зельдович «мгновенно оценил серьезность» нового предложения. Было решено, что группа Тамма занимается исключительно Слойкой, а группа Зельдовича продолжает работу по Трубе и одновременно помогает фиановцам. Так что ситуация, которая так удручала Беленького вначале, изменилась радикально.

Сейчас еще легче оценить физическую интуицию Сахарова. Много позже он догадался, что основная идея проекта Трубы была «цельнотянутой», т. е. основанной на разведывательной информации. И тогда в 1948 году никто не знал, что американцам понадобится еще два года, чтобы признать тупиком их прототип — Классический супер. А советскую версию — Трубу — закроют лишь через пять лет.

«Цельнотянутое» описание американского Классического супера, приготовленное в отделе Судоплатова в январе 1946 года, с рукописным пояснением Я. Зельдовича

Так что если бы детальные данные, предоставленные Фуксом весной 1948 года, сообщили фиановцам, то это скорее помешало бы им увидеть тупиковость этой схемы. Само содержание сообщений Фукса подтверждает независимость Слойки, поскольку они не имеют ничего общего.

Итак, фиановский проект термоядерной бомбы родился незапланированно и, можно сказать, вне атомного проекта, в некотором смысле случайно. Впрочем, в той же мере случайно делаются и открытия в чистой науке.

Главную причину успеха — человеческий фактор — обсуждать нечего: таланты необъяснимы. Можно говорить об условиях, в которых таланты действовали. Таммовская группа продолжала жить обычной научной жизнью: семинары, научные новости. И прикладные бомбовые проблемы они рассматривали в том же свободном духе, что и чисто теоретические.

Это проявилось уже на «филологическом» уровне — сравним фиановские термины Слойка и Лидочка с официальным РДС (в обеих дошедших до наших дней расшифровках: реактивный двигатель Сталина или Россия делает сама) и с Трубой, сухо обозначающей геометрию. Американским физикам хватало чувства юмора ввести в чистой физике термины «кварк», «странность» и «очарование», однако в бомбовой физике, делавшейся за высокими стенами Манхэттенского проекта, в употребление вошли гораздо более претенциозные термины Classical Super и Alarm Clock — Классический супер и Будильник (буквально — Часы с сигналом тревоги), предназначенный разбудить человечество. Быть может, такая серьезность способствовала укоренившемуся английскому переводу сахаровской Слойки — Layer Cake. А дешевая булочка-слойка — это вам не слоеный торт.

Руководитель группы Тамм во многом определял свободный и дружный характер фиановских термоядерных поисков. Его неизлечимый энтузиазм помог преодолеть ощущение безнадежности, характерное для термоядерной проблемы в 1948 году.[181]

Осталось только сказать, что слова «слойка» и «лидочка», не говоря уже об их физическом смысле, оставались секретными до конца жизни Сахарова, — их рассекретили только после его смерти, в 1990 году, для мемориального выпуска журнала «Природа».[182] Поэтому Сахаров в «Воспоминаниях» ограничился только следующим:

По истечении двух месяцев [после образования группы Тамма в июне 1948 года] я сделал крутой поворот в работе; а именно, я предложил альтернативный проект термоядерного заряда, совершенно отличный от рассматривавшегося группой Зельдовича по происходящим при взрыве физическим процессам и даже по основному источнику энерговыделения. Я ниже называю это предложение «1-й идеей».

Вскоре мое предложение существенно дополнил Виталий Лазаревич Гинзбург, выдвинув «2-ю идею».

Что ощущал Сахаров, занимаясь термоядерным изобретательством? Об этом он вспоминал спустя три десятилетия:

Термоядерная реакция — этот таинственный источник энергии звезд и Солнца в их числе, источник жизни на Земле и возможная причина ее гибели — уже была в моей власти, происходила на моем письменном столе!

Действительно ли он уже в 1948 году думал о гибельности термоядерной энергии для родной планеты? Мысль эта лишь в конце 50-х годов стала «тривиальной», после того как термоядерные взрывы произошли на испытательных полигонах США и СССР. А в самые первые годы ядерного века только наиболее прозорливые физики-теоретики осознали, что это не просто новая мощная бомба, а оружие конца света.

В 1948 году Эйнштейн поставил вопрос так:

Неужели действительно неизбежно, что из-за наших страстей и унаследованных обычаев мы обречены уничтожить друг друга до конца, так что не останется ничего заслуживающего сохранения?[183]

Этот вопрос прозвучал в статье Эйнштейна в ответ на открытое письмо четырех советских ученых. И хотя статью Эйнштейна не опубликовали в советской прессе, призрак гибели человечества уже ходил по миру. На свой вопрос Эйнштейн дал и ответ:

Цель избежать всеобщего взаимоуничтожения должна иметь приоритет над всеми другими целями.

В то время, однако, к такому ответу не были готовы обе стороны мирового противостояния.

Сахаров рассказал о своем отношении «к моральной, человеческой стороне того дела», в котором он участвовал, и свою «всепоглощенность» этим делом в первые годы:

Главным для меня и, как я думаю, для Игоря Евгеньевича и других участников группы было внутреннее убеждение, что эта работа необходима.

Я не мог не сознавать, какими страшными, нечеловеческими делами мы занимались. Но только что окончилась война — тоже нечеловеческое дело. Я не был солдатом в той войне — но чувствовал себя солдатом этой, научно-технической. <> Со временем мы узнали или сами додумались до таких понятий, как стратегическое равновесие, взаимное термоядерное устрашение и т. п. Я и сейчас думаю, что в этих глобальных идеях действительно содержится некоторое (быть может, и не вполне удовлетворительное) интеллектуальное оправдание создания термоядерного оружия и нашего персонального участия в этом. Тогда мы ощущали все это скорей на эмоциональном уровне. Чудовищная разрушительная сила, огромные усилия, необходимые для разработки, средства, отнимаемые у нищей и голодной, разрушенной войной страны, человеческие жертвы на вредных производствах и в каторжных лагерях принудительного труда — все это эмоционально усиливало чувство трагизма, заставляло думать и работать так, чтобы все жертвы (подразумевавшиеся неизбежными) были не напрасными. <> Это действительно была психология войны.

Психологию войны создавала советская пропаганда, и ей было из чего создавать. В 1949 году знаменитый философ и математик Бертран Рассел, вовсе не ястреб и не служащий военно-промышленного комплекса, написал:

Если только советское правительство не изменит своей позиции, что не кажется вероятным, боюсь, мы должны заключить, что никакого подхода к объединению не возможно до следующей мировой войны. <> Если — вопреки тому, на что я в глубине надеюсь — только война способна предотвратить всеобщую победу коммунизма, я, со своей стороны, принял бы войну несмотря на все разрушения, которые она должна повлечь.[184]

Шесть лет оставалось до манифеста Эйнштейна-Рассела 1955 года, с которого началось Пагуошское движение ученых за мир и ядерное разоружение. Это шестилетие вместит в себя рождение водородной бомбы и смерть Сталина.

Президент Академии наук и инженер по ржавчине

По воле истории изобретение фиановской водородной бомбы происходило на фоне лысенковского разгрома биологии и аналогичной угрозы, нависшей над советской физикой. В то время когда Сахаров писал отчет о Слойке, его ближайший соучастник по термоядерному делу, заклейменный «низкопоклонник» Гинзбург готовил выступления на Всесоюзном совещании.

15 января 1949 года Гинзбург направил С.И. Вавилову семнадцатистраничный текст своего выступления с запиской:

Мне казалось уместным направить Вам текст моего предполагаемого выступления в прениях по Вашему докладу. Это выступление было мне предложено сделать, и предлагаемый его проект обсуждался у нас в ФИАНе.[185]

Три четверти выступления Гинзбурга посвящены «философии современной физики», последняя четверть — «вопросу о борьбе за честь, достоинство и приоритет советской науки». Гинзбург признал и «себя повинным» в том, что «писал работы и не задумывался над тем, не забыл ли где-либо указать или подчеркнуть приоритет отечественной работы». А заканчивается его выступление цитатой из Сталина: «Не только догнать, но и превзойти в ближайшее время достижения науки за пределами нашей страны».

Это Гинзбург писал, «догоняя и превосходя» Запад по термоядерному делу и обеспечив, в частности, отечественный приоритет в применении LiDочки.

Тяжелее было главному докладчику — Вавилову. Ему, президенту Академии наук, пришлось дважды переделывать свой доклад, подбирая идеологические формулы, удовлетворяющие надсмотрщиков из ЦК. Вавилов-президент мог благодарить себя — директора ФИАНа — бомбовые успехи его теоретиков помогли избежать этого позора: совещание отменили, и все три варианта его доклада отправились в архив.

Избежал, однако, Вавилов только этого позора. Главного организатора совещания — усердного научного чиновника, замминистра высшего образования — сразу же сделали главным ученым секретарем академии, и только спустя несколько месяцев «оформили» избрание этого выдающегося деятеля советской науки сразу в академики, минуя ступень члена-корреспондента. А 24 мая 1949 года Вавилов председательствовал на заседании Ученого совета «О космополитических ошибках, допущенных сотрудниками ФИАНа». Одним из «выявленных» четырех космополитов был Гинзбург. Вавилов называл грешников по имени-отчеству, грешники произнесли полагавшиеся ритуальные слова, и на этом для них все кончилось. Но не для Вавилова.

В 1949—1950 годах журнал «Доклады АН СССР» поместил четыре статьи некоего Знойко.[186] В журнале, предназначенном для срочной публикации новых, сжато изложенных результатов, читаем:

81 год тому назад великий русский химик Д.И. Менделеев сформулировал основной, естественный закон природы. <> Как известно, гениальные предсказания Д.И. Менделеева сбылись. <> Как известно, одному из авторов этой статьи (А.П. Знойко) удалось найти зависимость между изменяющимися свойствами ядер, удельным зарядом последних и их структурой. <> Ясно видна глубина менделеевского метода — метода, стимулирующего развитие химии атомов и физики ядер, метода, с помощью которого науке сегодняшнего дня удается дальше проникнуть в тайны природы. <> За элементом 96 идет элемент 97 [а вы как думали?], который за два года до своего получения [американскими физиками] был предсказан на основе открытия периодической системы атомных ядер с помощью менделеевского метода. Этому элементу мы предлагаем дать название «менделевий» и установить символ Md.

В «Докладах АН» статьи публиковались только по представлению членов академии. Кто же представил наукоподобную ахинею Знойко?

Сам главный редактор и президент Академии наук Сергей Вавилов.

Неизвестно, какие силы для этого удалось мобилизовать ныне безвестному Знойко. Но силы эти, несомненно, были очень велики, если в сентябре 1949 года сорокадвухлетний инженер, специалист по коррозии в черной металлургии, то есть по ржавчине, стал заведовать в Московском университете секретной ядерной лабораторией, созданной специальным постановлением правительства.[187] Он же возглавил уникальный по названию «эмпирический отдел» этой лаборатории. Ему бы еще научную биографию, сопоставимую с лысенковской, и… за эмпирическую историю советской физики трудно было бы поручиться.

Как мог Сергей Вавилов нести столь тяжкое бремя стыда — быть президентом сталинской Академии наук?

В ноябре 1948 года он получил открытое письмо от Генри Дэйла — президента Лондонского Королевского общества (английской Академии наук). Английский биолог и нобелевский лауреат просил исключить его из числа иностранных членов советской академии. Происшедший незадолго до того лысенковский погром советской биологии поставил жирную точку на истории загадочного исчезновения Николая Вавилова, иностранного члена британской Академии наук. В письме из Англии брат Николая Вавилова прочитал:

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Водородная бомба — Справочник химика 21

    В 50-х годах XX в. был разработан способ получения энергии, необходимой для ядерного синтеза. В качестве источника энергии была использована бомба расщепления, и в результате была получена ядерная бомба еще большей разрушительной силы, которую называют по-разному водородная бомба , Н-бомба , термоядерная бомба , но более правильное название — бомба термоядерного синтеза. [c.179]
    Необходимые для протекания этих реакций температура ( 10 К) н нейтроны создаются взрывом атомного запала — цепной реакцией расщепления ядер или Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы, превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов.[c.662]

    Реакции ядерного синтеза лежат в основе создания водородной бомбы, в которой происходит слияние ядер водорода, инициируемое атомной бомбой малой мощности (т. е. бомбой, действие которой основано на делении ядер). [c.345]

    Термоядерные реакции могут протекать лишь при очень высоких температурах (сверх миллиона градусов). Высокая энергия сталкивающимся частицам может быть сообщена в результате сильного разогрева в недрах звезд, при атомном взрыве или в мощном газовом разряде. До настоящего времени практически осуществлены лишь неуправляемые термоядерные реакции при термоядерных взрывах (водородная бомба). [c.45]

    Схема реакций в термоядерной (водородной) бомбе  [c.45]

    Количество энергии, высвобождающееся при взрыве мощной термоядерной (водородной) бомбы (- 10 эрг), превышает недельную выработку электроэнергии во всем мире и сравнимо с энергией землетрясений и ураганов. [c. 45]

    Для этой реакции необходима температура 40000000 К. Высокие температуры, требующиеся для инициирования процесса ядерного синтеза, удалось получить при взрыве атомной бомбы. Это было осуществлено в термоядерной, или водородной, бомбе. [c.273]

    Эдвард Теллер (род. 1908 г.) — немецкий физик, после прихода к власти нацистов эмигрировал в США, где его называют отцом водородной бомбы . Автор ряда фундаментальных исследований в области квантовой механики, квантовой химии, > в частности в области теории химических и особенно термоядерных реакций. Идея теоремы Яна— Теллера, по словам самого автора, принадлежит Л. Д. Ландау, высказавшему ее еще в 1934 г. [c.179]

    Роберт Оппенгеймер (1904—1967)—американский физик, специалист в области квантовой механики и теории атомного ядра. Был одним из руководителей работ в США по созданию атомной бомбы. В 1953 г. был отстранен от занимаемых постов за выступление против развертывания работ по водородной бомбе.[c.88]

    В этих реакциях на единицу массы реагирующих веществ выделяется значительно больще энергии, чем при делении урана. Тепловой эффект первой из этих реакций составляет 185 млрд кДж/кг, а второй — —340 млрд кДж/кг. Вместо использования радиоактивного трития, который, естественно, не может длительно храниться, в водородной бомбе применяют дейте-рид лития 6 Под воздействием высокой температуры и [c.587]


    Другое явление, в котором используется энергия связи ядер,— соединение синтез) ядер два очень легких ядра образуют одно ядро с большей массой и гораздо большей устойчивостью. При этом выделяется значительная энергия однако этот процесс требует очень высоких температур, порядка миллиона градусов. Достижение таких температур при использовании энергии, выделяющейся в процессе деления ядер, способствует соединению легких ядер. Прямым приложением этих реакций, называемых термоядерными , является водородная бомба. Схема процесса соединения ядер имеет следующий вид  [c.46]

    Проблема осуществления управляемых термоядерных реакций не решена, так как учеными еще не найден способ более длительного сохранения тонкого плазменного шнура. По невыясненным причинам, несмотря на воздействие магнитного поля, плазма растекается в пространстве и термоядерные реакции, начавшись, быстро прекращаются. Осуществление управляемых термоядерных реакций (при взрыве водородной бомбы протекают неуправляемые термоядерные реакции) является одной из важнейших проблем современности. Успешное решение ее обеспечит человечество практически неисчерпаемым источником энергии. [c.16]

    Выделение при взрыве водородной бомбы множества нейтронов ведет к возникновению больших количеств различных радиоэлементов, которые могут затем действовать в качестве радиоактивных отравляющих веществ. Особенно усиливается такая опасность, если возможно образование радиоэлементов из атомов материала самого корпуса бомбы. В отличие от обычной атомной, водородная бомба не имеет верхнего предела мощности, который ограничивается только соображениями технического характера. [c.531]

    Водородная бомба. Синтез с участием атомов водо-рода-2 служит источником энергии и при взрыве водородной бомбы. С помощью взрыва урановой бомбы водород-2 нагревают до температуры начала синтеза. Водородную бомбу еще никогда не использовали в войнах. Вызванные ее взрывом разрушения были бы столь катастрофичны, что ни одна из стран не решится ее применить. [c.32]

    Последняя из этих трех реакций протекает примерно в 100 раз быстрее, чем две первые. Поэтому она больше подходит для получения энергии путем ядерного синтеза и, по-видимому, как раз и используется в водородной бомбе. Другой реакцией ядерного синтеза, удобной для получения энергии, поскольку при этом применяется соединение с низким молекулярным весом (гидрид лития), является реакция [c.437]

    Содержание Ы составляет примерно 7% в природной смеси изотопов лития. Современная водородная бомба оснащена зарядом дейтерида лития-6. Создаваемый при взрыве атомного запала поток нейтронов вызывает ядерную реакцию (л, а), приводящую к образованию трития. При температуре ядерного взрыва ( 10 ° К) тритий реагирует с дейтерием с выделением громадного количества энергии. [c.12]

    Хорошо изучены ядерные характеристики тринадцати изотопов нептуния — от 229-го до 241-го. Изотопы с большим массовым числом, вплоть до нептуния-257, образуются при взрыве водородной бомбы. Об этом свидетельствует появление в продуктах термоядерного взрыва атомов фермия. Изучить свойства тяжелых нептуниевых ядер пока невозможно они слишком неустойчивы и переходят в высшие элементы задолго до извлечения радиоактивных продуктов подземного взрыва. [c.386]

    К июню 1951 г. наша программа создания водородной бомбы переживала тяжелый кризис . Это слова американского журналиста У. Лоуренса, волею судеб ставшего официальным историографом американского атомного оружия. Стремясь во что бы то ни стало первыми создать сверхбомбу , американцы бросили на решение этой проблемы все силы и средства. Самое большее, что удалось им сделать,— это взорвать термоядерное устройство, получившее кодовое название Майк . Именно устройство, а не бомбу Майк , оснащенный сложными рефрижераторными установками, был настолько тяжел, что его не мог поднять ни один самолет. [c.433]

    Главные физические процессы, в которых образуются техногенные искусственные радионуклиды, — это деление ядер и нейтронная активация. Деление ядер, индуцированное нейтронами и используемое для получения энергии в ядерных реакторах, является основным источником искусственных радионуклидов. При взрывах атомных и водородных бомб деление ядер также является преимущественным процессом их образования. Получающиеся при делении тяжелых атомных ядер радионуклиды (осколки) и продукты их распада представляют собой набор из нескольких сотен радиоизотопов с периодами полураспада от долей секунды до миллионов лет. Распределение выходов осколков на деление зависит от типа и энергии бомбардирующих частиц (тепловые и быстрые нейтроны, протоны, ионы гелия [c.157]

    Широко используются также изотопы водорода — дейтерий и тритий. Тяжелая вода ОгО используется в атомной энергетике как замедлитель нештронов в атомных реакторах. Дейтерий и тритий используются в ка-честпе термоядерного горючего в водородных бомбах, поскольку при реакции [c.288]

    Термоядерный синтез основан на соединении атомных ядер в более сложные. Обычно два очень легких ядра образуют одно ядро с большей массой и очень большой устойчивостью, Прн этом выделяется колоссальная энергия. Однако термоядерные реакции требуют очень высоких температур — порядка миллиона градусов. Достижение таких температур осуиц ствляется цепной реакцией деления j aU пли giiPii. На использопаиии этих реакций основана термоядерная (водородная) бомба. [c.69]

    Искусственно вызываемые термоядерные процессы были пока реализованы лишь Рис. ХУ1-31. Прннци- в форме т. н. водородной бомбы, пиальная схема водород- принципиальная схема которой показана ной бомбы. на рис. ХУ -31 (АБ — атомная бомба). [c.530]


    ДЕЙТЕРИЙ (тяжелый водород) В, стаб. и.зотоп водо юда, мае. ч. 2, ат. м. 2,014. Прир. водород содержит 0,012— 0,016% по массе В. Газ —254,5 °С, г ,, —249,5 °С Ср 29,2 Дж/(моль-К) (ирн 298 К), 5 144 Дж/(моль-К), Молекула двухатомна. Ядро атома Д. наз. дейтроном, Получ. ректификация водорода многоступенчатый электролиз воды. Примен. изотопный индикатор входит в состав ВВ в водородной бомбе перспективное термоядерное горючее. [c.149]

    J-b3 He. Газ, Г л—252,52 С, iK —248,12 °С. Молекула двухатомна. Ядро атома Т наз. тритоном. Получ. в ядерных реакторах «Li +jn= T -t- Не. И, Зотоннып индикатор. Входит в состав ВВ в водородной бомбе. Перспективен как термоядерное горючее. ПДК 7,4-К) Бк/л. [c.595]

    Дейтерий D( H) (лат. Deuterium — тяжелый водород) —стабильный изотоп водорода с массовым числом 2. Открыт в 1932 г. Содержится в природных соединениях водорода. Д. выделяют электролизом или ректификацией воды. Д. широко используется в атомной энергетике как замедлитель нейтронов в атомных реакторах в смеси с тритием применяют для термоядерной реакции в водородных бомбах. Декан СНз(СН2)8СНз— бесцветная жидкость. Содержится в нефтепродуктах. Составная часть дизельных топлив. [c.45]

    Выразительный пример огромного значения точности узнавания можно найти в области химических коммуникаций у насекомых. Так, антенные рецепторы данного насекомого способны уловить и безошибочно идентифицировать единичные молекулы специфического феромона на фоне почти бесконечного многообразия молекул других веществ, присутствующих в окружающей насекомое среде в количествах порядка молей, т. е. при отношении сигнал/шум порядка В результате узнавания рецептором лишь нескольких молекул феромона и взаимодействия с ними происходят драматические изменения поведения всего насекомого. Иначе говоря, микроскопический (молекулярный) сигнал эффективно воздействует на макроскопический объект (многоклеточный организм), что отвечает фантастическим значениям коэффициента усиления сигнала (порадка Ю ). Даже среди самых современных и совершенных технических систем трудно найти усилительные устройства со сравнимыми характеристиками эффективности. С ними можно, пожалуй, сопоставить только соотношение энергии нажатия кнопки в ядерном чемоданчике с энергией взрьша водородной бомбы. [c.475]

    Открытие элементов № 99 и 100 — эйнштейния и фермия — тоже можно считать примером серендипности, В 1949 г. в Советском Союзе были проведены успешные испытания атомной бомбы США лишились монополии на атомное оружие, А еще через несколько лет Америка оказалась в роли догоняющего первая водородная бомба была Сделана в нашей стране. [c.433]

    При подземных ядерных взрывах с выбросом грунта также образуется радиоактивное облако, но меньших размеров по сравнению с наземным взрывом. Кроме того, значительная часть радионуклидов при взрывах без выброса грунта попадает в атмосферу в виде струи радиоактивного газа, который вырывается из толщи грунта. Доля радионуклидов, осаждающихся на следе облака, колеблется в широких пределах от 0,5 до 46 % всей активности наземных ядерных взрывов [16]. Крупные инциденты с ядерным оружием были в армии США. В 1966 г. в небе над населенным пунктом Паль-марес (Испания) бомбардировщик В-52 столкнулся с самолетом-заправщиком. При включении аварийного приспособления произошел спуск четырех водородных бомб, и часть радиоактивного вещества распылилась. Работы по дезактивации загрязненной местности обошлись в 50 млн долларов [17]. Аварии носителей ядерного оружия с выбросом радионуклидов зафиксированы на кораблях и подводных лодках военно-морских сил ряда стран. [c.182]


Водородная бомба — современное оружие массового поражения

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

Ядерный клуб

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • США;
  • Россия;
  • Великобритания;
  • Франция;
  • КНР;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» – понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Ядерный клуб

Ядерное оружие

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния — в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

Ядерное оружие

Немного истории

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб – всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Немного истории

Царь-бомба

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Царь-бомба

Водородная бомба

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез  – это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле – обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Водородная бомба

Последствия использования

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба – «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Последствия использования

Ядерная зима

Однако разрушение городов – не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» – когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Современные опасности

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР  – объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Современные опасности

защита суверенитета или угроза человечеству

Принцип действия термоядерного оружия

Разрушительная сила водородной бомбы основывается на использовании энергии реакции ядерного синтеза легких элементов в более тяжелые. Термоядерное оружие имеет гораздо большую разрушительную силу, чем ядерное оружие. При изготовлении термоядерной бомбы используется, как правило, жидкий дейтерий в сжатом и газообразном виде. Тем не менее, итоговый вариант водородной бомбы изготовили на основе дейтерид лития-6, который представляет собой соединение тяжелого изотопа дейтерия и изотопа лития с массовым числом 6.

На ранних термоядерных боеприпасах, произведенных в США, использовался дейтерид природного лития. В нем содержался изотоп лития с массовым числом 7, который также служит источником трития. Водородная бомба, которая действует по принципу Теллера-Улама, состоит из активатора и контейнера (в нем содержится термоядерное горючее). Активатор представляет собой плутониевый заряд с усилением, его мощность составляет несколько килотонн. Основным элементом бомбы является контейнер с горючим, где находится дейтерид лития-6.

Взрывчатое вещество подрывает первую ступень бомбы, сжимая ядро плутония до сверхкритического состояния, после чего происходит цепная реакция расщепления. После взрыва активатора выделяется 80% энергии в виде мощного импульса мягкого рентгеновского излучения. Оно поглощается оболочкой второй ступени и пластиковым наполнителем, который впоследствии превращается в плазму под высокой температурой и давлением. Вторая ступень сжимается вследствие испарения (абляции).

В сжатом и разогретом дейтериде лития-6 происходит слияние, а инициатором реакции является нейтронный поток. Огненный шар продолжает расширяться. Если оболочка контейнера изготовлена из урана, то происходит реакция деления атомов урана-238, и эта энергия добавляется в общую энергию взрыва.

Примечательно, что таким способом можно получить взрыв практически неограниченной мощности.

 

Отличие атомной и водородной бомбы

В первую очередь, главным отличием между атомной и водородной бомбой является мощность взрыва. Термоядерный заряд может быть в сотни раз мощнее, чем атомный. Ранее уже говорилось, что мощность взрыва атомной бомбы измеряется в килотоннах, тогда как водородной – в мегатоннах. При взрыве атомной бомбы также энергия выделяется после деления тяжелых ядер плутония или урана-235, после чего образуются более мелкие ядра. Принцип действия водородной бомбы описан выше.

 

Чистое термоядерное оружие

Отдельно нужно упомянуть о чистой термоядерной энергии. Этот тип не подразумевает под собой использование уранового или плутониевого инициатора взрыва. Данное оружие также не создает долговременного радиоактивного заражения, так как в нем отсутствуют распадающиеся вещества. Сегодня чистое термоядерное оружия существует лишь на бумаге, и пути реализации проекта на практике пока что не выяснены до конца.

В Снежинске был разработан самый чистый ядерный заряд, который служит в мирных целях. Еще в СССР продвигали термин «мирный атом», и эти исследования продолжаются по сей день. В Снежинске создали заряд, который на 99,85% получается за счет синтеза ядер легких элементов.

 

История создания

США первыми испытали термоядерный заряд. Это произошло 1 октября 1952 года на атолле Эниветок. Бомба была изготовлена по принципу Теллера-Улама. 12 августа 1953 года СССР первым в мире взорвал водородную бомбу на Семипалатинском полигоне. Она была изготовлена по схеме «слойка» и носила название РДС-6с.

Советскую бомбу изготовили под руководством Андрея Сахарова и Юлия Харитона. На Западе советскую бомбу называют не водородной, а атомной с использованием бустерного усиления. Ее мощность составила 400 килотонн при проведении испытаний, КПД (коэффициент полезного действия) составил 15-20%.

1 марта 1954 года США испытали полноценную водородную бомбу на атолле Бикини, который находится на Маршалловых островах. Испытания 1952 года представляли собой, скорее, лабораторный эксперимент. Энерговыделение при взрыве на испытания «Касл Браво» составило 15 мегатонн, что является самым мощным взрывом, проведенным в США.

Царь-бомба

Но и тут СССР обошел своего геополитического противника. 30 октября 1961 года была взорвана самая мощная в истории человечества водородная бомба, мощность которой составила 58 мегатонн. Предполагалось испытать 100-мегатонную бомбу, но тогдашний генсек ЦК КПСС Никита Хрущев отказался от идеи, отметив, что «в Москве стекла вылетят». Испытания были проведены на архипелаге Новая Земля.

 

Термоядерное оружие в других странах

В 1954 году испытания и разработки термоядерного оружия были развернуты в Великобритании. Работы начались под руководством Уильяма Пеннея, который ранее занимался Манхэттенским проектом. США мало делились информацией об атомном оружии, ссылаясь на одноименный закон от 1946 года, однако все же позволили проводить наблюдения во время ядерных испытаний. Для сбора проб использовался самолет, а впоследствии был начат Олдермастонский проект. В 1957 году Великобритания провела серию испытаний под названием Operation Grapple.

Первым испытанием стал взрыв Short Granite мощностью 300 килотонн, а уже в ходе операции Orange Herald британцы испытали атомную бомбу мощностью 700 килотонн. Она до сих пор является самой мощной среди атомных бомб, когда либо созданных человеком. Впоследствии проведены испытания Purple Granite, мощность взрыва составила 150 килотонн. В 1957 году Великобритания также взорвала двухступенчатое устройство мощностью 1,8 мегатонны, а 28 апреля 1958 года над островом Рождества взорвали термоядерную бомбу мощностью 3 мегатонны – крупнейший успех британских ученых.

Китай взорвал свою термоядерную бомбу в 1967 году. Заряд был произведен по принципу Теллера-Улама, его мощность составила 3,36 мегатонны. Примечательно, что взрыв водородной бомбы в КНР был произведен через 32 месяца после испытаний атомной бомбы – очень короткий срок для развивающегося в то время Китая.

Франция провела испытание под названием «Канопус» в 1968 году. Термоядерная бомба мощностью 2,6 мегатонны была произведена по принципу Теллера-Улама. Испытания провели на атолле Фангатауфа, после чего Франция стала пятой ядерной державой мира (на тот момент). Всего же сегодня в «ядерном клубе» есть девять стран: США, Россия, Китай, Великобритания, Франция, Индия, Пакистан, КНДР и Израиль.

О Северной Корее стоит поговорить отдельно, поэтому пока что нужно лишь упомянуть эту страну. В 2015 году Ким Чен Ын объявил, что КНДР владеет водородной бомбой, а спустя год было проведено испытание бомбы. На фоне испытаний сейсмологи фиксировали небольшие очаги землетрясения.

В начале сентября 2017 года в КНДР заявили о наличии термоядерного заряда, который можно использовать в боеголовках на межконтинентальных баллистических ракетах. В тот же день, 3 сентября, были проведены испытания бомбы, мощность которой составила 100 килотонн. Позднее специалисты Университета Джонса Хопкинса сообщили: мощность взрыва северокорейской бомбы составила 250 килотонн.

Отдельно стоит упомянуть Украину, которая после развала Советского Союза отказалась от ядерного оружия. Сегодня из всех бывших республик СССР подобное вооружение есть только у России, которая является правопреемницей уже несуществующего государства.

 

Главный результат появления водородных бомб

«Водородная бомба, о появлении которой в январе 1963 года объявил Хрущёв, как мне кажется, перевернула сознание военно-политических элит обоих государств. Москве и Вашингтону стало понятно, что какие бы ни были противоречия, такое оружие нельзя применять. Это стало стимулом для переговоров и заключения соглашений об ограничениях, связанных с военным атомом», – отметил главный результат появления термоядерного оружия в мире историк Юрий Мелконов.

 

Запрет ядерного оружия

7 июля 2017 года был подписан Договор о запрещении ядерного оружия. В силу он вступит совсем скоро – 22 января 2021 года, через два дня после инаугурации Джо Байдена. В 1968 году был подписан Договор о нераспространении ядерного оружия, участниками которого являются почти все страны мира, кроме Израиля, Индии, Пакистана, КНДР и Южного Судана.

С развитием технологий растет и мощность ядерного оружия. После ошеломляющих успехов США и СССР в середине XX века в рамках испытаний термоядерного оружия, человечество, стоит надеяться, поняло, какую разрушительную силу имеет этот тип оружия. Благодаря имеющемуся ядерному потенциалу мир не погрузился в новую мировую войну, предпосылки к началу которой назревают уже очень давно. Именно благодаря ядерному оружию России удалось сохранить свой суверенитет и не допустить в страну иностранных интервентов, что произошло с развалом Российской империи. 

Фото: из открытых источников

Чем отличается ядерная бомба от атомной.

Какой принцип работы водородной бомбы? Чем водородная бомба отличается от атомной

Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия — ядерной бомбы . С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью.

Чем отличается водородная бомба от ядерной

Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения. Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран:

  • Ядерная (атомная) бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга.
  • Водородная (термоядерная) бомба. Энергия выделяется на основе синтеза ядер водорода (отсюда пошло и название). Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы.

Что мощнее: ядерная или водородная бомба?

Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз . Даже трудно представить, что было бы с Хиросимой (да и с самой Японией), если бы в брошенной на нее 20-ти килотонной бомбе был водород.

Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн:

  • Огненный шар : диаметр в 4,5 -5 километра в диаметре.
  • Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров.
  • Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.
  • Ядерный гриб : высота более 70 км в высоту, радиус шапки — около 50 км.

Атомные бомбы такой мощности еще ни разу не взрывали. Есть показатели бомбы сброшенной на Хиросиму в 1945 году, но своими размерами она значительно уступала водородному разряду описанному выше:

  • Огненный шар : диаметр около 300 метров.
  • Ядерный гриб : высота 12 км, радиус шапки — около 5 км.
  • Энергия : температура в центре взрыва достигала 3000С°.

Сейчас на вооружении ядерных держав стоят именно водородные бомбы . Кроме того, что они опережают по своим характеристикам своих «малых братьев », они значительно дешевле в производстве.

Принцип действия водородной бомбы

Разберем пошагово, этапы приведения в действие водородных бомб :

  1. Детонация заряда . Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде.
  2. Расщепление лития . Под воздействием нейтронов, литий расщепляется на гелий и тритий.
  3. Термоядерный синтез . Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв.

Принцип действия атомной бомбы

  1. Детонация заряда . В оболочке бомбы находится несколько изотопов (уран, плутоний и т.п.), которые поле детонации распадаются и захватывают нейтроны.
  2. Лавинообразный процесс . Разрушение одного атома, инициируют к распаду еще нескольких атомов. Идет цепной процесс, который влечет за собой к разрушению большого количества ядер.
  3. Ядерная реакция . За очень короткое времени все части бомбы образуют одно целое, и масса заряда начинает превышать критическую массу. Освобождается огромное количество энергии, после этого происходит взрыв.

Опасность ядерной войны

Еще в середине прошлого века опасность ядерной войны была маловероятна. В своем арсенале атомное оружие имели две страны — СССР и США. Лидеры двух супердержав прекрасно понимали опасность применения оружия массового поражения, и гонка вооружений велась, скорее всего, как «соревнующее» противостояние.

Безусловно напряженные моменты в отношении держав были, но здравый смысл всегда брал верх над амбициями.

Ситуация изменилась в конце 20 века. «Ядерной дубинкой» завладели не только развитые страны западной Европы, но и представители Азии.

Но, как вы наверное знаете, «ядерный клуб » состоит из 10 стран. Неофициально считается, что ядерные боеголовки имеет Израиль, и возможно Иран. Хотя последние, после наложения на них экономических санкций, отказались от развития ядерной программы.

После возникновения первой атомной бомбы, ученые СССР и США начали думать об оружии, которое бы не несло такие большие разрушения и заражения территорий противника, а целенаправленно действовало на организм человека. Возникла идея о создании нейтронной бомбы .

Принцип действия заключается во взаимодействии нейтронного потока с живой плотью и военной техникой . Образованные радиоактивнее изотопы моментально уничтожают человека, а танки, транспортеры и другое оружие на кратковременное время становятся источниками сильного излучения.

Нейтронная бомба взрывается на расстоянии 200 метров до уровня земли, и особенно эффективна при танковой атаке противника. Броня военной техники толщиной в 250 мм, способна уменьшить действия ядерной бомбы в разы, но бессильна перед гамма-излучениями нейтронной бомбы. Рассмотрим действия нейтронного снаряда мощностью до 1 килотонна на экипаж танка:

Как вы поняли, отличие водородной бомбы от атомной огромна. Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз .

При использовании термоядерной бомбы в 1 мегатонн, в радиусе 10 километров будет уничтожено все. Пострадают не только постройки и техника, но и все живое.

Об этом должны помнить главы ядерных стран, и использовать «ядерную» угрозу исключительно как сдерживающий инструмент, а не в качестве наступательного оружия.

Видео о различиях атомной и водородной бомбы

На этом видео будет подробно и пошагово описан принцип действия атомной бомбы, а также основные отличия от водородной:

В СМИ часто можно услышать громкие слова о ядерном оружии, но очень редко уточняется разрушительная способность того или иного взрывного заряда, поэтому как правило в один ряд ставятся термоядерные боеголовки мощностью в несколько мегатонн и атомные бомбы, сброшенные на Хиросиму и Нагасаки в конце второй мировой войны, мощность которых составляла всего от 15 до 20 килотонн, то есть в тысячу раз меньше. Что же стоит за этим колоссальным разрывом в разрушительной способности видов ядерного оружия?

Стоит за этим разная технология и принцип заряда. Если устаревшие «атомные бомбы», вроде тех, что были сброшены на Японию, работают на чистом делении ядер тяжелых металлов, то термоядерные заряды представляют из себя «бомбу в бомбе», наибольшее действие которой создает синтез гелия, а распад ядер тяжелых элементов является лишь детонатором этого синтеза.

Немного физики: тяжелые металлы – это чаще всего или уран с высоким содержанием изотопа 235 или плутоний 239. Они радиоактивны и их ядра не стабильны. Когда концентрация таких материалов в одном месте резко возрастает до определенного порога, происходит самоподдерживающаяся цепная реакция, когда нестабильные ядра, разрушаясь на части, провоцируют такой же распад соседних ядер своими осколками. При этом распаде выделяется энергия. Много энергии. Так работают взрывные заряды атомных бомб, а также ядерные реакторы АЭС.

Что касается термоядерной реакции или термоядерного взрыва, то там ключевое место отводится совсем иному процессу, а именно – синтезу гелия. При высоких температурах и давлении происходит так, что сталкиваясь, ядра водорода слипаются, создавая из себя более тяжелый элемент – гелий. При этом также выделяется огромное количество энергии, чему свидетельство – наше Солнце, где постоянно происходит этот синтез. В чем преимущества термоядерной реакции:

Во-первых, нет ограничения в возможной мощности взрыва, ведь он зависит исключительно от количества материала, из которого осуществляется синтез (чаще всего в качестве такого материала используют дейтерид лития).

Во-вторых, нет продуктов радиоактивного распада, то есть тех самых осколков ядер тяжелых элементов, что существенно снижает радиоактивное загрязнение.

Ну и в третьих, нет тех колоссальных сложностей в производстве взрывного материала, как в случае с ураном и плутонием.

Есть, правда, минус: требуется огромная температура и невероятное давление для начала такого синтеза. Вот для создания этого давления и жара, как раз требуется детонирующий заряд, работающий по принципу обыкновенного распада тяжелых элементов.

В заключении хочется сказать, что создание той или иной страной взрывного ядерного заряда чаще всего означает маломощную «атомную бомбу», а не действительно страшную и способную стереть с лица земли большой мегаполис термоядерную.

Северная Корея заявила об успешном проведении испытаний водородной бомбы. разобралась, чем это оружие отличается от атомной бомбы.

В воскресенье, 3 сентября, Северная Корея объявила о проведении испытания усовершенствованной водородной бомбы, также известной как термоядерная бомба. Тем самым Пхеньян отошел от экспериментов с ядерным оружием первого поколения. В чем же разница между атомной и более совершенной водородной бомбой?

Процесс детонации

Фундаментальное различие состоит в процессе детонации. Взрывная сила атомной бомбы — такой, которая была сброшена на Хиросиму и Нагасаки, — это результат внезапного высвобождения энергии, которое происходит вследствие расщепления ядра тяжелого химического элемента, например, плутония. Это процесс деления.

Через несколько лет после создания в США первой атомной бомбы, испытания которой прошли в штате Нью-Мексико, американцы разработали оружие, действие которого было основано на той же технологии, но с усовершенствованным процессом детонации для более сильного взрыва. Это оружие впоследствии получило название термоядерной бомбы.

Процесс детонации такого оружия состоит из нескольких этапов и начинается с детонации атомной бомбы. В результате этого первого взрыва возникает температура в несколько миллионов градусов. Это создает достаточно энергии для сближения двух ядер настолько, чтобы они могли соединиться. Эта вторая стадия называется синтезом.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим. Триггер — это небольшой плутониевый ядерный заряд с усилением мощностью в несколько килотонн. Назначение триггера — создать необходимые условия для инициирования термоядерной реакции — высокую температуру и давление.

Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и, расположенный по оси контейнера, плутониевый стержень, играющий роль запала термоядерной реакции. Оболочка контейнера может быть изготовлена как из урана-238 так и из свинца.

Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

При взрыве триггера 80 % энергии выделяется в виде мощного импульса мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени и пластиковым наполнителем, который превращается в высокотемпературную плазму под большим давлением. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе с давлениями света и плазмы обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до огромных температур.

Однако давление и температура ещё недостаточны для запуска термоядерной реакции, создание необходимых условий обеспечивает плутониевый стержень, который в результате сжатия переходит в надкритическое состояние — начинается ядерная реакция внутри контейнера. Испускаемые плутониевым стержнем в результате деления ядер плутония нейтроны взаимодействуют с ядрами лития-6, в результате чего получается тритий, который далее взаимодействует с дейтерием.

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Форма играет роль

По словам экспертов, последняя бомба, испытанная Северной Кореей, значительно отличалась от предыдущих и представляла собой разделенное на камеры устройство. Это позволяет предположить, что речь идет о двухступенчатой водородной бомбе.

«На фотографиях видна более завершенная форма возможной водородной бомбы, где первичная атомная бомба и вторичная стадия синтеза скомбинированы друг с другом в форме песочных часов», — объяснил Ли Чун Гуан, старший научный сотрудник южнокорейского государственного Института научных и технологических проблем.

Разная мощность

Мощность термоядерной бомбы может в сотни тысяч раз превышать мощность атомной бомбы. Взрывная сила последней часто рассчитывается в килотоннах. Одна килотонна равна тысяче тонн в тротиловом эквиваленте. Единица измерения мощности термоядерной бомбы — мегатонна, или миллион тонн в тротиловом эквиваленте.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв.

Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и .

Немного о терминологии и принципах работы в картинках

Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.

Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.

Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента — дейтерий и тритий:

  • Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород;
  • Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.

Испытания термоядерной бомбы

, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.

Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва.

Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы

Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Радиоактивные осадки, которые неумолимо выпадут на цель сброса, увеличиваются на 1000%. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета.

Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых:

  1. Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.
  2. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было.
  3. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета.
  4. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах.
  5. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения.
  6. Те, кто выживут, не переживут последнего периода — необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа.

Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи — Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир.

Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана.

Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект.

Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба — это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества. Хотя между такими зарядами, как атомная и ядерная бомба различия есть, действие обеих разрушительно для всего живого.

Согласно сообщениям новостей, Северная Корея угрожает протестировать водородную бомбу над Тихим океаном. В ответ президент Трамп назначает новые санкции для частных лиц, компаний и банков, которые ведут бизнес с страной.

«Я думаю, что это может быть испытание водородной бомбы на беспрецедентном уровне, возможно, над Тихоокеанским регионом», — сказал на этой неделе в ходе встречи на Генеральной Ассамблее Организации Объединенных Наций в Нью-Йорке министр иностранных дел Северной Кореи Ри Йонг Хо. Ри добавил, что «это зависит от нашего лидера».

Атомная и водородная бомба: отличия

Водородные бомбы или термоядерные бомбы являются более мощными, чем атомные или «делящие» бомбы. Отличия между водородными бомбами и атомными бомбами начинается с атомного уровня.

Атомные бомбы, как и те, которые использовались для опустошения японских городов Нагасаки и Хиросимы во время Второй мировой войны, работают путем расщепления ядра атома. Когда нейтроны или нейтральные частицы ядра расщепляются, некоторые попадают в ядра соседних атомов, разделяя их тоже. Результатом является очень взрывная цепная реакция. По данным Союза ученых, бомбы упали на Хиросиму и Нагасаки с мощностью 15 килотонн и 20 килотонн т. э.

Напротив, первое испытание термоядерного оружия или водородной бомбы в Соединенных Штатах в ноябре 1952 года привело к взрыву порядка 10 000 килотонн тротила. Термоядерные бомбы начинаются с той же реакции деления, которая управляет атомными бомбами, — но большая часть урана или плутония в атомных бомбах фактически не используется. В термоядерной бомбе дополнительный шаг означает, что появляется больше взрывной мощности бомбы.

Во-первых, воспламеняющийся взрыв сжимает сферу плутония-239, материал, который затем будет делиться. Внутри этой ямы плутония-239 находится камера газообразного водорода. Высокие температуры и давления, создаваемые делением плутония-239, заставляют атомы водорода сливаться. Этот процесс синтеза высвобождает нейтроны, которые возвращаются в плутоний-239, расщепляя больше атомов и усиливая цепную реакцию деления.

Ядерные ипытания

Правительства во всем мире используют глобальные системы мониторинга для обнаружения ядерных испытаний в рамках усилий по обеспечению соблюдения Договора о всеобъемлющем запрещении ядерных испытаний 1996 года. Есть 183 участника этого договора, но он не действует, поскольку ключевые страны, включая Соединенные Штаты, не ратифицировали его. С 1996 года Пакистан, Индия и Северная Корея провели ядерные испытания. Тем не менее в договоре была введена система сейсмического мониторинга, которая может отличать ядерный взрыв от землетрясения. Международная система мониторинга также включает в себя станции, которые обнаруживают инфразвук — звук, частота которого слишком низкая для ушей человека для обнаружения взрывов. Восемьдесят станций радионуклидного мониторинга по всему миру измеряют атмосферные осадки, которые могут доказать, что взрыв, обнаруженный другими системами мониторинга, был по сути ядерным.

«Годзилла» была метафорой Хиросимы, и Голливуд обелил ее.

Когда в 1954 году чудовище Годзилла, или «Годзира», предстало перед японской киноаудиторией, многие покинули кинотеатры в слезах.

Вымышленное существо, гигантский динозавр, когда-то безмятежный в океане, был изображен в оригинальном фильме как пострадавший от водородной бомбы. Считалось, что его сильно морщинистая кожа или чешуя напоминают келоидные шрамы выживших после двух атомных бомб, которые американцы взорвали.С. обрушился на Японию девятью годами ранее, чтобы положить конец Второй мировой войне.

Американские зрители, однако, отреагировали противоположным образом, найдя комическую ценность в том, что многие интерпретировали как дрянной фильм о монстрах.

«Большинство американцев думают, что если вы вышли из фильма в слезах, то только потому, что так сильно смеялись», — сказал NBC Asian America Уильям Цуцуи, автор книги «Годзилла в моих мыслях: пятьдесят лет короля монстров».

Резкий контраст отражает то, как Голливуд взял японскую концепцию и очистил ее от политического посыла, прежде чем представить ее американской аудитории, чтобы отвлечься от американской.С. решение сбросить бомбы, говорят критики.

В этом месяце исполняется 75 лет со дня американских бомбардировок Хиросимы 6 августа и Нагасаки тремя днями позже, и хотя многие американцы сегодня считают этот фильм почти манерным пережитком своего времени, в Японии он задумывался как метафора бед атомных испытаний и применения ядерного оружия, учитывая то, что Япония пережила после бомбардировок. По словам Цуцуи, фильм послужил сильным политическим заявлением, отражающим травмы и тревоги японского народа в эпоху, когда в Японии была широко распространена цензура из-за американской оккупации страны после окончания войны.На экране было изображено то, что многие не могли сказать в явном виде.

«Японские художники, кинорежиссеры, писатели и так далее действительно не могли говорить об атомных бомбардировках. Это была тема, которую нельзя было обсуждать. И японцы тоже очень сдержанно обсуждали эту трагедию, потому что она была такой ужасной, и потому что они испытывали чувство вины и стыда за те события», — сказал Цуцуи. «Но когда японцы вернули себе независимость и пока кинематографисты думали о гигантских монстрах, люди начали думать о связи между чудовищем и атомной бомбардировкой.

В оригинальном японском фильме существо изображалось как выживший динозавр Юрского периода, плававший вокруг южной части Тихого океана. Цуцуи описывает монстра как «невинного, как дети на детских площадках в Хиросиме». После испытания американской водородной бомбы в южной части Тихого океана существо стало излучающим, обиженным и разозленным.

«Реальность — это своего рода ярость, которая исходит от кого-то, по сути невинного, который так пострадал и травмирован этим опытом», — сказал ученый.

По словам ученого, для многих японских зрителей просмотр фильма стал катарсическим, подтверждающим опытом. Люди смогли снова стать свидетелями разрушения Токио, увидев радиацию, принявшую физическую форму монстра. Концовка, хотя и горько-сладкая, вселяет надежду, в которой человечество побеждает зло.

Однако американские зрители увидели другой фильм, когда он был представлен в США как «Годзилла, король монстров!» Примерно два года спустя, сказал Цуцуи. Фильм был сильно отредактирован, и в центре адаптации был поставлен белый актер Рэймонд Берр.Ученый отметил, что примерно 20 минут оригинального японского фильма, в основном политически мотивированные части, были вырезаны из американской версии.

«Годзилла, король монстров» с Рэймондом Бёрром в главной роли в фильме ужасов 1956 года. Universal History Archive / via Getty Images как острая финальная строка в оригинале, где профессор биологии доктор Ямане предупреждает, что, если ядерные испытания не прекратятся, может появиться еще один Годзилла.Цуцуи указал, что версия для США закончилась на солнечной ноте, что мир снова в безопасности и может вернуться к нормальной жизни.

В более поздних адаптациях было восстановлено немногое из первоначального смысла фильма. Например, в фильме «Годзилла» 1998 года с Мэтью Бродериком в главной роли существо было создано в результате испытания атомной водородной бомбы французами, а не американцами в Полинезии. В фильмах о Годзилле, выпущенных продюсерской компанией Legendary, монстр изображается как доисторический динозавр, который появился из-под земли и должен быть уничтожен ядерными бомбами, что делает его «почти гуманитарным жестом по спасению мира от монстров», — сказал Цуцуи. .

По его словам, стремление США отрицать свою травмирующую историю в Японии сохраняется.

«Они до сих пор не могут осознать ядерную проблему и причастность Америки к атомным бомбардировкам Хиросимы и Нагасаки», — отметил Цуцуи относительно более поздних американских адаптаций.

Когда в 1956 году такие издания, как The New York Times, рецензировали фильм, он был описан как «относящийся к категории дешевого кинематографического ужастика, и очень плохо, что респектабельному театру приходится заманивать детей и доверчивых взрослых такой платой за проезд». .Преднамеренный эстетический выбор, который создатели оригинального фильма сделали в отношении келоидных шрамов существа, был даже истолкован как малобюджетный японский фильм, а критики в то время сравнивали монстра с «миниатюрой динозавра, сделанной из резиновых туфель и стоимостью около 20 долларов». игрушечных зданий и электропоездов».

По словам Цуцуи, Голливуд в конечном счете стремился очистить фильм и снять вину со взрывов в США.

«Конечно, все фрагменты, которые так или иначе могли быть истолкованы как критические по отношению к Соединенным Штатам или ядерным испытаниям, были действительно вычеркнуты из фильма», — сказал Цуцуи.«Поэтому глубокий политический смысл и большая часть сердца оригинальной «Годзиллы» были вырезаны для американской аудитории».

Кадзу Ватанабэ, руководитель отдела кинематографии Японского общества, высказал аналогичные мысли, заявив, что адаптация для США способствовала искажению и искажению взглядов американцев на Японию в то время.

«Эти фильмы о Годзилле не были восприняты одинаково — в Японии ранние фильмы были крупнобюджетными, крупными студийными фильмами с участием некоторых узнаваемых звезд, в то время как в США.S. они были больше похожи на низкопробные фильмы категории B, японские фильмы о монстрах с забавным дубляжом, которые способствовали пониманию востоковедом японской культуры в Америке в целом», — сказал он.

То, как фильм прошел еще один уровень цензуры, прежде чем он был представлен американской аудитории, объяснил Цуцуи, показывает, насколько чувствительны люди к присущей атомным бомбардировкам бесчеловечности.

«Они усердно работали, чтобы защитить американскую общественность от правды о том, что на самом деле американцы, которые смотрели фильм, никогда не имели возможности осмысленно на него отреагировать.

Годзира, он же: Годзилла, Япония, около 1954 года, фото FilmPublicityArchive/)United Archives / via Getty Images — сказал Цуцуи. Продюсер Tomo Studios Танака Томоюки был вдохновлен взрывами в Хиросиме и Нагасаки, а также так называемым «Инцидентом счастливого дракона № 5» в марте 1954 года, когда японское рыбацкое судно сбилось с пути в Южную Америку.S. Полигон для испытаний водородных бомб на атолле Бикини. Экипаж на борту был впоследствии облучен, один из них умер от радиационного отравления.

Продюсер представил концепцию радиационного монстра, который поднимается из океана, чтобы атаковать людей. Эта идея нашла отклик у его начальства, и они связали его с очень уважаемым японским режиссером Иширо Хондой, который был пацифистом и был заинтересован в создании фильма. Сам Хонда воевал на войне в Китае и по возвращении на родину проехал через Хиросиму, оставив после себя леденящие кровь воспоминания об этом районе.

«Как американцы сделали со многими японскими солдатами, возвращающимися на родину, они высадили их в Хиросиме, чтобы японские солдаты увидели, насколько полностью побеждена Япония», — сказал Цуцуи. «На него на всю жизнь повлияли ужасы увиденного, и он решил, что у него есть возможность с помощью этого фильма задать важный политический посыл».

Годзилла (он же «годзира», постер, он же «ГОДЗИЛЛА, КОРОЛЬ МОНСТРОВ»), вверху слева: Акихико Хирата; мужчина в центре: Фуюки Мураками; как «Годзилла»: Хароу Накадзима и Кацуми Тэдзука; внизу слева, слева направо: Момоко Кочи, Акира Такарада, 1954 год.LMPC via Getty Images. Пикачу, — сказал он. Он добавил, что по-прежнему видит значительный фандом, который появляется на просмотрах и показах старых фильмов «Годзилла».

Но это не означает, что исходное сообщение существа не имеет значения. Ватанабэ сказал, что это по-прежнему мощное изображение спустя три четверти века после того, как два японских города были опустошены бомбардировками.

«Пока существует ядерное оружие или ядерная энергия, Годзилла никогда не будет неактуален», — сказал Ватанабэ. «Годзилла напоминает нам, что у нас есть ужасная сила создавать собственных монстров и способствовать собственному уничтожению».

Командующий ядерными силами США говорит, что предполагается, что Северная Корея испытала водородную бомбуГенерал С., который курирует ядерные силы Америки, заявил в четверг, что он делает предположение, что Северная Корея действительно провела испытания водородной бомбы 3 сентября, перешагнув ключевой рубеж в своих усилиях по разработке оружия.

ФОТОГРАФИЯ: генерал ВВС США Джон Хайтен, командующий Стратегическим командованием США, дает показания на слушаниях в Сенатском комитете по вооруженным силам на Капитолийском холме в Вашингтоне, США, 4 апреля 2017 г. REUTERS/Yuri Gripas

Хотя Пхеньян немедленно заявил об этом успешно испытал водородную бомбу, Соединенные Штаты ранее отказались охарактеризовать ее.

Генерал ВВС Джон Хайтен, глава Стратегического командования вооруженных сил США, однако, сказал, что он, как военный офицер, ответственный за реагирование на испытания, обязан предположить, что это была водородная бомба, основываясь на размере бомбы. взрыв.

«Я предполагаю, что это была водородная бомба. Я должен сделать это предположение как военный», — сказал Хайтен небольшой группе репортеров, сопровождавших министра обороны Джима Мэтти в поездке в штаб-квартиру Хайтена в Небраске.

«Я не ученый-ядерщик, поэтому я не могу сказать вам, как это работало, это то, чем была бомба. … Но я могу сказать вам, что размер, который мы наблюдали и видели, как мне кажется, указывает на то, что это была водородная бомба, и я должен выяснить, каков правильный ответ с нашими союзниками в отношении такого рода события».

Северокорейское ядерное испытание, шестое и, безусловно, самое мощное, побудило Совет Безопасности ООН ужесточить санкции. Это последовало за серией северокорейских ракетных испытаний, в том числе над Японией и над Японией. С. оценивается как межконтинентальная баллистическая ракета (МБР).

Военные Южной Кореи заявили вскоре после выступления Хайтена, что Северная Корея запустила неопознанную ракету в восточном направлении из района Сунан в своей столице Пхеньяне.

Водородная бомба обычно использует первичную атомную бомбу, чтобы вызвать вторичный, гораздо более мощный взрыв.

Такое оружие, первая ступень которого основана на ядерном делении — расщеплении атомов, а вторая — на ядерном синтезе, производит взрыв гораздо большей мощности, чем традиционные атомные бомбы или устройства «чистого деления».

«Однозначное разрушение и ущерб, которые вы можете создать с помощью оружия такого размера, вызывают серьезную озабоченность», — сказал Хайтен.

Хайтен сказал, что, несмотря на ядерные и ракетные испытания, Северная Корея до сих пор не продемонстрировала, что у нее есть надежная межконтинентальная баллистическая ракета, способная доставить ядерную боеголовку.

Но он отметил, что достижение этого учеными лишь вопрос времени, учитывая темпы испытаний.

«Это вопрос времени, а не если», — сказал он, добавив, что это могут быть месяцы или годы.

Эксперты сомневаются, что президент Дональд Трамп, как и его предшественники, сможет заставить Северную Корею отказаться от своей ядерной программы путем экономического или дипломатического давления.

Нынешние и бывшие официальные лица США отказались комментировать оперативное планирование, но признают, что ни один из существующих планов превентивного удара не может обещать предотвратить жестокую контратаку Северной Кореи, у которой тысячи артиллерийских орудий и ракет направлены на Сеул.

Это поднимает вопрос о том, смогут ли Соединенные Штаты жить с ядерной угрозой со стороны Северной Кореи.

Высокопоставленный чиновник администрации Трампа, беседуя с журналистами на прошлой неделе на условиях анонимности, сказал, что неясно, можно ли применить модель сдерживания времен холодной войны, которую Вашингтон использовал в отношении Советского Союза, к государству-изгою, такому как Северная Корея, добавив: «Я не думаю, что президент хочет рискнуть».

Хайтен, который будет командовать силами США в ядерной войне, выразил уверенность в ядерном сдерживании США.

«Можем ли мы удержать Северную Корею от развития возможностей, которые потенциально могут угрожать нам? Это другой вопрос», — сказал он.

«Но имею ли я, Стратегическое командование США, возможность для Соединенных Штатов удержать противника от нападения на Соединенные Штаты с применением ядерного оружия? да. Потому что они знают, что ответом будет уничтожение всей их нации».

Дополнительный репортаж Джека Кима и Кристин Ким из Сеула, репортаж Фила Стюарта; Под редакцией Дэвида Грегорио и Синтии Остерман

Северная Корея только что испытала водородную бомбу? | Ядерное оружие

Ядерные испытания Северной Кореи вызвали сотрясение во всем мире.Ударные волны были впервые зафиксированы на сейсмической станции в 230 милях от Муданьцзяна, Китай, где игла пришла в действие менее чем через минуту после взрыва. Через несколько секунд толчки достигли инструментов в Южной Корее и Японии, а в течение 12 минут были обнаружены в Канаде, Австралии и в обсерватории Эскдалемюр в Шотландии.

Более 130 станций зафиксировали ударные волны, которые через 20 минут достигли Аргентины в 12 000 миль от полигона.

На основании силы толчков, эквивалентной магнитуде 6.3 землетрясения, по данным Геологической службы США, специалисты по ядерному оружию оценили мощность бомбы примерно в 100 килотонн. Это примерно в 10 раз мощнее, чем предыдущие ядерные бомбы, испытанные северокорейцами, включая то, что было заявлено как еще одна водородная бомба на том же объекте в Пунгери в январе 2016 года. Аналитики скептически относятся к тому, что в испытаниях 2016 года использовалась водородная бомба, потому что высвобожденная энергия была сравнительно небольшой, но последнее испытание оставляет меньше места для сомнений, по словам Энн Стрёммен Ликке из Норсара, норвежского центра, ответственного за обнаружение ядерных испытаний.

«Одним только сейсмическим сигналом невозможно отличить обычный атомный взрыв от водородной бомбы, но когда он такой большой, как этот, достоверность заявления о том, что это водородная бомба, резко возрастает», — сказала она. сказал.

Водородные бомбы могут быть намного мощнее обычных атомных бомб. В обычных атомных бомбах взрыв производится за счет разрыва атомов надвое. Но процесс деления неэффективен, а бомбы, как правило, большие и тяжелые.Вместо этого водородные бомбы сплавляют атомы водорода вместе, чтобы создать более тяжелые элементы, и этот процесс высвобождает гораздо больше энергии.

На изображениях, опубликованных Северной Кореей, Ким Чен Ын осматривает устройство или, возможно, модель бомбы перед диаграммой, предполагающей, что она была достаточно мала, чтобы поместиться в носовой обтекатель межконтинентальной баллистической ракеты.

Ким Чен Ын осматривает устройство или, возможно, модель бомбы перед диаграммой, предполагающей, что ее размер может быть достаточно мал, чтобы поместиться в межконтинентальную баллистическую ракету.Фото: KCNA/EPA Фото: STR/AFP/Getty Images

Если бы северокорейцы построили водородную бомбу мощностью 100 килотонн, ее взрывная мощность превзошла бы мощность ядерных бомб США, сброшенных на Японию в 1945 году. до 20 килотонн.

Помимо более очевидной разрушительной силы, водородная бомба может быть взорвана в атмосфере, чтобы выпустить массивный электромагнитный импульс, выводящий из строя электрические устройства.

Лучшая надежда на подтверждение заявлений Северной Кореи об испытаниях водородной бомбы исходит от станций обнаружения по всему миру, которые обнаруживают радиоактивное загрязнение, выделяемое ядерными взрывами.

Водородные бомбы производят всевозможные радиоактивные элементы, но наблюдатели будут специально искать изотопы газа под названием ксенон, которые могут нести признаки реакции водородной бомбы. В зависимости от ветра и других погодных условий газы могли быть обнаружены на станциях в Южной Корее, Японии, России и Китае.

Однако ответ не гарантируется. После испытания в январе 2016 года станции обнаружения не смогли обнаружить сигнатуру водородной бомбы, возможно, потому, что из подземного полигона просочилось очень мало газа.

«Радионуклиды будут зарегистрированы только в том случае, если произойдет утечка с объекта, и она распространится и попадет на станцию ​​мониторинга», — сказал Свейн Мюккельтвейт, специальный советник Norsar. «И даже если эти наблюдения будут сделаны в ближайшие дни, недели или месяцы, все еще остается вопрос, смогут ли специалисты определить разницу между ядерной и термоядерной бомбой».

Карта: Страны, предположительно испытавшие водородные бомбы

Известно, что США, Великобритания, Франция, Россия (как Советский Союз) и Китай проводили испытания водородного оружия.Все эти страны подписали Договор о нераспространении ядерного оружия (ДНЯО), соглашение, направленное на ограничение распространения ядерного оружия.

Считается, что Израиль, который не присоединился к ДНЯО, имеет тайную программу создания ядерного оружия. Некоторые подозревают , что Израиль провел ядерные испытания в 1979 году у берегов Южной Африки, хотя официального подтверждения так и не было, и многие эксперты по-прежнему настроены скептически. Союз обеспокоенных ученых заявил, что, по его мнению, у Израиля есть только бомбы деления, а не более мощные водородные бомбы.

История продолжается под рекламой

В 1996 году были завершены переговоры по Договору о всеобъемлющем запрещении ядерных испытаний. Хотя соглашение, направленное на запрещение испытаний ядерного оружия, не было ратифицировано многими странами и не вступило в силу, с тех пор большинство стран не проводили ядерных испытаний. Исключение составляют Индия, Пакистан и Северная Корея.

Индия провела пять ядерных испытаний в 1998 году. Хотя сообщалось, что испытания включали водородную бомбу, бывший координатор ядерной программы Индии заявил в 2009 году, что водородная бомба оказалась неразорвавшейся и «полностью не сработала.Пакистан провел ядерные испытания в 1998 году после Индии, но масштабы испытаний были оспорены, и Пакистан заявил, что оружие представляло собой устройства деления, а не водородные бомбы.

Что оставляет Северную Корею. Страна уже провела три ядерных испытания , но утверждает, что взрыв в среду был первым с применением водородной бомбы. Еще неизвестно, действительно ли он присоединился к небольшому клубу стран, которые, как подтверждено, проводили испытания водородной бомбы.

Ядерные испытания Северной Кореи: что такое водородная бомба? Это то же самое, что и термоядерное устройство? У кого еще есть ядерное оружие? | The Independent

Северная Корея заявила, что провела свое шестое и самое мощное ядерное испытание, что вызвало быстрое международное осуждение.

Север заявил, что взорвал усовершенствованную водородную бомбу, отметив важный шаг в достижении своей давней цели — разработке ракеты с ядерной боеголовкой, способной поразить крупный город США.

Эксперты, изучавшие воздействие землетрясения, вызванного взрывом, магнитудой 6,3, измеренным Геологической службой США, заявили, что имеется достаточно веских доказательств, чтобы предположить, что затворнический штат либо разработал водородную бомбу, либо был очень близок к этому.

Взрыв произвел в 10 раз больше энергии, чем пятое ядерное испытание год назад, заявили представители Южной Кореи и Японии.

Что такое водородная бомба?

Трамп, Мэй и другие мировые лидеры осуждают ядерные испытания Северной Кореи

Водородная бомба или водородная бомба — это разговорный термин для обозначения двухступенчатой ​​термоядерной бомбы, в которой первичная атомная бомба вызывает вторичный, гораздо более мощный взрыв .

Первая ступень основана на делении ядер, расщеплении атомов, а вторая основана на ядерном синтезе, производя гораздо более мощный взрыв, чем традиционные атомные бомбы.

Как только начинается ядерный синтез, создаются быстрые нейтроны, которые снова вызывают ядерное деление урана внутри бомбы, вызывая двойное и тройное количество взрывов, что значительно увеличивает ее взрывную мощность.

Что такое атомная бомба?

Ким Чен Ын проверяет оружие Северная Корея говорит, что это мощная водородная бомба

Показать все 6

1/6Ким Чен Ын проверяет оружие Северная Корея говорит, что это мощная водородная бомба

Ким Чен Ын осматривает оружие Северная Корея утверждает, что это мощная водородная бомба

Фотографии, опубликованные Северной Кореей, показывают, как Ким Чен Ын разговаривает с подчиненными рядом с устройством, которое считается новым термоядерным оружием. Нет возможности независимо проверить фотографии

STR/AFP/Getty Images

Ким Чен Ын осматривает оружие Северная Корея утверждает, что это мощная водородная бомба

Северная Корея утверждает, что успешно испытала усовершенствованную водородную бомбу, межконтинентальная баллистическая ракета

AFP/Getty

Ким Чен Ын осматривает оружие Северная Корея говорит, что это мощная водородная бомба

Схема на стене позади г-на Кима показывает бомбу, установленную внутри конуса

STR/AFP/Getty Images

Ким Чен Ын осматривает оружие КНДР утверждает, что это мощная водородная бомба Армия КНА в Пхеньяне

STR/AFP/Getty Images

Ким Чен Ын осматривает оружие Северная Корея говорит, что это мощная водородная бомба

A ne Марка w, выпущенная в ознаменование успешного второго испытательного запуска межконтинентальной баллистической ракеты «Хвасон-14»

KCNA via Reuters

Ким Чен Ын осматривает оружие Северная Корея заявляет, что это мощная водородная бомба

Новая марка, выпущенная в ознаменование успешный второй испытательный запуск межконтинентальной баллистической ракеты «Хвасон-14»

KCNA via Reuters

Атомные бомбы используют только ядерное деление, расщепление ядра атома, расщепление плутония и/или урана на более мелкие атомы в цепной реакции, которая высвобождает огромное количество энергии.

Бомбы, сброшенные США на Хиросиму и Нагасаки во время Второй мировой войны, были атомными.

Есть ли у Северной Кореи водородная бомба?

Приблизительная дальность ракет Северной Кореи

За несколько часов до последнего испытания государственные СМИ Северной Кореи опубликовали фотографии лидера Ким Чен Ына, осматривающего устройство в форме арахиса, которое, по его словам, было водородной бомбой, предназначенной для загрузки в новую межконтинентальную баллистическую ракету.

Удлиненная форма устройства демонстрирует заметное отличие от изображений шарообразного устройства, опубликованных Северной Кореей в марте прошлого года, и, по-видимому, указывает на появление двухступенчатого термоядерного оружия, считают эксперты.

Северокорейский институт ядерного оружия заявил, что испытание подтвердило функционирование водородной бомбы, включая «мощность деления на синтез и все другие физические характеристики, отражающие качественный уровень двухступенчатого термоядерного оружия», согласно официальному заявлению. информационное агентство KCNA.

Северная Корея впервые особо упомянула о возможности атаки электромагнитным импульсом или ЭМИ.

Такой удар будет включать в себя взрыв бомбы в атмосфере вместо запуска ракеты дальнего действия по крупному городу США.

У кого еще есть ядерные бомбы?

Северокорейцы реагируют на последние ядерные испытания

По оценкам Ассоциации по контролю над вооружениями, у США имеется 6800 ядерных боеголовок, а у России — около 7000.

Великобритания имеет около 120 ядерных ракет, из которых 40 развернуты в море на подводных лодках с баллистическими ракетами класса Vanguard, в то время как Франция имеет около 300 и Китай 270.

Индия и Пакистан, по оценкам, имеют около 120 ядерных ракет, и Израиль имея около 80.

Внезапный ядерный удар? Вот как мы выясним, кто это сделал | Наука

Прошлым летом в городе на восточном побережье США взорвалась атомная бомба, в результате которой погибли десятки тысяч человек, а нация погрузилась в отчаяние. Пока службы экстренного реагирования и военные боролись с последствиями, элитные группы ученых бросились анализировать взрыв, чтобы понять, какая именно бомба взорвалась и кто несет ответственность за этот акт.

Это было предпосылкой учений — первых в своем роде — проведенных в июле и августе 2015 года для проверки новой сети датчиков, которые будут собирать данные во время внезапного ядерного удара.Моделирование Mighty Sabre было отрезвляющим подтверждением убеждения многих экспертов в том, что нападение на территорию США более вероятно, чем когда-либо, но отследить ответственность будет намного сложнее, чем во время холодной войны, когда главной угрозой было уничтожение Советским Союзом. .

«Сценарий изменился», — говорит Томас Картледж, инженер-ядерщик из Агентства по уменьшению угрозы обороны США (DTRA) в Форт-Белвуар, штат Вирджиния. «Теперь, если вы увидите, как в Нью-Йорке появилось грибовидное облако, вы не узнаете, кто это сделал и какое оружие они использовали. «Возможности включают боеголовку, перенаправленную из арсенала США или ввезенную в страну контрабандой террористами, или бомбу, доставленную вражеским государством, таким как Северная Корея, которая угрожала нанести ядерный удар по Белому дому.

Возможная необходимость разоблачить преступника и Накопление ответа продвигает зарождающуюся область криминалистики после детонации. «Кто-то получит острый конец палки. Вы хотите убедиться, что его получит правильное лицо», — говорит Говард Холл, директор Института ядерной безопасности Университета Теннесси в Ноксвилле.Он и другие детективы-ядерщики разрабатывают новые датчики, производят искусственные радиоактивные осадки для оттачивания аналитических методов и изучают, как стекло, образовавшееся в печи атомного взрыва, будет меняться в зависимости от природы бомбы и города, где она взорвалась.

Наиболее вероятным сценарием ядерного терроризма, по мнению экспертов, является взрыв бомбы на улице города. Прошлый опыт дает лишь схематичную картину происходящего в результате опустошения. Атомные бомбы, которые Соединенные Штаты сбросили на Хиросиму и Нагасаки в 1945 году, взорвались примерно в 500 метрах над этими городами.В последующие полвека, пока Соединенные Штаты совершенствовали свой атомный арсенал, почти все испытания проводились в воздухе или под землей, а не в городских условиях. Исследователи действительно изучали радиоактивные осадки и то, как они образуются, но они искали подсказки о том, как предотвратить или облегчить лучевую болезнь, а не идентифицировать преступника. «Ученых не интересовало, какое устройство взорвалось, потому что они уже знали это», — говорит химик-аналитик Майкл Кристо, эксперт по ядерной криминалистике из Ливерморской национальной лаборатории Лоуренса в Калифорнии.

А. Куадра/ Наука

Тем не менее, программа испытаний была испытательным полигоном для постдетонационной криминалистики. Национальные лаборатории США «собрали несколько очень хороших радиохимических процедур для анализа обломков», — говорит радиохимик Холл. Осадки представляют собой смесь испарившейся среды — почвы и сооружений, которые находились вблизи места взрыва, — с добавлением продуктов деления (радиоизотопов, образующихся при делении делящихся материалов, таких как уран или плутоний), продуктов активации (радиоизотопов, образующихся, когда радиация взрыва трансмутирует экран и другие компоненты бомбы). ) и остаточный ядерный материал.Точные составляющие варьируются в зависимости от конструкции оружия — будь то, например, простое урановое устройство, запускаемое из пушки, или сложная водородная бомба.

«У каждого типа оружия есть свои отпечатки пальцев», — говорит Майкл Почет, инженер-электрик ВВС США, работающий в DTRA. В плутониевых бомбах, например, делящимся изотопом является плутоний-239, производимый в ядерных реакторах и извлекаемый путем переработки отработавшего топлива, которое содержит смесь изотопов плутония и других актиноидов, таких как америций.Обнаружение этих ядер указывает на то, что ядром бомбы был плутоний. Их пропорции дают ключ к разгадке истории бомбы, говорит Джоэл Уллом, физик из Национального института стандартов и технологий США в Боулдере, штат Колорадо, который вместе с коллегами из Лос-Аламосской национальной лаборатории в Нью-Мексико разработал сверхпроводящий датчик, который быстро дифференцирует изотопы плутония.

Соотношение между изотопами плутония и америцием-241, продуктом распада плутония-241, «может сказать вам, сколько времени прошло с момента химической очистки плутония», — говорит Уллом.Америций удаляется при переработке, поэтому по мере старения свежевыделенного плутония америций снова начинает накапливаться. Тем временем Холл разрабатывает более быстрые методы анализа лантаноидов, 15 редкоземельных элементов, которые вместе с радиоактивными актинидами являются ключевыми составляющими радиоактивных осадков. Смесь лантаноидов и актиноидов раскрывает информацию, например, о защите оружия и энергии нейтронов, которые его бомбардировали. Он намеревается разместить свой аппарат для разделения газовой фазы на «летучей лаборатории»: салазках, которые можно будет быстро развернуть в случае нападения.

Для проверки достоверности этих аналитических методов исследователи из Ливерморской и других национальных лабораторий производят суррогатные радиоактивные осадки, представляющие различные типы бомб. Ученые запустили в эксплуатацию Национальную установку зажигания в Ливерморе, один из самых мощных в мире лазеров, который Кристо называет «готовым источником» нейтронов с энергиями, сравнимыми с теми, которые образуются в реакциях синтеза дейтерия и трития, приводящих в действие водородную бомбу.

Команда Холла готовит еще один тип тестового образца для постдетонационной экспертизы: искусственное расплавленное стекло.Настоящая вещь образуется, когда атомный ад мгновенно расплавляет все, что имеет несчастье оказаться в эпицентре. Стекло меняется в зависимости от места взрыва, но разные характеристики бомбы также дают уникальные расплавленные стекла, которые дают подсказки о том, что произошло. Группа Холла разработала книгу рецептов расплавленного стекла для любого географического места на основе «ведьминского варева» делящегося материала бомбы и мощности взрывчатого вещества, ее точки детонации, а также местной геологии и строительных материалов.

Команда воспроизвела тринитит, зеленоватое стекло, оставшееся в результате теста Тринити, первый U.С. ядерный взрыв, который произошел в 1945 г. на ракетном полигоне Уайт-Сэндс в Нью-Мексико. Они также обожгли образцы для Хьюстона, штат Техас, где архитектура с преобладанием стекла превратилась бы в сероватое стекло, если бы его подвергли ядерной бомбардировке, и для Нью-Йорка, чья тяжелая железная конструкция приводит к более темному стеклу вулканического вида.

АТОМНЫЕ ВЗРЫВЫ ТАКЖЕ ВЫПУСКАЮТ электромагнитный импульс — блицкриг гамма-лучей, рентгеновских лучей и радиоволн, который мгновенно поджаривает большую часть ближайшей электроники — а также интенсивный свет, сейсмические волны, волны атмосферного давления и инфразвук.Все могут предоставить информацию о типе бомбы и ее происхождении. В 1940-х годах ученые начали разрабатывать датчики для улавливания этих сигналов, сначала в Уайт-Сэндс, а затем в первую очередь на полигоне в Неваде, где Соединенные Штаты взорвали 928 бомб.

В настоящее время DTRA возглавляет усилия правительства по модернизации этих датчиков и объединению их в массив под названием Discreet Oculus, который можно развернуть в городах и за их пределами. «Мы перенастроили датчики для городской среды, — говорит Картледж.Это потребовало разработки алгоритмов для учета того, как городские пейзажи отклоняют или поглощают различные типы волн, например, и фильтрации шума от таких источников, как метро, ​​вибрации которых могут мешать интерпретации вибраций от детонации.

Могучая Сэйбер решила проверить способность Discreet Oculus определять тип бомбы при внезапном нападении. Предпосылка учений заключалась в том, что бомба была изъята из арсенала США и взорвана. «Мы привлекли разработчиков оружия, чтобы посмотреть, что это будут за сигналы, — говорит Почет.В конце 2013 года несколько десятков экспертов начали составлять профиль радиоактивных осадков и моделировать, как волны будут распространяться и затухать в реальном городе США. DTRA не скажет, какой это был город; Картледж называет его Готэмом. «Ни один город не хочет знать, что его использовали в качестве модели для ядерной атаки», — говорит он.

На основе этих моделей DTRA отправило данные, имитирующие то, что датчики Discreet Oculus записали во время взрыва, в Центр технических приложений ВВС на базе ВВС Патрик во Флориде, который распространил их среди четырех групп экспертов из центра и США.С. национальные лаборатории. «Мы сказали: «Вот данные, идите и проведите анализ», — говорит Картледж. Задача состояла в том, чтобы идентифицировать бомбу, и время было решающим фактором. «В реальной жизни, — говорит Почет, — мы бы работали на время, стараясь не отставать от цикла новостей». Учения длились 25 дней; все четыре команды поняли это, говорит Картледж. Он не уточняет, как быстро, но говорит: «Нам нужно быть быстрее».

DTRA УЖЕ УСТАНОВИЛ Discreet Oculus в нескольких городах США, где проходят испытания массивов.Ожидается, что они будут введены в эксплуатацию и переданы ВВС США в 2018 году. DTRA также начала работу над портативной версией под названием Minikin Echo, которую можно будет использовать для таких мероприятий, как Олимпийские игры.

Хотя судмедэксперты вполне могут выявить конструкцию бомбы, само по себе это знание не всегда разоблачает преступника. Урановая бомба, запускаемая из огнестрельного оружия, например, может быть изготовлена ​​любой террористической группировкой со скромным технологическим опытом, такой как группировка «Исламское государство», при условии, что они могут завладеть несколькими килограммами высокообогащенного урана.Вот «где на помощь приходит информация», — говорит Холл. Но чтобы иметь шанс раскрыть детали ядерной атаки, следователи должны заложить научную основу, надеясь, что она никогда не понадобится.

Северная Корея успешно испытала водородную бомбу? — Quartz

Прошло более 10 дней с тех пор, как Северная Корея провела свое шестое и крупнейшее ядерное испытание. Институт ядерного оружия страны заявил, что это было успешное испытание водородной бомбы.

Мы до сих пор не знаем, верить заявлению или нет.Комиссия по ядерной безопасности Южной Кореи опубликовала отчет, в котором говорится, что, хотя она может подтвердить, что взрыв произошел от ядерного оружия, она не может сделать вывод, была ли это водородная бомба или нет.

«Я предполагаю, что это была водородная бомба, — сказал 14 сентября группе репортеров командующий ядерными силами США Джон Хайтен. — Я должен сделать это предположение как военный офицер». Через несколько часов Северная Корея запустила еще одну межконтинентальную баллистическую ракету (МБР), которая пролетела 3700 км над Японией и приземлилась в Тихом океане.

Как получается, что самые передовые страны мира, большинство из которых выступают против ядерных испытаний Северной Кореи, не могут сказать, был ли ядерный взрыв атомной или водородной бомбой?

Ответ важен, потому что водородная бомба на несколько порядков мощнее атомной. Что еще хуже, если у Северной Кореи есть технология для создания водородной бомбы, она может быть в состоянии создать усиленную атомную бомбу, в которой используется небольшая водородная бомба для увеличения мощности атомной бомбы, и которая может быть достаточно мала, чтобы поместить ее поверх атомной бомбы. в стране растет количество ракет большой дальности.

Что, вероятно, расстраивает, так это то, что законы химии, вероятно, гарантируют, что мир никогда не сможет узнать истинную химическую природу северокорейских бомб.

Атомная бомба использует силу расщепления больших атомов, таких как уран или плутоний. Во время ядерного «деления» образуется много типов маленьких атомов. Одним из них является радиоактивный газ ксенон, который всплывает наружу, даже если испытание проводилось под землей. Этот радиоактивный газ распадается очень быстро, и его обнаружение с помощью детекторов может точно сказать нам, когда были созданы атомы, и, таким образом, указать время атомной бомбы деления.

Возможности атомных бомб — две из которых уничтожили японские города Хиросиму и Нагасаки — меркнут перед водородной бомбой, которая использует способность синтезировать маленькие атомы для образования более крупных, таких как водород для образования гелия. Однако, чтобы запустить ядерный «синтез», водород должен быть сжат в очень ограниченном пространстве и нагрет до температур, существующих внутри Солнца. Это достигается путем создания снаружи небольшой бомбы деления, которая затем запускает реакцию синтеза.

Основным газом, образующимся при реакции синтеза, является гелий, и он ничем не отличается от обычного варианта. Таким образом, его нельзя использовать для обнаружения водородной бомбы. Однако может быть возможно обнаружить водородную бомбу на основе соотношения различных типов газа ксенона , образовавшегося во время взрыва. Как это делается, считается государственной тайной.

Мы не знаем, проводили ли эти тесты Южная Корея или США. Но не будет возмутительным предположить, что они попытаются сделать все возможное, чтобы установить природу ядерного оружия.Если они это сделали, но до сих пор не могут подтвердить это, тест с ксеноновым газом может не всегда работать, чтобы различать типы бомб.

Единственный верный способ различить два типа бомб — химически проверить место взрыва. Атомные и водородные бомбы, скорее всего, будут производить элементы в разных соотношениях, даже если для запуска последней нужна атомная бомба. Если Северная Корея не предоставит доступ к испытательному полигону, чего она явно не собирается делать, мир, возможно, не сможет сказать, является ли испытание Северной Кореей действительно большой атомной бомбой, водородной бомбой или усиленной атомной бомбой.

Однако в ядерной программе Северной Кореи есть одна проблема, которая может принести некоторое облегчение. Даже если у Северной Кореи есть водородная бомба, ей еще не удалось провести «возвратные испытания», чтобы убедиться, что такая бомба работает, когда ее помещают на межконтинентальные баллистические ракеты. Когда ракеты устремляются к своей цели, тепло, создаваемое атмосферой, может привести к выходу из строя ядерной боеголовки.

Согласно сейсмическим данным, последнее северокорейское ядерное испытание 3 сентября имело мощность от 50 килотонн в тротиловом эквиваленте (кт) до 250 кт.Таким образом, бомба может быть в 15 раз больше бомбы, уничтожившей Хиросиму, и это ужасно, независимо от того, какая это ядерная бомба.