Содержание

📌 Ромб — это… 🎓 Что такое Ромб?

Ромб (др.-греч. ῥόμβος, лат. rombus «бубен») — это четырёхугольник, у которого все стороны равны. Ромб является параллелограммом. Ромб с прямыми углами называется квадратом.

Этимология

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Кстати, название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства

  1. Ромб является параллелограммом. Его противолежащие стороны попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (AC ⊥ BD) и в точке пересечения делятся пополам.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).

Признаки

Параллелограмм является ромбом, если выполняется одно из следующих условий:

  1. Все его стороны равны ().
  2. Его диагонали пересекаются под прямым углом (AC⊥BD).
  3. Его диагонали делят его углы пополам.
  • Площадь ромба равна половине произведения его диагоналей.
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
  • Кроме того площадь ромба может быть вычислена по формуле:
,

где  — угол между двумя смежными сторонами ромба.

В геральдике

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

См. также

dic.academic.ru

Ромб — Википедия. Что такое Ромб

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD
    ) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки

Параллелограмм ABCD{\displaystyle ABCD} является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, AB=BC=CD=AD{\displaystyle AB=BC=CD=AD}).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4][5].

  • Площадь ромба равна половине произведения его диагоналей.
S=AC⋅BD2{\displaystyle S={\frac {AC\cdot BD}{2}}}
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
S=AB⋅HAB{\displaystyle S=AB\cdot H_{AB}}
  • Кроме того, площадь ромба может быть вычислена по формуле:
S=AB2⋅sin⁡α{\displaystyle S=AB^{2}\cdot \sin \alpha },

где α{\displaystyle \alpha } — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол α{\displaystyle \alpha }:
S=4r2sin⁡α{\displaystyle S={\frac {4r^{2}}{\sin \alpha }}}

Радиус вписанной окружности

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[6]

r=p⋅q2p2+q2.{\displaystyle r={\frac {p\cdot q}{2{\sqrt {p^{2}+q^{2}}}}}.}

В геральдике

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

Симметрия

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

  • Ромбический орнамент

  • Ромбические звёзды

  • Более сложный орнамент

  • Орнамент из ромбов и квадратов

См. также

Литература

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Примечания

  1. 1 2 Элементарная математика, 1976, с. 435..
  2. ↑ Элементарная математика, 1976, с. 435—436..
  3. ↑ Ромб // Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.
  4. ↑ Ромб // Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910
  5. ↑ Ромб // Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865
  6. Weisstein, Eric W. Rhombus (англ.) на сайте Wolfram MathWorld.

wiki.sc

Ромб — Википедия

Материал из Википедии — свободной энциклопедии

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки

Параллелограмм ABCD{\displaystyle ABCD} является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, AB=BC=CD=AD{\displaystyle AB=BC=CD=AD}).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4][5].

  • Площадь ромба равна половине произведения его диагоналей.
S=AC⋅BD2{\displaystyle S={\frac {AC\cdot BD}{2}}}
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
S=AB⋅HAB{\displaystyle S=AB\cdot H_{AB}}
  • Кроме того, площадь ромба может быть вычислена по формуле:
S=AB2⋅sin⁡α{\displaystyle S=AB^{2}\cdot \sin \alpha },

где α{\displaystyle \alpha } — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол α{\displaystyle \alpha }:
S=4r2sin⁡α{\displaystyle S={\frac {4r^{2}}{\sin \alpha }}}

Радиус вписанной окружности

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[6]

r=p⋅q2p2+q2.{\displaystyle r={\frac {p\cdot q}{2{\sqrt {p^{2}+q^{2}}}}}.}

В геральдике

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

Симметрия

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

  • Ромбический орнамент

  • Ромбические звёзды

  • Более сложный орнамент

  • Орнамент из ромбов и квадратов

См. также

Литература

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Примечания

  1. 1 2 Элементарная математика, 1976, с. 435..
  2. ↑ Элементарная математика, 1976, с. 435—436..
  3. ↑ Ромб // Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.
  4. ↑ Ромб // Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910
  5. ↑ Ромб // Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865
  6. Weisstein, Eric W. Rhombus (англ.) на сайте Wolfram MathWorld.

wikipedia.green

Ромб — Википедия

Материал из Википедии — свободной энциклопедии

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Видео по теме

Свойства

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки

Параллелограмм ABCD{\displaystyle ABCD} является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, AB=BC=CD=AD{\displaystyle AB=BC=CD=AD}).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4][5].

  • Площадь ромба равна половине произведения его диагоналей.
S=AC⋅BD2{\displaystyle S={\frac {AC\cdot BD}{2}}}
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
S=AB⋅HAB{\displaystyle S=AB\cdot H_{AB}}
  • Кроме того, площадь ромба может быть вычислена по формуле:
S=AB2⋅sin⁡α{\displaystyle S=AB^{2}\cdot \sin \alpha },

где α{\displaystyle \alpha } — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол α{\displaystyle \alpha }:
S=4r2sin⁡α{\displaystyle S={\frac {4r^{2}}{\sin \alpha }}}

Радиус вписанной окружности

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[6]

r=p⋅q2p2+q2.{\displaystyle r={\frac {p\cdot q}{2{\sqrt {p^{2}+q^{2}}}}}.}

В геральдике

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

Симметрия

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

  • Ромбический орнамент

  • Ромбические звёзды

  • Более сложный орнамент

  • Орнамент из ромбов и квадратов

См. также

Литература

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.

Примечания

  1. 1 2 Элементарная математика, 1976, с. 435..
  2. ↑ Элементарная математика, 1976, с. 435—436..
  3. ↑ Ромб // Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.
  4. ↑ Ромб // Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910
  5. ↑ Ромб // Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865
  6. Weisstein, Eric W. Rhombus (англ.) на сайте Wolfram MathWorld.

wiki2.red

Ромб — Традиция

Материал из свободной русской энциклопедии «Традиция»

У этого термина существуют и другие значения, см. Ромбик.

Ромб (греч. ρομβος) — это четырёхугольник, у которого все стороны равны. Ромб с прямыми углами называется квадратом.

Термин «ромб» образован от греч. ρομβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Кстати, название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

  1. Ромб является параллелограммом. Его противолежащие стороны попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (AC ⊥ BD) и в точке пересечения делятся пополам.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны,умноженному на четыре.

Параллелограмм \(ABCD\) является ромбом, если выполняется одно из следующих условий:

  1. Две его смежные стороны равны (\(AB=BC\)).
  2. Его диагонали пересекаются под прямым углом (AC⊥BD).
  3. Одна из его диагоналей является биссектрисой его угла (∠DCA = ∠BCA).

Радиус вписанной окружности[править]

r = h/2 = (a*sin(A))/2

Дополнительные формулы:

h = a*sin(A) = a*sin(B) = 2*r

Где:

a — сторона. h — высота. А — меньший угол. B — больший угол.

Площадь ромба равна половине произведения его диагоналей.
\(S=\frac{AC \times BD}{2}\)

Поскольку ромб является параллегограммом, его площадь также равна произведению его стороны на высоту.
\(S=AB \times H_{AB}\)


\(S=AB^2 \times \sin a\)

где \(a\) — угол между сторонами ромба.

traditio.wiki

Ромб — Википедия

Материал из Википедии — свободной энциклопедии

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология[ | ]

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства[ | ]

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки[ | ]

Параллелограмм ABCD{\displaystyle ABCD} является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, AB=BC=CD=AD{\displaystyle AB=BC=CD=AD}).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба[ | ]

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4][5].

  • Площадь ромба равна половине произведения его диагоналей.
S=AC⋅BD2{\displaystyle S={\frac {AC\cdot BD}{2}}}
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
S=AB⋅HAB{\displaystyle S=AB\cdot H_{AB}}
  • Кроме того, площадь ромба может быть вычислена по формуле:
S=AB2⋅sin⁡α{\displaystyle S=AB^{2}\cdot \sin \alpha }

encyclopaedia.bid

Ромб Википедия

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология[ | ]

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства[ | ]

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны, АВ || CD, AD || ВС.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки[ | ]

Параллелограмм ABCD{\displaystyle ABCD} является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, AB=BC=CD=AD{\displaystyle AB=BC=CD=AD}).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба[ | ]

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы

ru-wiki.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *