Ствол (оружейный) — это… Что такое Ствол (оружейный)?

У этого термина существуют и другие значения, см. Ствол. Учебная модель ствола нарезной 105 мм танковой пушки Ствол      Rohrlänge — длина ствола      Lauflänge — рабочая длина ствола

Ствол — основная часть огнестрельного оружия, предназначенная для бросания снаряда (мины, гранаты, пули) с определённой начальной скоростью и придания ему устойчивого полёта в желаемом направлении.

Ствол представляет собой трубу, внутренняя полость которой называется каналом. Канал ствола состоит из каморы, где помещается метательный заряд, и ведущей части. На наружной поверхности ствола, расположенной над каморой, раньше ставилось специальное клеймо, указывающее на принадлежность орудия государству (казне), поэтому за этой частью ствола исторически сохранилось название казённой. Противоположная часть ствола получила название дульной. Соответственно торцевые срезы ствола принято называть казённым и дульным. Расстояние между этими срезами называется

длиной ствола, измеряемой числом калибров этого ствола или в миллиметрах (дюймах).

Канал ствола казнозарядного оружия после заряжания и во время выстрела с казённой части закрывается затвором, который расположен в затворном гнезде казённика. У дульнозарядного оружия казённая часть заглушена, соответственно заряжание производится с дульной части ствола.

Для уменьшения энергии отката стволы некоторых орудий имеют дульные тормоза. В стволах танковой, самоходной и казематной артиллерии имеются устройства для очистки ствола от пороховых газов — эжекторы.

Ведущая часть ствола служит для придания снаряду поступательного движения с требуемой начальной скоростью. В нарезном оружии для сообщения снаряду вращения, обеспечивающего его устойчивый полёт, в ведущей части канала делаются нарезы. Диаметр канала ствола по полям нарезов называется калибром оружия. В гладкоствольном оружии устойчивость снаряда в полёте обеспечивается с помощью его стабилизирующих устройств.

Стволы миномётов и безоткатных орудий обычно гладкостенные, имеют сравнительно небольшую толщину стенок. Стволы безоткатных орудий в казённой части соединяются с соплом, через которое отводится часть пороховых газов для достижения безоткатности. Стволы стрелкового оружия имеют относительно тонкие стенки, обеспечивающие прочность и уменьшающие нагрев при стрельбе. Стволы автоматических орудий средних и малых калибров в процессе стрельбы могут искусственно охлаждаться водой, прогоняемой в перерывах между стрельбой через канал ствола или по специальным каналам в его стенке.

Конструкция

Основными конструктивными элементами огнестрельного оружия являются: ствол, запирающее устройство и воспламеняющее устройство.

Ствол предназначен для придания пуле/снаряду направленного движения. Внутренняя полость ствола называется каналом ствола. Торец ствола, ближайший к патроннику, называется

казённым срезом, противоположный торец — дульным срезом. По устройству канала стволы подразделяются на гладкостенные и нарезные

Канал ствола нарезного оружия имеет, как правило, три основных части: патронник, пульный вход, нарезную часть.

Патронник предназначен для размещения и фиксации патрона. Его форма и размеры определяются формой и размерами гильзы патрона. В большинстве случаев форма патронника представляет собой три-четыре сопряжённых конуса: в патронниках под винтовочный и промежуточный патрон — четыре конуса, под патрон с цилиндрической гильзой — один.

Патронники магазинного оружия начинаются патронным вводом — желобком, по которому скользит пуля патрона при подаче его из магазина.

Пульный вход — участок канала ствола между патронником и нарезной частью. Пульный вход служит для правильной ориентации пули в канале ствола и имеет форму усечённого конуса с нарезами, поля которых плавно поднимаются от нуля до полной высоты. Длина пульного входа должна обеспечивать вхождение ведущей части пули в нарезы канала ствола прежде, чем дно пули покинет дульце гильзы.

Нарезная часть ствола служит для придания пуле не только поступательного, но и вращательного движения, что стабилизирует её ориентацию в полёте. Нарезы представляют собой полосовидные углубления, вьющиеся вдоль стенок канала ствола. Нижняя поверхность нареза называется дном, боковые стенки — гранями. Грань нареза, обращённая в сторону патронника и воспринимающая основное давление пули, называется боевой или ведущей, противоположная — холостой. Выступающие участки между нарезами — поля нарезов. Расстояние, на котором нарезы делают полный оборот, называется шагом нарезов. Для оружия определённого калибра шаг нарезов однозначно связан с углом наклона нарезов — углом между гранью и образующей канала ствола.

Литература

Ссылки

dic.academic.ru

Ствол (оружие) — это… Что такое Ствол (оружие)?



|300px
легенда|#B98888|border=1px solid #000|2=Многоугольная нарезка Ствол — основная часть огнестрельного оружия, предназначенная для бросания снаряда (мины, гранаты, пули) с определённой начальной скоростью и придания ему устойчивого полёта в желаемом направлении.

Ствол представляет собой трубу, внутренняя полость которой называется «каналом «. Канал ствола состоит из «каморы «, где помещается метательный заряд, и ведущей части. На наружной поверхности ствола, расположенной над каморой, раньше ставилось специальное клеймо, указывающее на принадлежность орудия государству (казне), поэтому за этой частью ствола исторически сохранилось название казённой. Противоположная часть ствола получила название «дульной «. Соответственно торцевые срезы ствола принято называть казённым и дульным. расстояние между этими срезами называется «длиной ствола «, измеряемой обычно в калибрах.

Канал ствола после заряжания и во время выстрела с казённой части закрывается затвором, который расположен в затворном гнезде казённика. Для уменьшения энергии отката стволы некоторых орудий имеют дульные тормоза. В стволах танковой, самоходной и казематной артиллерии имеются эжекторы.

Ведущая часть ствола служит для придания снаряду поступательного движения с требуемой начальной скоростью. В нарезном оружии для сообщения снаряду вращения, обеспечивающего его устойчивый полёт, в ведущей части канала делаются нарезы. Диаметр канала ствола по полям нарезов называется «калибром оружия «. В гладкоствольном оружии устойчивость снаряда в полёте обеспечивается с помощью его стабилизирующих устройств.

Стволы миномётов и безоткатных орудий обычно гладкостенные, имеют сравнительно небольшую толщину стенок. Стволы безоткатных орудий в казённой части соединяются с соплом, через которое отводится часть пороховых газов для достижения безоткатности. Стволы стрелкового оружия имеют относительно тонкие стенки, обеспечивающие прочность и уменьшающие нагрев при стрельбе. Стволы автоматических орудий средних и малых калибров в процессе стрельбы могут искусственно охлаждаться водой, прогоняемой в перерывах между стрельбой через канал ствола или по специальным каналам в его стенке.

Конструкция

Основными конструктивными элементами огнестрельного оружия являются: ствол, запирающее устройство и воспламеняющее устройство.

«Ствол » предназначен для придания пуле/снаряду направленного движения. Внутренняя полость ствола называется «каналом ствола «. Торец ствола, ближайший к патроннику, называется «казённым срезом «, противоположный торец — «дульным срезом «. По устройству канала стволы подразделяются на гладкостенные и нарезные

Канал ствола нарезного оружия имеет, как правило, три основных части: патронник, пульный вход, нарезную часть.

«Патронник » предназначен для размещения и фиксации патрона. Его форма и размеры определяются формой и размерами гильзы патрона. В большинстве случаев форма патронника представляет собой три-четыре сопряжённых конуса: в патронниках под винтовочный и промежуточный патрон — четыре конуса, под патрон с цилиндрической гильзой — один.

Патронники магазинного оружия начинаются «патронным вводом » — желобком, по которому скользит пуля патрона при подаче его из магазина.

«Пульный вход » — участок канала ствола между патронником и нарезной частью. Пульный вход служит для правильной ориентации пули в канале ствола и имеет форму усечённого конуса с нарезами, поля которых плавно поднимаются от нуля до полной высоты. Длина пульного входа должна обеспечивать вхождение ведущей части пули в нарезы канала ствола прежде, чем дно пули покинет дульце гильзы.

Нарезная часть ствола служит для придания пуле не только поступательного, но и вращательного движения, что стабилизирует её ориентацию в полёте. Нарезы представляют собой полосовидные углубления, вьющиеся вдоль стенок канала ствола. Нижняя поверхность нареза называется «дном «, боковые стенки — «гранями «. Грань нареза, обращённая в сторону патронника и воспринимающая основное давление пули, называется «боевой » или «ведущей «, противоположная — «холостой «. Выступающие участки между нарезами — «поля нарезов «. Расстояние, на котором нарезы делают полный оборот, называется «шагом нарезов «. Для оружия определённого калибра шаг нарезов однозначно связан с углом наклона нарезов — углом между гранью и образующей канала ствола.

Литература

* Советская военная энциклопедия. — М.: 1977.

Ссылки

* http://www.megakm.ru/weaponry
* http://www.glossary.ru

Wikimedia Foundation. 2010.

dic.academic.ru

Ружейные стволы. Технология изготовления — Энциклопедия оружия и боеприпасов


Стадии сворачивания трубки простого ствола.
Вверху — пластина-заготовка для ствола

Вероятно, многие согласятся со мной, что главная часть ружья — стволы. Ведь стреляют именно они. Эффективность пушечных выстрелов вызвала у человека желание сделать маленькую «ручную» пушку. Такую пушку в середине позапрошлого века нашли в замке Таннеберг в Хессене (Германия). Она была отлита в конце XIV века. Стрелять из неё с рук было, конечно, тяжело и неудобно и вскоре к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьёзно уступает хорошему луку, хотя по энергии, а значит и пробивной силе, значительно его превосходит. Довольно быстро выяснилось, что с увеличением длины ствола, выстрелы становятся более точными. С этого момента и начинается история огнестрельного оружия.

Сегодня у нашего «переломного» охотничьего ружья есть три главные части: ствол (или стволы, образующие ствольный блок), колодка, ложа.

Ствол придаёт направление полёту дроби или пули. Чем правильнее и тщательнее он изготовлен, тем лучше дробовая осыпь и выше точность.

Колодка запирает казённый срез стволов, служит связующим элементом между стволами и ложей и является в оружии главным инерционным элементом, поглощающим силу отдачи. В колодке монтируются запирающие, ударно-спусковые и предохранительные механизмы.


Схема получения скрученных ствольных трубок

Ложа обеспечивает удобство наведения оружия на цель, естественность прицеливания и смягчает действие силы отдачи за счёт её частичного превращения во вращательный момент.

Прежде чем рассказать о сегодняшней технологии изготовления оружейных стволов, хочется познакомить читателей с частью оружейной истории, касающейся совершенствования изготовления этой важнейшей части оружия. Ведь изготовить хороший ствол — задача довольно трудная даже при сегодняшнем уровне развития машиностроения. Однако настойчивость, усердие и изобретательность наших далёких предков находила различные варианты решения этой задачи. Причём уровень качества лучших изделий XVIII века сегодняшним специалистам представляется почти загадочным. Нам хочется рассказать, каким путём мастера прошлого создавали замечательное оружие, показать некоторые его образцы и вместе подумать о величии их духа с надеждой, что это укрепит и наш собственный.

В 1811 году Генрих Аншютц (из хорошо известной оружейной династии) издал книгу об оружейной фабрике в г. Зуль. Он пишет о четырёх типах технологий получения ствольных трубок: обычной, скрученной, навитой и стволах из «Дамаска».


Принцип получения навитых стволов

Обычный (простой) ствол получали из полосовой заготовки длиной 32 дюйма (812,8 мм), шириной 4 дюйма (101,6 мм), толщиной 3/8 дюйма (9,525 мм). После разогрева эту полосу кузнечным способом загибали на оправке таким образом, что её продольные кромки прилегали друг к другу встык, параллельно оси канала ствола. Этот стык сваривался кузнечным методом и тщательно проковывался. Есть несомненные указания, что обе длинные стороны прямоугольной заготовки иногда сгонялись «на ус» и сваривались не встык, а внахлёст. После сварки и охлаждения стволы проходили четырёхгранной развёрткой, обтачивали на токарном станке внешнюю поверхность, которую потом шлифовали вручную на большом круге из мягкого песчаника диаметром 1,75 м. С казённой стороны в ствол вкручивалась винтовая заглушка, которая иногда тоже проваривалась. Конечно, «заглушались» стволы всех дульнозарядных ружей, независимо от технологии их получения.

Скрученный ствол. Сварной шов в обычном стволе, располагавшийся параллельно оси ствола, часто был местом разрушения при стрельбе. Чтобы избежать этого, простой сваренный ствол начинали повторно нагревать в центральной части и скручивали вдоль оси по всей длине так, чтобы сварной шов имел форму винтовой линии. Этот приём делал шов значительно менее нагруженным при выстреле.

Навитой ствол получали путём постепенного навивания стальной полосы на оправку в виде стержня или трубы. Винтообразный сварной шов последовательно проковывали кузнечным молотом.


Схема получения полосы дамасской стали

Дамасские стволы. Ещё в средние века в Дамаске (сегодня это Сирия) изготовляли мечи, обладающие исключительно высоким качеством. Как только технология их получения стала понятна европейцам, её попытались применить и для изготовления стволов. Основа секрета состояла в том, что заготовки для клинкового оружия получали кузнечной сваркой полос из тонких элементов, состоящих из сталей различавшихся содержанием углерода. Первоначально сваренную и прокованную полосу многократно складывали и проковывали. По сравнению с обычной однородной заготовкой дамасская обладала тремя принципиальными преимуществами. По сути, она представляла конструкцию, объединяющую свойства отдельных материалов. Кроме того, композиция не только исключала внутренние дефекты, которые бывают в однородной заготовке, но и создавала оптимальную структурную ориентацию. Принципиально дамасские стволы получали методом навивки. Однако для получения исходной полосы приходилось проделать просто титаническую работу. Сначала сваривали брусок из ста прутков сталей разного состава квадратного сечения со стороной 0,7 мм, уложенных в определённом порядке. Брусок получался сечением около 7 мм х 7 мм. Эта процедура требовала невероятно тонкого кузнечного чутья, поскольку пережечь тонкие проволочки было проще простого. Сваренный брусок снова разогревали и скручивали вдоль. Затем брали несколько таких скрученных брусков (чаще три или шесть) сваривали их между собой и расковывали в полосу. В некоторых случаях из этих скруток плели что-то вроде косичек, которые могли состоять из разного числа прядей и иметь разную схему плетения. Косички сваривали и проковывали в полосу. Эту полосу и навивали на оправку. Затем заготовку торцевали, канал проходили развёрткой, наружную поверхность сначала обтачивали на токарном станке, потом шлифовали. Процесс воронения в те времена состоял в обработке довольно сильными кислотами. В результате, малоуглеродистые прутики протравливались значительно сильнее по сравнению с высокоуглеродистыми, и на поверхности ствола появлялся оригинальный мелкий рисунок, отражавший всю предшествующую схему получения полос. Обычно на дамасских стволах ширина полосы видна невооружённым глазом.

Стремительное развитие металлургии в конце XIX века привело к появлению углеродистых сталей с высокими механическими свойствами. Перспективность их использования для изготовления стволов казалась очевидной. Однако ещё в первой четверти XX века многие оружейники Европы продолжали делать стволы по «дамасским технологиям». Сегодня необходимо понимать, что такие стволы, хотя и являются памятниками фантастическому усердию оружейников предыдущих поколений, но всё же уступают по всем важнейшим показателям современным легированным ствольным сталям. Напомним нашим соотечественникам, что сталь 50А и даже 50РА, из которой и в Туле, и в Ижевске делают сегодня стволы, к легированным ствольным сталям не относятся. И ещё о дамасских стволах. Спустя сто и более лет после изготовления весьма вероятно, что кузнечная сварка элементов может значительно разрушиться и прочность стволов может оказаться недостаточной для обеспечения безопасности стрельбы. Будьте очень осторожны при желании пострелять из старого ружья с дамасскими стволами.

Введение в состав углеродистой стали хрома, ванадия, никеля, кремния, марганца и других элементов привело к значительному повышению важнейших свойств ствольных сталей — упругости, прочности при растяжении, поверхностной твердости, коррозионной стойкости. Более того, эти технологии позволяют получать стали с заранее заданными свойствами. Всё это позволило перейти к изготовлению однородных заготовок для ружейных стволов. Этот процесс начался ещё в последней трети XIX века и около полувека сосуществовал с «дамасской» технологией.

Развитие технологии изготовления ружейных стволов.


Рихтовка ствольной заготовки

Новый этап начинается с отказа от стволов, получаемых из полос, и перехода к стволам, канал которых образовывался глубоким сверлением. Эта технология несравненно более производительная, но для её реализации потребовалось решить ряд серьёзных проблем, рассказать о которых нам хочется, чтобы современные читатели могли представить, какой ценой получались ружья, обладающие замечательным боем. Новая технология изготовления ствольных заготовок начинается с ковки, которая не только придаёт заготовке ствола внешнюю форму, приближающуюся к готовому стволу, но и обеспечивает улучшение структуры стали благодаря уменьшению её зернистости. Обычно для поковки отрезают кусок круглого проката диаметром около 50 мм. Длина этой заготовки зависит от будущей длины ствола. Куска длиной 320 мм хватает, чтобы из неё вытянуть ковкой заготовку длиной 750 мм со средним диаметром 30 мм. Конечно, после ковки диаметр заготовки в области патронника заметно больше, чем у дульного среза. Здесь следует отметить, что при обычной ковке около 15% стали уходит в окалину. Кузнецы говорят, что металл «угорает».


Оружейное сверло:
а — режущая пластина,
b и с — направляющие,
d — канал для подвода
охлаждающей жидкости,
е — полость для
удаления стружки

Для снятия внутренних напряжений в откованных заготовках их нагревают до (примерно) 850-860 градусов и выдерживают около получаса. Точные параметры нагрева зависят от марки ствольной стали и толщины заготовки. Задача снятия внутренних напряжений очень важна для всех стадий производства стволов. Особенно важно, чтобы не было напряжений в готовой ствольной трубке, предназначенной для образования ствольных блоков из двух или более стволов. Дело в том, что пайка мягкими и особенно твёрдыми припоями требует значительного и асимметричного нагревания стволов. Неоднородно происходит и охлаждение спаянного блока. Наличие внутренних напряжений приводит к заметной деформации стволов после пайки. Более того, высокий разогрев внутренней поверхности стволов при стрельбе, особенно интенсивной, может вызвать необратимую деформацию ствола, если в нём оставались напряжения. После нормализации проводят закалку. Суть её заключается в получении оптимальных свойств за счёт формирования тонкой структуры металла. Любая сталь является сложной в фазовом отношении системой, содержащей как минимум две кристаллические модификации чистого железа, карбид железа, карбиды металлов-примесей и твёрдые растворы некоторых из этих компонентов друг в друге. Температурная обработка меняет фазовое состояние этой сложной системы и размеры отдельных фаз, что очень существенно влияет на эксплуатационные свойства. Закалка заключается в равномерном разогреве детали до температуры, зависящей от рецептуры стали, из которой она изготовлена. Заготовки из стали Ск 65, которую в Германии часто используют для стволов, нагревают до 840 градусов. После этого её опускают в масло, имеющее комнатную температуру. Затем заготовку «отпускают», для чего её прогревают в муфельной печи около 4 часов при температуре 580-600 градусов. Такой сложной термообработкой можно значительно влиять на твёрдость, вязкость, упругость и предел прочности при растяжении.

Термически обработанную заготовку тщательно рихтуют. Это делают, чтобы при сверлении, которое происходит при вращении заготовки, она не вибрировала. Рихтуют заготовку в горизонтальном положении при вращении, корректируя её форму прижимными роликами. После рихтования заготовку снова подвергают нагреву для снятия внутренних напряжений, затем торцуют с обеих сторон и снимают фаски.


Рихтовка ствола по теневым кольцам
с помощью винтового пресса

После этого приступают к самому тонкому процессу в изготовлении ствола — сверлению. Глубокое сверление, особенно в длинной заготовке с низкой продольной устойчивостью — особая песня. В оружейном деле для этого используют специальные станки, похожие на токарные. В них закреплённая заготовка вращается, а специальное сверло движется поступательно. В этом процессе две главные проблемы: увод сверла от оси заготовки и удаление стружки. Первую проблему можно решить за счёт однородности структуры заготовки и относительно невысокой скорости подачи сверла и скорости резания, чтобы исключить вибрацию заготовки. Разумеется, эти ограничения увеличивают продолжительность сверления. Проблема удаления стружки, которая иногда не только портит поверхность канала, но и заклинивает сверло, решается специальными приёмами. В XIX веке применялись «ружейные свёрла», по конструкции они были близки к развёрткам, то есть в их основе имелась штанга, на всей рабочей длине которой был выбран цилиндрический сектор с углом около 100 градусов. Конструкция сверла достаточно проста и хорошо понятна из чертежа. Через небольшое отверстие в теле сверла в зону резания подаётся охлаждающая эмульсия, которая по желобку, параллельному оси сверла, уносит с собой образующуюся стружку. Такие станки давно стали многошпиндельными и достаточно автоматизированными. Это позволяет одному рабочему контролировать сверление на нескольких станках. Этот процесс всё-таки не гарантировал высокую степень чистоты обработки поверхности канала ствола. Стружка часто была основной причиной этого. Кроме того, производительность сверления была невысокая.


Сверло Байснера —
рабочая и
тыльная части

В 1937 году Бургсмюллер качественно изменил схему сверления. Он предложил вертикальное расположение заготовок и направле¬ние сверления снизу вверх для лучшего удаления стружки. В качестве основы сверла он применил трубу, на рабочей головке которой были прикреплены три направляющие пластины и приварена одна режущая. Процесс резания происходит при охлаждении сжатым воздухом, который подаётся в зазор между поверхностью сверла и стенками образующегося отверстия. Стружка же совсем не контактировала со стенками отверстия и вместе с воздухом уносилась вниз. Значительно больший момент сопротивления скручиванию, которым обладала «труба» по сравнению с профилированной штангой, позволяет, кроме получения хороших поверхностей, использовать при сверлении более высокие скорости резания и подачи.

В 1942 году Байснер усовершенствовал этот метод. Он вернул сверлильному станку горизонтальное положение, предложил использовать масло в качестве охлаждающей жидкости и усовершенствовал сверлильную головку. Масло подавалось под давлением в зазор между сверлом и образующейся цилиндрической поверхностью и выносило стружку через центральный канал в специальный сборник. Поверхность получалась очень гладкой в некоторой мере благодаря полированию направляющими. Тем не менее, после сверления канал ствола обрабатывается развёрткой.

Перед тем как приступить к обработке наружной поверхности ствола его рихтуют: проверяют прямолинейность оси канала и при необходимости выправляют её с помощью винтового пресса. Проверку правильности канала осуществляют по теневым кольцам, что каждый охотник может сделать и сам. А вот процесс правки требует не только хорошего зрения, но и большого чувства металла, приходящего только с опытом. Дело в том, что ствол имеет упругость. Поэтому если под нагрузкой он выпрямился, то после её снятия частично вернётся в исходное состояние. Опытный мастер чувствует, насколько ствол нужно «перегнуть», чтобы после снятия нагрузки он стал безукоризненно правильным.


Проточка шеек для люнетов:
1 — центр, 2 — скользящая муфта,
3 — стойка, 4 — шейка для люнета

После формирования канала ствола встаёт очередная непростая задача: токарно обработать ствол снаружи. При этом главная трудность, чтобы центр наружной поверхности точно совпал с центром канала ствола. Если этого не сделать, то ствольная трубка получится разностенной. Кроме того, из-за большой величины отношения длины ствола к его диаметру при токарной обработке поверхности ствола его необходимо фиксировать двумя люнетами, для каждого из которых нужно предварительно проточить шейки. Для корректного выполнения этой операции на середине длины ствола устанавливают специальную муфту, позволяющую правильно удерживать ствол за его необработанную поверхность при проточке шеек для люнетов. Когда шейки проточены, муфту можно снять и выполнить наружное обтачивание ствола по копиру. Эти токарные обработки могут привести к некоторой деформации ствола. Поэтому ствол в очередной раз контролируют по теневым кольцам и при необходимости рихтуют. Чистовое обтачивание и шлифование производится после того, как отдельно прошлифовываются шейки для люнетов. Заключительная стадия изготовления ствольных трубок — тонкое шлифование, называемое в оружейном деле хонингованием.


Схема ротационной ковки:
1 — разогрев токами высокой частоты,
2 — начало ковки, 3 — процесс ковки,
4 — окончание ковки

Существенным прогрессом в изготовлении ружейных стволов является их ковка на оправке. Конечно, оборудование для этого процесса стоит недёшево. Поэтому формование стволов ковкой рентабельно только при больших объёмах производства. Однако экономия средств и времени получается тоже значительная. При изготовлении стволов методом ротационной горячей ковки используют заготовки длиной 260-280 мм и диаметром около 35 мм. В ней сверлом Байснера делают сквозное отверстие диаметром 20,5 мм. Заготовку закрепляют на закалённой, тщательно отполированной оправке, имеющей форму внутренней поверхности готового ствола. После электроиндукционного прогрева заготовки до необходимой температуры её подают в зону ковки, где она, вращаясь вдоль своей оси, проходит под ударами крестообразно расположенных молотов. За полторы минуты заготовка принимает внешнюю и внутреннюю форму ствола с патронником. Закалка после такой проковки не проводится. Внешнюю форму ствола доводят токарным обтачиванием и шлифованием. Канал ствола начерно проходится развёрткой. Окончательную обработку канала ствола, включая патронник и дульное сужение, проводят после сборки ствольного блока.

Ещё более прогрессивным методом изготовления стволов является холодная ковка на оправке. Одно из её преимуществ в том, что она экономит около 15% дорогой ствольной стали, уходящей в окалину при горячей ковке. Кроме того, внутренняя поверхность ствола получается точной копией оправки, так что можно получать полностью готовые стволы (с патронником, дульным сужением и нарезами). Поверхность канала ствола требует только полировки. К тому же структура холоднокованого ствола обеспечивает ему высокие механические свойства. Правда, холодная ковка требует более мощных молотов и большей продолжительности. Она длится чуть более трёх минут. Внешнюю форму доводят обтачиванием и полированием. Проверку правильности оси канала проводят и после этой технологии и, если есть необходимость, рихтуют. Завершающей стадией изготовления отдельных ствольных заготовок является отстрел и клеймение.

Владимир Тихомиров
Мастер ружье 10-2004

weaponland.ru

Оружейные стволы — Охотники.ру

Чтобы из маленькой пушки было удобнее стрелять, к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьезно уступает хорошему луку, хотя по энергии, а значит, и пробивной силе значительно его превосходит.

 

В Китае хранится старая пушка с такой надписью: «Я несу смерть предателю и уничтожение мятежнику». На ней проставлен год ее отливки — 618 до нашего летоисчисления. Это самое древнее орудие. Амбразуры в Великой Китайской стене, наверное, оставляли открытыми, и рецепт пороха через триста с небольшим лет индийской разведке удалось выкрасть. Затем он попал в Персию, оттуда к арабам и, наконец, в Европу. В 85 году уже нашего летоисчисления порох, теперь называемый «греческий огонь», был привезен каким-то греком в Константинополь. Еще одна важная историческая отметка была определена в 1849 году. Тогда на дне цистерны для сбора дождевой воды в городе Таннеберг (Германия) нашли ствол первого нарезного ружья, точнее, пожалуй, ручной нарезной пушки. Ружье имело запальное отверстие для фитиля и было датировано концом XIV века. Кто и где изготовил это «проружье», не ясно, но германские историки его называют «таннебергским». Однако их итальянские коллеги нашли документальное упоминание о первом применении ружья в Италии в 1331 году. Эти факты позволяют считать, что в первое ручное огнестрельное оружие Европы «родилось» в XIV веке. Его родителями можно считать пушку (матерью) и арбалет (отцом). Это происхождение подтверждается и способом выражения калибров, которым мы пользуемся сегодня. Калибр старинных пушек определяли весом круглого ядра подходящего диаметра, выраженного в фунтах. Сегодня при определении калибра гладкоствольных ружей мы тоже пользуемся «фунтовым» весом свинцовых шариков, правда, указываем не сами фунты, а число этих шариков, получающихся из одного (английского — 453,6 г) фунта свинца. Показательно, что во французском языке сегодня «ствол» и «пушка» называются одним словом «canon». Да ведь и мы иногда свое ружье называем «пушкой».

Чтобы из маленькой пушки было удобнее стрелять, к ней приспособили арбалетную ложу. Оказалось, что по точности стрельбы и кучности новое оружие серьезно уступает хорошему луку, хотя по энергии, а значит, и пробивной силе значительно его превосходит. Довольно быстро выяснилось, что с увеличением длины ствола выстрелы становятся более точными. С этого момента и начинается история ручного огнестрельного оружия. Значительная часть этой истории — совершенствование качества стволов. Их изготовление до сегодняшнего дня самое сложное в производстве ружей. Ствол придает направление полету дроби или пули. Чем правильнее он изготовлен, тем лучше дробовая осыпь и выше точность попадания. Термин «кучность» применительно к пулевой стрельбе характеризует рассеивание серии пулевых попаданий, полученных при стрельбе с прицеливанием в одну точку. В значительной мере качество боя оружия определяется тщательностью изготовления ствола.

Прежде чем рассказать о сегодняшней технологии изготовления оружейных стволов, хочется познакомить читателей с частью оружейной истории, касающейся совершенствования изготовления этой важнейшей части оружия. Ведь изготовить хороший ствол — задача довольно трудная даже при сегодняшнем уровне развития машиностроения. Однако настойчивость, усердие и изобретательность наших далеких предков находили различные варианты решения этой задачи. Причем уровень качества лучших изделий XVIII века сегодняшним специалистам представляется почти загадочным. Нам хочется рассказать, каким путем мастера прошлого создавали замечательное оружие, показать некоторые его образцы и вместе подумать о величии их духа с надеждой, что это укрепит и наш собственный.

В 1811 году Генрих Аншутц (из оружейной династии хорошо известной сегодня) издал книгу об оружейной фабрике в г. Зуль. Он пишет о четырех типах технологий получения ствольных трубок: обычной, скрученной, навитой и стволах из «дамаска».

Простой ствол получали из полосовой заготовки длиной 32 дюйма (812,8 мм), шириной 4 дюйма (101,6 мм) м толщиной 3/8 дюйма (9,525 мм). После разогрева эту полосу кузнечным способом загибали на оправке таким образом, чтобы ее продольные кромки прилегали друг к другу встык, параллельно оси канала ствола. Этот стык сваривался кузнечным методом и тщательно проковывался. Есть несомненные указания, что длинные стороны прямоугольной заготовки иногда сгонялись «на ус» и сваривались не встык, а внахлест. После сварки и охлаждения ствол проходили четырехгранной разверткой, а затем шлифовали свинцовыми притирами с абразивными порошками, постепенно используя все более тонкие. Снаружи ствол обтачивали на токарном станке, потом шлифовали вручную на камне из мягкого песчаника диаметром 1,75 м. С казенной стороны в ствол вкручивалась винтовая заглушка, которая иногда тоже проваривалась.

СКРУЧЕННЫЙ СТВОЛ

Сварной шов в обычном стволе, располагавшийся параллельно оси ствола, часто был местом разрушения при стрельбе. Чтобы избежать этого, иногда поступали так. Простой сваренный ствол повторно нагревали в центральной части и скручивали на оправке вдоль оси так, чтобы сварной шов имел форму винтовой линии. Постепенно так скручивали ствол по всей длине. Этот прием делал шов значительно менее нагруженным при выстреле.

Навитый ствол получали путем постепенного навивания стальной полосы на оправку (стержень или трубу). Винтообразный сварной шов последовательно проковывали кузнечным молотом. Интересно, что идея изготавливать ствол навивкой спустя много лет начала использоваться для производства артиллерийских стволов. Правда, их наматывали не по винтовой линии, а один слой на другой, подобно тому, как мы наматываем на картонную бобину ленту скотча (или туалетной бумаги, как вам больше нравится). Стальную ленту в производстве артиллерийских стволов наматывали с натягом. Таким образом, удавалось получать стволы необычайно высокой прочности.

Дамасские стволы. Еще в средние века в Дамаске (сегодня это Сирия) изготовляли мечи, обладающие исключительно высоким качеством. Они были очень жесткими и одновременно гибкими. Как только технология их получения стала понятна европейцам, ее попытались применить и для изготовления стволов. Основа секрета состояла в том, что заготовки для клинкового оружия получали кузнечной сваркой полос из тонких элементов, состоящих из сталей, различавшихся главным образом содержанием углерода. Первоначально сваренную и прокованную полосу многократно складывали и снова проковывали. По сравнению с обычной однородной заготовкой дамасская обладала тремя принципиальными преимуществами. По сути, она представляла конструкцию, объединяющую свойства отдельных материалов. Кроме того, композиция не только исключала внутренние дефекты, которые бывают в однородной заготовке, но и создавала оптимальную структурную ориентацию.

Принципиально дамасские стволы получали методом навивки. Однако для получения исходной полосы приходилось проделывать просто титаническую работу. Сначала сваривали брусок из ста прутков сталей разного состава квадратного сечения со стороной 0,7 мм, уложенных в определенном порядке. Брусок получался сечением около 7 мм на 7 см. Эта процедура требовала невероятно тонкого кузнечного чутья, поскольку пережечь тонкие проволочки было проще простого. Сваренный брусок снова разогревали и скручивали вдоль. Затем брали несколько таких скрученных брусков (чаще три или шесть), сваривали их между собой и расковывали в полосу. В некоторых случаях из этих скруток плели что-то вроде косичек, которые могли состоять из разного числа прядей и иметь разную схему плетения. Косички сваривали и проковывали в полосу. Эту полосу и навивали на оправку. Затем заготовку торцевали, канал проходили разверткой, наружную поверхность сначала обтачивали на токарном станке, потом шлифовали. Процесс воронения в те времена состоял в обработке довольно сильными кислотами. В результате малоуглеродистые прутки протравливались значительно сильнее по сравнению с высокоуглеродистыми, и на поверхности ствола появлялся оригинальный мелкий рисунок, отражавший всю предшествующую схему получения полос. Обычно на дамасских стволах ширина полосы видна невооруженным глазом.

Стремительное развитие металлургии в конце XIX века привело к появлению легированных углеродистых сталей. Перспективность их использования для изготовления стволов казалась очевидной. Однако еще в первой четверти XX века многие оружейники Европы продолжали делать стволы по дамасским технологиям. Сегодня необходимо понимать, что такие стволы, хотя и являются памятниками фантастическому усердию оружейников предыдущих поколений, уступают по всем важнейшим показателям современным легированным ствольным сталям. Напомним нашим соотечественникам, что сталь 50 А и даже 50 РА, из которой и в Туле, и в Ижевске делают сегодня стволы, к легированным ствольным сталям не относятся. И еще о дамасских стволах. Спустя сто и более лет после изготовления весьма вероятно, что кузнечная сварка элементов может значительно разрушиться и прочность стволов может оказаться недостаточной для обеспечения безопасности стрельбы.

Введение в состав углеродистой стали хрома, ванадия, никеля, кремния, марганца и других элементов привело к значительному повышению важнейших свойств ствольных сталей — упругости, прочности при растяжении, поверхностной твердости, коррозионной стойкости. Более того, эти технологии позволяют получать стали с заранее заданными свойствами. Все это позволило перейти к изготовлению однородных заготовок для ружейных стволов. Этот процесс начался еще в последней трети XIX века и около полувека сосуществовал с «дамасской» технологией.

РАЗВИТИЕ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ РУЖЕЙНЫХ СТВОЛОВ

Новый этап начинается с отказа от стволов, получаемых из полос, и перехода к стволам, канал которых образовывался глубоким сверлением. Эта технология несравненно более производительная, но для ее реализации потребовалось решить ряд серьезных проблем, рассказать о которых нам хочется, чтобы современные читатели могли представить, какой ценой получались ружья, обладающие замечательным боем. Новая технология изготовления ствольных заготовок начинается с ковки, которая не только придает заготовке ствола внешнюю форму, приближающуюся к готовому стволу, но и обеспечивает улучшение структуры стали благодаря уменьшению зернистости заготовки. Обычно для поковки отрезают кусок круглого проката диаметром около 50 мм. Длина этой заготовки зависит от будущей длины ствола. Куска длиной 320 мм хватает, чтобы из нее вытянуть ковкой заготовку длиной 750 мм со средним диаметром 30 мм. Конечно, после ковки диаметр заготовки в области патронника заметно больше, чем у дульного среза. Здесь следует отметить, что при обычной ковке около 15% стали уходит в окалину. Кузнецы говорят, что металл «угорает».

Для снятия внутренних напряжений в откованных заготовках их нагревают до примерно 850–860 градусов и выдерживают около получаса.

Точные параметры нагрева зависят от марки ствольной стали и толщины заготовки. Задача снятия внутренних напряжений очень важна для всех стадий производства стволов. Особенно важно, чтобы не было напряжений в готовой ствольной трубке, предназначенной для образования ствольных блоков из двух или более стволов.

Дело в том, что пайка мягкими и особенно твердыми припоями требует значительного и асимметричного нагревания стволов. Неоднородно происходит и охлаждение спаянного блока. Наличие внутренних напряжений приводит к заметной деформации стволов после пайки. Более того, высокий разогрев внутренней поверхности стволов при стрельбе, особенно интенсивной, может вызвать необратимую деформацию ствола, если в нем оставались напряжения. После нормализации проводят закалку. Суть ее заключается в получении оптимальных свойств стали за счет формирования тонкой структуры металла. Любая сталь является сложной в фазовом отношении системой, содержащей как минимум две кристаллические модификации чистого железа, карбид железа, карбиды металлов-примесей и твердые растворы некоторых из этих компонентов друг в друге. Температурная обработка меняет фазовое состояние этой сложной системы и размеры отдельных фаз, что очень существенно влияет на эксплуатационные свойства. Закалка заключается в равномерном разогреве детали до температуры, зависящей от рецептуры стали, из которой она изготовлена. Заготовки из стали Ск 65, которую в Германии часто используют для стволов, нагревают до 840 градусов. После этого ее опускают в масло, имеющее комнатную температуру. Затем заготовку «отпускают», для чего ее прогревают в муфельной печи около четырех часов при температуре 580–600 градусов. Такой сложной термообработкой можно значительно влиять на твердость, вязкость, упругость и предел прочности при растяжении.

Термически обработанную заготовку тщательно рихтуют. Это делают для того, чтобы при сверлении, которое происходит при вращении заготовки, она не вибрировала. Рихтуют заготовку в горизонтальном положении при вращении, корректируя ее форму прижимными роликами. После рихтования заготовку снова подвергают нагреву для снятия внутренних напряжений, после чего торцуют с обеих сторон и снимают фаски.

После этого приступают к самому тонкому процессу в изготовлении ствола — сверлению. Глубокое сверление, особенно в длинной заготовке с низкой продольной устойчивостью, это особая песня. В оружейном деле для этого используют специальные станки, похожие на токарные. В них закрепленная заготовка вращается, а специальное сверло движется поступательно. В этом процессе две главные проблемы: увод сверла от оси заготовки и удаление стружки. Первую проблему можно решить за счет однородности структуры заготовки и относительно невысокой скорости подачи и резания, чтобы исключить вибрации заготовки. Разумеется, эти ограничения увеличивают продолжительность сверления. Проблема удаления стружки, которая иногда не только портит поверхность канала, но и даже просто заклинивает сверло, решается специальными приемами. В XIX веке применялись «ружейные сверла», которые по конструкции были близки к разверткам, то есть в основе была штанга, по всей рабочей длине которой был выбран цилиндрический сектор с углом около 100 градусов. Конструкция сверла достаточно проста и хорошо понятна из чертежа. Через небольшое отверстие в теле сверла в зону резания подается охлаждающая эмульсия, которая по желобку, параллельному оси сверла, уносит с собой образующуюся стружку. Такие станки давно стали многошпиндельными и достаточно автоматизированными. Это позволяет одному рабочему контролировать сверление на нескольких станках. Этот процесс все-таки не гарантировал высокую степень чистоты обработки канала ствола. Стружка часто была основной причиной этого. Кроме того, производительность сверления была невысокая.

В 1937 году Бургсмюллер качественно изменил схему сверления. Он предложил вертикальное расположение заготовок и направление сверления снизу вверх для лучшего удаления стружки. В качестве основы сверла он применил трубу, на рабочей головке которой были прикреплены три направляющие пластины и приварена одна режущая. Процесс резания происходит при охлаждении сжатым воздухом, который подается в зазор между поверхностью сверла и стенками образующегося отверстия. Стружка же совсем не контактировала со стенками отверстия и вместе с воздухом уносилась вниз. Значительно больший момент сопротивления скручиванию, которым обладала «труба» по сравнению с профилированной штангой, позволяет, кроме получения хороших поверхностей, использовать при сверлении более высокие скорости резания и подачи.

В 1942 году Байснер усовершенствовал этот метод. Он вернул сверлильному станку горизонтальное положение, предложил использовать масло в качестве охлаждающей жидкости и усовершенствовал сверлильную головку. Масло подавалось под давлением в зазор между сверлом и образующейся цилиндрической поверхностью и выносило стружку через центральный канал в специальный сборник. Поверхность получалась очень гладкой в некоторой мере благодаря полированию направляющими. Тем не менее после сверления канал ствола обрабатывался разверткой и шлифовался.

Перед тем как приступить к обработке наружной поверхности ствола, его рихтуют — проверяют прямолинейность оси канала и при необходимости выправляют ее с помощью винтового пресса. Проверку правильности канала осуществляют по теневым кольцам, что каждый охотник может сделать и сам. А вот процесс правки требует не только хорошего зрения, но и большого чувства металла, приходящего только с опытом. Дело в том, что ствол имеет упругость. Поэтому если под нагрузкой он выпрямился, то после ее снятия он частично вернется в исходное состояние. Опытный мастер чувствует, насколько ствол нужно «перегнуть», чтобы после снятия нагрузки он стал безукоризненно правильным.

После формирования канала ствола встает очередная непростая задача: обточить ствол снаружи на токарном станке. При этом главная трудность состоит в том, чтобы центр наружной поверхности точно совпал с центром канала ствола. Если этого не сделать, то ствольная трубка получится разностенной. Кроме того, из-за большой величины отношения длины ствола к его диаметру при токарной обработке поверхности ствола его необходимо фиксировать двумя люнетами, для каждого из которых нужно предварительно проточить шейки. Для корректного выполнения этой операции на середине длины ствола устанавливают специальную муфту, позволяющую правильно удерживать ствол за его необработанную поверхность при проточке шеек для люнетов. Когда шейки проточены, муфту можно снять и выполнить наружное обтачивание ствола по копиру. Эти токарные обработки могут привести к некоторой деформации ствола. Поэтому ствол в очередной раз контролируют по теневым кольцам и при необходимости рихтуют. Чистовое обтачивание и шлифование производится после того, как отдельно прошлифовываются шейки для люнетов. Заключительная стадия изготовления ствольных трубок — тонкое шлифование, называемое в оружейном деле хонингованием.

Существенным прогрессом в изготовлении ружейных стволов является их ковка на оправке. Конечно, оборудование для этого процесса стоит недешево. Поэтому формование стволов ковкой рентабельно только при больших объемах производства. Однако экономия средств и времени получается тоже немалой. При изготовлении стволов методом ротационной горячей ковки используют заготовки длиной

260–280 мм и диаметром около 35 мм. В ней сверлом Байснера делают сквозное отверстие диаметром 20,5 мм. Заготовку закрепляют на закаленной тщательно отполированной оправке, имеющей форму внутренней поверхности готового ствола. После электроиндукционного прогрева заготовки до необходимой температуры ее подают к зону ковки, где она, вращаясь вдоль своей оси, проходит под ударами крестообразно расположенных молотов. За полторы минуты заготовка принимает внешнюю и внутреннюю форму ствола с патронником. Закалка после такой проковки не проводится. Внешнюю форму ствола доводят токарным обтачиванием и шлифованием. Канал ствола начерно проходится разверткой. Окончательную обработку канала ствола, включая патронник и дульное сужение, проводят после сборки ствольного блока. Еще более прогрессивным методом изготовления стволов является холодная ковка на оправке. Одно из главных преимуществ — она экономит около 15% дорогой ствольной стали, уходящей в окалину при горячей ковке. Кроме того, внутренняя поверхность ствола получается точной копией оправки, так что можно получать полностью готовые стволы (с патронником, дульным сужением или нарезами). Поверхность канала ствола требует только полировки. К тому же структура холоднокованного ствола обеспечивает ему более высокие механические свойства. Правда, холодная ковка требует несколько более мощных молотов и большей продолжительности. Она длится чуть более трех минут. Внешнюю форму доводят обтачиванием и полированием. Правда, некоторые фирмы выпускают одноствольное оружие без наружного обтачивания, оставляя поверхность в таком виде, каким оно получается из-под молотов. Проверку правильности оси канала проводят и после этой технологии, и, если есть необходимость, их рихтуют. Хотя производство холоднокованых стволов дешевле, многие производители оружия предпочитают изготавливать их сверлением. Это относится не только к оружейникам-штучникам, но и производителям серийных ружей. Удивительно, но большинство из них пользуются для этого сверлами старой конструкции (штанга с удаленным цилиндрическим сектором).

Сталь 08 Х14НД содержит в своем составе 0,08% углерода, 14% хрома, менее 1,5% никеля и менее 1,5% меди.

По химическому составу стали делятся на четыре группы

Углеродистые нелегированные
(С менее 0,25 — низкоуглеродистые,
С=0,2 — 0,4% среднеуглеродистые,
С=0,45 и выше — высокоуглеродистые).

Низколегированные
В них суммарное содержание легирующих элементов не превышает 3,5%.

Среднелегированные
Содержание легирующих эл-тов: 3,5% — 10,0%.

Высоколегированные
Содержание легирующих эл-тов: более 10%.

Скрупулезно или деликатно

От фунтов, в которых измерялся вес старых пушечных снарядов, пошло не только исчисление калибров гладкоствольного оружия. Вес пуль современного нарезного оружия обычно указывается в гранах. Это самая мелкая из старых аптекарских мер веса, базирующихся на фунте. Латинское слово pondus означает вес, тяжесть.

1 фунт — 12 унций; 1 унция — 8 драхм; 1 драхма — 3 скрупула
Отсюда наше слово скрупулезность. По-итальянски scrupolo не имеет негативного оттенка. Оно обозначает деликатность, совестливость.

1 скрупул — 20 гранов. Granum — по-латински зерно.
В основе исчисления веса современных пуль лежит

1 фунт английский — 0,453592 кг.

В результате 1 гран равен 64,8 мг.

Маркировка стальных отливок

Простые углеродистые стали обозначаются двузначным числом, указывающим среднее содержание углерода в сотых долях процента.

Например:

сталь 15 — с содержанием углерода 0,15%.

В сталях основные легирующие элементы обозначаются буквами: А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь,
К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, Х —хром, Ц — цирконий, Ю — алюминий. Цифры поле буквенного обозначения легирующего элемента — процентное содержание его в стали.

Если оно (содержание) менее 1,5%, цифры за буквенным индексом не ставятся.

Технологии

В современных оружейных производствах применяются специальные ствольные токарные станки с компьютерным программированием и с цифровой индикацией процесса. Они снабжены подвижными гидравлическими люнетами и оппозитно расположенными резцами. Такая схема обточки исключает отжимание ствола резцом и позволяет получать ствол с абсолютно равной толщиной стенок в любом сечении.

Владимир Тихомиров 18 января 2012 в 00:00

www.ohotniki.ru

Статьи — Вопросы о стволах оружия

Материал подготовлен вместе с компанией b-shootingsupply.com

Какие стволы лучше?
Какая длина ствола лучше?

Какое преимущество скорости я получу при длинном стволе?

Короткие столы точнее?

Какой контур или диаметр ствола мне использовать?

Какой твист ствола лучше использовать?

Твист ствола влияет на скорость?

Какие типы нарезов в стволе бывают?

Какой метод получения нарезов лучше?

Сколько нарезов в стволе лучше использовать?

Можно увеличить срок службы ствола используя пули с молибденовой оболочкой?

Какой ствол меньше загрязняется?

Долы на стволе? Сделают они ствол устойчивее?

Какой лучший способ обкатки ствола?

Какие стволы лучше, из нержавеющей стали или хромо молибденовой стали?
Более 90% высококачественных стволов матчевого класса производятся из нержавеющей стали ( Stainless Steel ). Нержавейка легче обрабатывается, так как она слегка мягче. Также легче обрабатывать внешнюю поверхность, как в ручной полировке, так и машинной. Также часто говорят что хроммолибденовые стволы ( Chrome-Moly ) могут быть также точны, когда производятся правильно, и есть живые доказательства того что стволы из хромомолибденовой стали держат точность дольше чем из нержавейки.

Ствольная заготовка Green Mountain Barrel Blank Stainless Steel # 391313

Ствольная заготовка Green Mountain Barrel Blank Chrome Moly # 452328

Какая длина ствола лучше?
Стрелки в разных дисциплинах имеют свои предпочтения, но есть несколько наставлений:
Для стрельбы бенчрест со стола на дистанцию 100/200 ярдов кал.6 мм. – Используйте короткий 20″-24″ ствол, длина .22″ дюйма будет идеальным вариантом, но вы может захотите начать с 24 чтобы вы могли сдвинуть его когда вход после патронника сотрется, или захотите сменить калибр (прим. из 6BR в 6PPC).

Ствол LBC Bench Rest 416-R Series Stainless Steel Match Barrel .223

Для стрельбы 300 до 600 метров – Используются разные длины стволов, но вы скорее всего будете стрелять тяжелыми пулями, с медленно горящими порохами, поэтому вам нужен длинный ствол который вам даст больше скорости. Рекомендованная длина будет 26″-28″ дюймов. Однако, коротких стволов 24″ будет вполне достаточно на 600 ярдов с нужной пулей.

Винтовка Remington Model 700 VLS .22-250 Remington 26 Barrel

Дистанция стрельбы 600 метров и более – Используйте хотя бы 28″ дюймовый ствол. Длина 30″ будет даже еще лучше, но с некоторыми комбинациями пороха / пуль, вы получите по факту меньшую скорость со стволом большим 29″. Со стандартным патроном 6BR, 28″ скорее всего достаточно длинный, когда улучшенная версия 6BR Improved может дать больше скорости с 30″. Но имейте ввиду, что короткие стволы будут устойчивее, если они одного типа.

Винтовка Ruger Varmint Target 308 Win 28” #17979

Какое преимущество скорости я получу при длинном стволе?

Начиная от 20″ до 24″ увеличение скорости получится до 260 fps ( 40fps за каждый дюйм ). После этого, ожидайте еще 25-30 fps выше за каждый дюйм до 28″. После этой длины, вы скорее всего будете получать очень малое увеличение, особенно с патронами 6BR Improved. Недавно был закончен тест скорости, используя тестовый станок для стволов. Ствол компании Krieger калибра 6 мм. под 6BR был обрезан от 33″ до 28″ с ходом в один дюйм. Средняя скорость на 33″ была на 40 fps выше чем на 28″. Средние скорости показывали стабильное возрастание на 8 fps от 28″. Например, средняя скорость на 30″ была на 16 fps выше чем на 28″. Основываясь на этих данных, вы не получите большого скачка от 28″ к 30″. Мировой держатель рекорда Richard Schatz стреляет 3025 fps с патроном 6 Dasher используя 26″ ствол фирмы Hart.

Стволы Hart

Патрон 6 mm Dasher

Поэтому 26″ вполне достаточно, по крайней мере на патронах Improved. Для максимальной скорости, 30″ это практичный пример, но помните это добавляет вес оружия и вы будете жертвовать устойчивостью.

Короткие столы точнее?

Как общее правило, ответ да. Чем короче ствол, тем он более устойчивый, грамм за грамм, если вы используете тонкостенный ствол с тем же весом. Если вы увеличите диаметр, прочность и устойчивость ствола возрастет. Но если его облегчить, устойчивость будет снижаться пропорционально длине в кубе. Поэтому если ствол всего на пару дюймов длиннее и тоньше, он может быть наполовину устойчивее чем 20″ контурно обработанный ( max contour ). Добавляемая устойчивость толстостенных 20-22″ BR стволов увеличивает частоту гармонических колебаний к точке в которой вибрация ствола становится не важной ( соответственно с установленным на беддинг и прочно соединенной затворной группой ). С практической точки зрения и смысла, не длинный кусок металла легче сделать прямым и меньше потребуется его сверлить, меньше шанс дефекта будет то же в коротком стволе. Соревнование в стрельбе со столов бенчрест доказывает что короткие стволы в диапазоне 20-22″, дают максимум точности в 6 мм. на короткой дистанции, вместе с прицелом. Для оружия с механическими прицельными приспособлениями, длинные стволы часто дают увеличенный радиус прицеливания, который помогает стрелку прицелится более точно. И не думайте что 26″ или 28″ не могут быть очень точными. Есть много тестов где 28″ стволы показывают группы из 5 один в один на 100 ярдов.

Какой контур или диаметр ствола мне использовать?
Для винтовки, используемой на средней дистанции и 600 ярдов Бенчрест стрельбе можно использовать конусный контур Max Heavy Varmint или нечто схожее. Это будет 1.250″ дюйма от ресивера с прямым ходом до 5″ дюймов (измеряя от переда затвора), потом конус по прямой линии .92″ до среза, заканчивая 27-28″.
Для соревнований по стрельбе на 1000 ярдов можете использовать более тяжелые конусные контуры как MTU, насколько позволяет ресивер или дает фиксатор ствола barrel-block.
Для частой стрельбы по мишеням, если вы не собираетесь участвовать в соревнованиях, можно использовать почти полный контур от 21″ до 23″.

Какой твист ствола лучше использовать?
Самый универсальный твист ствола 1:8″. Он будет стрелять всем, начиная от 62gr FB пуль до 107 VLD с отличной точностью. Если вы стреляете в основном на 100-200 ярдов, твист 1:14 даст 60-70gr матчевым пулям непревзойденную точность. Снятые стволы 1:14 6PPC переделываются на 6BR работая отлично за малые деньги.
Для стрельбы до 600 ярдов, в спокойных условиях, вы можете получить лучшую точность с пулями 75-85gr FB. Они работают лучше на твисте стволов 1:12. 12 твист отличный для варминта с 75gr пулей V-max и Berger 80gr MEF. Начальные тесты показывают что твист 1:10 очень эффективен с новыми пулями формата LD ( low-drag ) 85-88gr FB и 90gr BT. Твист 1:10 отличный выбор для варминта так как вы можете стрелять пулями 87gr Hornady V-Max и точными заводскими патронами Lapua 90gr.
Если вам нужен ствол который стреляет и тяжелыми и легкими пулями, лучшим выбором твиста все равно будет 1:8. Для пуль 115gr DTAC, 1:8 стабилизирует в большинстве условий, но 1:7 для них лучше.

Твист ствола влияет на скорость?
Да. Тесты показывают что с пулями 80-90gr стволы с твистами 1:10 или 1:12 дадут на 80fps больше чем на 1:8, стреляя идентичными зарядами. Быстрый твист (1:8) будет давать большее сопротивление и трение которое, повлияет в свою очередь на скорость. Идеально использовать самый медленный твист из возможных, который стабилизирует вашу пулю. Для специализированной стрельбы настильной стрельбы Бенчрест на 100/200 ярдов, вам нужен будет твист от 1:13 до 1:15. Но если вы хотите стрелять легкими (60-80gr) и тяжелыми (100gr+) пулями, придерживайтесь 1:8.

Какие типы нарезов в стволе бывают?
Есть три вида получения нарезов которые предлагают производители высококлассных стволов как Broughton, Hart, Krieger и Lilja. Во-первых, есть формовка. Этот способ заключается в медленном продвижении (толкании) матрицы через предварительно просверленный ствол. Стволы Hart и Shilen имеют нарезы полученные таким способом. Следующий способ схож с первым. Процедура идентична, но матрица с рисунком протягивается сквозь ствол. Производители стволов как Lilja и Schneider используют этот метод, так как уверены в лучших получаемых результатах. Оба метода формовки нарезов могут быть использованы как стандартные нарезы с квадратным сечением или профильным как на стволах Broughton 5C или Scheider P5 с полигональными формами.

Третий вариант это прорезка, совершенно другая технология. Производится фирмами Border Barrels, Jeff Lawrence, Krieger, Obermeyer и Rock Creek. Среди этих производителей Border, Obermeyer и Rock Creek предлагают версию нарезов Obermeyer 5R, которая имеет конусную форму на одной стороне. Заявленные преимущества 5R это снижение загрязнения, лучшая посадка пули при которой запираются пороховые газы и повышенные скорости. Общее мнение, что стволы столы с нарезами полученными методом резки имеют более долгий эффективный срок жизни. Стресс металла минимизирован с прорезкой формы нарезов и при правильном исполнении, стволы получаются очень схожими и соосными.

Как дополнение к методам производства, большие компании заявляют о стволах полученных методом холодной ковки. Производятся большими компаниями как FN, Remington, Ruger и SigArms. Стволы, полученные таким способом сначала просверливаются, потом нарезы формируются под воздействием на внешнюю часть ствола. Этот способ универсален в получении форм нарезов стандартных, полигональных или конусных форм полей.

Какой метод получения нарезов лучше?
Не существует явного лучшего метода получения нарезов. Можно проверить результаты соревнований по стрельбе бенчрест и вы увидите, победителей и хорошие показатели стрельбы, как из стволов Krieger где нарезы получены резкой, так и формовочными Harts, Liljas и Shilens. Стрелок David Tubb в смешанных дисциплинах и сверхмощной стрельбе использует стволы Schneider с нарезами полученными тянутой формовкой, Krieger же любимы стрелками использующими форму стволов Palma и членов команды США по стрельбе F-class. Нарезы полученные формовкой могут иметь очень ровную внешнюю поверхность, и большинство стволов выигрывавших в соревнованиях 6PPC получены именно этим методом. С другой стороны, много стрелков уверены, что стволы с нарезами полученными методом резки будут правильно работать чуть дольше. По природе процесса получения нарезов, стволы с методом резки получают меньше стресса в металле и ход твиста скорее всего более равномерный.
Дополнительно, стволы с нарезами получаемыми резкой могут быть обработаны (создание дол и т.д.) до ее создания. В стволах с формовкой нарезов, обработка должна быть сделана после создания нарезов и отпуска стрессов материала, потому что есть шанс что от обработки ствол изменится. Единственный известный пока нюанс с нарезами в стволах полученными резкой, в Krieger – что высокие острые поля могут жестко обходится с пулями 6,5mm оболочкой J4, как Clinch River и JLK, когда превышают скорость 2950 fps с твистом в стволе 1:8.

Сколько нарезов в стволе лучше использовать?
Производители стволов оружия заявляют, что до тех пор как пропорция полей и нарезов остается относительно постоянной, явных отличий в точности между стволами с 3, 4, 5, 6 и 8 нарезами не будет. Компания производитель высокоточных стволов Krieger заявляла: «Нет особенного преимущества для стрелка. Учитывая пропорцию площади поверхности, что она будет одинаковой, количество нарезов не должны изменять показатели. Производители стволов используют разное количество нарезов для упрощения работы производства и типа маркировки». По другим данным, исходя из опыта, стволы с 8 нарезами показывали меньшую скорость, и могут засоряться немного быстрее из-за больших углов входящих в оболочку пули и большего количества мест для скопления нагара. Нет причины не использовать стволы с четырьмя нарезами, если вы захотите. Кроме того, чемпион по стрельбе IBS и охотник Al Nyhus и многие другие, имели большой успех используя стволы Lilja с тремя нарезами. Известный оружейник и авантюрист P.O. Ackley верил, что правильно изготовленные стволы с тремя нарезами оптимальны почти под все стандартные калибры. Он верил, что профиль с тремя нарезами может давать большие скорости с меньшим загрязнением и почти с никаким негативным эффектом на точность.

Можно увеличить срок службы ствола используя пули с молибденовой оболочкой?

Скорее всего. Считайте эту тему с открытой дискуссией, исследования Европейских производителей стволов показывают что использование пуль с молибденовой оболочкой от начала эксплуатации может продлить эффективную и точность жизни стволов до 50% сравнивая, со стволом который использовался только на «голых» пулях.

Также указывается, что самая активно изнашиваемая часть ствола это вход в него. Вход в ствол изнашивается из-за большого нагрева и давления. Двигая заряд назад каким либо способом, вы можете увеличить срок жизни ствола в значительной мере и избежать проблемы связанные с пулями покрытыми Moly составом. Стрелки на дистанцию 1000 ярдов не приняли от пуль с моли покрытием из-за необъяснимого поведения в полете, и нескольких проблем с чисткой – что состав покрытия остающийся после стрельбы в виде загрязнения в стволе хуже чистится чем медь и для быстрой чистки потребует удаления с помощью абразивных чистящих средств, при «мягкой» чистке процесс может занять время. В данных не указывается об ультразвуковой чистке стволов, которая начала развиваться из-за появления удобных приборов позволяющих вмещать большие детали.

 

Ультразвуковой очиститель Hornady Hot Tub Sonic Cleaner # 043310

Оружейный рынок постоянно развивается и появляются новые технологии, весьма возможно что в скором времени недостатки Moly оболочек будут исправлены как со стороны производителей, так и дополнительными внешними факторами.

Молибденовый состав Lyman Super Moly Bullet Lube для свинцовых пуль можно пробрести отдельно
На сегодняшний день можно сказать что больше всего преимуществ в Moly пулях найдут стрелки с активной стрельбой по 40-60 выстрелов за раз без возможности чистки.

Какой ствол меньше загрязняется?

Засорение это симптом плохо обработанного ствола больше, чем какие нибудь нарезы или др.признаки. Когда ствол правильно изготовлен имеет острые края, аккуратно соединен, оба вида стволов как полученные формовкой так и резкой, будут иметь небольшое загрязнение. Однако, есть прямые доказательства что стволы со смещенными нарезами ( canted или rachet ) или полигональной ( polygonal ) формой загрязняются меньше других, даже если работают на увеличенных скоростях. Это происходит из-за формы углов нарезов – слегка закруглены или имеют наклон. В теории, профильные поля срезают меньше меди с оболочки пуль и формируют лучшее запирание газов за пулей.

Долы на стволе? Сделают они ствол устойчивее?

Стволы Volquartsen с долами

Очень много недопонимания относительно стволов с долами (каннелюрами – не правильный перевод). Давайте рассмотрим сначала такую обработку ствола ради веса и эстетических предпочтений. Изначально будет не лучшей идеей делать выемки на матчевом стволе, если только не достигается какой ни будь параметр веса с учетом длины и контура. Если вы уверены что хотите сделать долы на стволе, лучше использовать стволы которые получили нарезы методом резки, так как получение выемок может быть сделано производителем ствола до того как сделаны нарезы; однако нету шанса того что изготовление дол на стволе может повредить его однородность. Ствол с нарезами полученными формовкой обрабатывается только после того как их создадут и уберут стресс металла.

Dimpling Barrel — Круговые выемки на стволе

Долы и нагревание ствола: Много людей спрашивают » Ствол с долами охлаждается лучше?». Ответ – возможно. В зависимости от типа выемок и их глубины, долы на стволе увеличат его площадь. Сопровождая его хорошим потоком воздуха, это увеличит способность ствола к теплопередаче. Однако, пескоструйная обработка ствола без выемок может работать точно также. Вы должны знать что долы в стволе позволяют снизить его массу. Металлический объект с меньшей массой нагреется быстрее чем с большей. Поэтому, ствол с долами, может распределять тепло чуть быстрее, но также будет нагреваться быстрее, что будет изначально первостепенным эффектом.

Беддинг блок WHIDDEN GUNWORKS REMINGTON 700 BEDDING V-BLOCK

Долы и устойчивость ствола: Выемки на стволе не делают его устойчивее. Однако, уменьшение веса полученное этим методом позволяет вам использовать с более тяжелый контур ствола и получить его с меньшим весом, чем без дол но меньшего диаметра. Это может дать слегка лучшую устойчивость, но сверх этого ждать не стоит. Можете взглянуть на винтовки победителей при стрельбе на короткие и длинные бенчрес дистанции. Только малая их часть будет с долами, и обычно они начинаются с очень тяжелых или длинных ствольных заготовок, а выемки понадобились для достижения весовых лимитов чтобы снизить загруженность ресивера. Лучший выход это установить тонкий, тяжелый ствол на бенчрестовую винтовку используя блок фиксации bedding block. Он поддерживает ствол прямо перед ресивером на 5 – 6 дюмов.

Какой лучший способ обкатки ствола?
Есть три известных школы обкатки новых стволов.

Первый сособ известного изготовителя стволов Gail McMillan, он верил что «лучше меньше да лучше». Просто произведите пять выстрелов, почистите, выстрелите еще 5 раз, почистите, и потом производите чистку с интервалом 5-10 выстрелов или около того до конца жизни ствола. Он заявлял что способ «один выстрел, одна чистка» как ритуал была ухищрением производителей стволов чтобы их изнашивать быстрее, чтобы продавать больший объем продукции (не только стволов). Он правильно подмечал что каждое действие со стволом уменьшает его срок службы.

Следующая школа, это лагерь приверженцев Krieger, их способ выстрелов и чистки после каждых пяти, потом повтор после трех выстрелов, до того как загрязнение будет не заметно: » Изначально вы должны начать с одного-выстрела-одной-чистки пять повторений. Если загрязнения не уменьшилось, повторить цикл 5-5 до тех пор как загрязнение не начнет отходить. Потом второй этап стрельбы три выстрела- чистки и наблюдение. Если загрязнение уменьшилось, пять выстрелов чистка.»

Третья и последняя школа утверждает что чистить надо усиленно после каждой дюжины выстрелов или более, и использовать абразивные средства как JB после каждых пару выстрелов (JB имеет в линейке и более легкие средства для чистки).

Средства для чистки ствола JB

Идея заключается в том, что происходит полировка входа ствола для снижения загрязнения и увеличения / равномерности скорости. Вместе с пастой для ствола, вы можете стрелять используя пули с вкраплениями мягких абразивов. Это делается просто с помощью системы Tubb Final Finish которая содержит пять видов пуль с различными уровнями мелких частиц.
Так к какой процедуре лучше придерживаться? Скорее всего Gale McMillan прав, но он говорит о «мягких» стволах сделанных на заказ, которые уже отполированы до зеркального блеска. Если с вашим стволом сложно в начале, другие методы могут заслужить ваше внимание. Однако, не рекомендуется использовать систему Final Finish на кастомных стволах ручной полировки.

maksim-guns.ru

Ствол (оружие) Википедия

У этого термина существуют и другие значения, см. Ствол. Учебная модель ствола нарезной 105 мм танковой пушки Ствол      Rohrlänge — длина ствола      Lauflänge — рабочая длина ствола

Ствол — основной конструкционный элемент многих видов оружия (в том числе — огнестрельного) предназначенный для преобразования потенциальной энергии используемой химической реакции или физического эффекта в кинетическую энергию снаряда (мины, гранаты, пули и так далее), который, при движении по стволу, приобретает нужную начальную скорость, вектор направления и, в некоторых случаях, — момент импульса для устойчивости полёта[1].

Устройство[ | ]

Ствол представляет собой трубу, внутренняя полость которой называется каналом. Канал ствола состоит из каморы, где помещается метательный заряд, и ведущей части. На наружной поверхности ствола, расположенной над каморой, раньше ставилось специальное клеймо, указывающее на принадлежность орудия государству (казне), поэтому за этой частью ствола исторически сохранилось название казённой. Противоположная часть ствола получила название дульной. Соответственно торцевые срезы ствола принято называть казённым и дульным. Расстояние между этими срезами называется длиной ствола, измеряемой числом калибров этого ствола или в миллиметрах (дюймах).

Канал ствола казнозарядного оружия после заряжания и во время выстрела с казённой части закрывается затвором, который расположен в затворном гнезде казённика. У дульнозарядного оружия казённая часть заглушена, соответственно заряжание производится

ru-wiki.ru

Ствол (оружейный) Википедия

У этого термина существуют и другие значения, см. Ствол. Учебная модель ствола нарезной 105 мм танковой пушки Ствол      Rohrlänge — длина ствола      Lauflänge — рабочая длина ствола

Ствол — основной конструкционный элемент многих видов оружия (в том числе — огнестрельного) предназначенный для преобразования потенциальной энергии используемой химической реакции или физического эффекта в кинетическую энергию снаряда (мины, гранаты, пули и так далее), который, при движении по стволу, приобретает нужную начальную скорость, вектор направления и, в некоторых случаях, — момент импульса для устойчивости полёта[1].

Устройство

Ствол представляет собой трубу, внутренняя полость которой называется каналом. Канал ствола состоит из каморы, где помещается метательный заряд, и ведущей части. На наружной поверхности ствола, расположенной над каморой, раньше ставилось специальное клеймо, указывающее на принадлежность орудия государству (казне), поэтому за этой частью ствола исторически сохранилось название казённой. Противоположная часть ствола получила название дульной. Соответственно торцевые срезы ствола принято называть казённым и дульным. Расстояние между этими срезами называется длиной ствола, измеряемой числом калибров этого ствола или в миллиметрах (дюймах).

Канал ствола казнозарядного оружия после заряжания и во время выстрела с казённой части закрывается затвором, который расположен в затворном гнезде казённика. У дульнозарядного оружия казённая часть заглушена, соответственно заряжание производится с дульной части ствола[2].

Для уменьшения энергии отката стволы некоторых орудий имеют дульные тормоза. В стволах танковой, самоходной и казематной артиллерии имеются устройства для очистки ствола от пороховых газов — эжекторы.

Ведущая часть ствола служит для придания снаряду поступательного движения с требуемой начальной скоростью. В нарезном оружии для сообщения снаряду вращения, обеспечивающего его устойчивый полёт, в ведущей части канала делаются нарезы. Калибр оружия определяется по полям или по нарезам в зависимости от стандартов страны производителя. В гладкоствольном оружии устойчивость снаряда в полёте обеспечивается с помощью стабилизирующих устройств.

Стволы миномётов и безоткатных орудий обычно гладкостенные, имеют сравнительно небольшую толщину стенок. Стволы безоткатных орудий в казённой части соединяются с соплом, через которое отводится часть пороховых газов для достижения безоткатности. Стволы стрелкового оружия имеют относительно толстые стенки, обеспечивающие прочность и уменьшающие нагрев при стрельбе. Стволы автоматических орудий средних и малых калибров в процессе стрельбы могут искусственно охлаждаться водой, прогоняемой в перерывах между стрельбой через канал ствола или по специальным каналам в его стенке.

Патронник предназначен для размещения и фиксации патрона. Его форма и размеры определяются формой и размерами гильзы патрона. В большинстве случаев форма патронника представляет собой три-четыре сопряжённых конуса: в патронниках под винтовочный и промежуточный патрон — четыре конуса, под патрон с цилиндрической гильзой — один.

Патронники магазинного оружия начинаются патронным вводом — желобком, по которому скользит пуля патрона при подаче его из магазина.

Пульный вход — участок канала ствола между патронником и нарезной частью. Пульный вход служит для правильной ориентации пули в канале ствола и имеет форму усечённого конуса с нарезами, поля которых плавно поднимаются от нуля до полной высоты. Длина пульного входа должна обеспечивать вхождение ведущей части пули в нарезы канала ствола прежде, чем дно пули покинет дульце гильзы.

Нарезная часть ствола служит для придания пуле не только поступательного, но и вращательного движения, что стабилизирует её ориентацию в полёте. Нарезы представляют собой полосовидные углубления, вьющиеся вдоль стенок канала ствола. Нижняя поверхность нареза называется дном, боковые стенки — гранями. Грань нареза, обращённая в сторону патронника и воспринимающая основное давление пули, называется боевой или ведущей, противоположная — холостой. Выступающие участки между нарезами — поля нарезов. Расстояние, на котором нарезы делают полный оборот, называется шагом нарезов. Для оружия определённого калибра шаг нарезов однозначно связан с углом наклона нарезов — углом между гранью и образующей канала ствола.

Примечания

Литература

Ссылки

wikiredia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *