Содержание

Звёздная величина Солнца и Луны

Распространённое убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:

2,527,8

2,525,2

10 000 000 000.

2,52,6

 

 

т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчёт: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звёздного неба, т. е. всех звёзд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звёзды от первой до шестой величины включительно светят вместе так, как сотня звёзд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звёзд первой величины.

Это отношение равно

2,513,6

100 2700.

Итак, в ясную безлунную ночь мы получаем от звёздного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700×447 000, т. е. в 1200 миллионов раз меньше, чем даёт в безоблачный день Солнце.

Прибавим ещё, что звёздная величина нормальной международной

«свечи» на расстоянии 1 м равна минус 14,2, значит, свеча на указанном расстоянии освещает ярче полной Луны в 2,514,2-12,6 т. е. в четыре раза.

Небезынтересно, может быть, отметить ещё что прожектор авиационного маяка силой в 2 миллиарда свечей виден был бы с расстояния Луны звездой 4½-й величины, т. е. мог бы различаться невооружённым глазом.

Истинный блеск звёзд и Солнца

Все оценки блеска, которые мы делали до сих пор, относились только к их видимому блеску. Приведённые числа выражают блеск светил на тех расстояниях, на каких каждое из них в действительности находится. Но мы хорошо знаем, что звёзды удалены от нас неодинаково; видимый блеск звёзд говорит нам поэтому как об их истинном блеске, так и об их удалении от нас, – вернее, ни о том, ни о другом, пока мы не расчленим оба фактора. Между тем важно знать, каков был бы сравнительный блеск или, как говорят, «светимость» различных звёзд, если бы они находились от нас на одинаковом расстоянии.

Ставя так вопрос, астрономы вводят понятие об «абсолютной» звёздной величине звёзд. Абсолютной звёздной величиной звезды называется та, которую звезда имела бы, если бы находилась от нас на рас-

studfiles.net

Уроки. Урок 22. Звёздная величина

 Звёздная величина — числовая характеристика объекта на небе, чаще всего звезды, показывающая, сколько света приходит от него в точку, где находится наблюдатель.

  Видимая (визуальная)

      Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

     Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

      В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

   где I — световой поток от объекта, C — постоянная.

     Поскольку данная шкала относительная, то её нуль-пункт (0m) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 10

6 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0m за пределами земной атмосферы создаёт освещённость в 2,54·10−6 люкс.

     Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 101/2,5=2,512 раза.

     В наши дни видимая звёздная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

     Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или mv) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или mp) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U) имеет максимум в ультрафиолете при длине волны около 350 нм.

    Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

абсолютная 

Абсолютная звёздная величина (M) определяется как видимая звёздная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Абсолютная болометрическая звёздная величина Солнца +4,7. Если известна видимая звёздная величина и расстояние до объекта, можно вычислить абсолютную звёздную величину по формуле:

  где d0 = 10 пк ≈ 32,616 световых лет .

Соответственно, если известны видимая и абсолютная звёздные величины, можно вычислить расстояние по формуле 

Абсолютная звёздная величина связана со светимостью следующим соотношением:    где  и  — светимость и абсолютная звёздная величина Солнца.

Звёздные величины некоторых объектов

Объектm
Солнце−26,7
Луна в полнолуние−12,7
Вспышка Иридиума (максимум)−9,5
Сверхновая 1054 года (максимум)−6,0
Венера (максимум)−4,4
Земля (глядя с Солнца)−3,84
Марс (максимум)−3,0
Юпитер (максимум)−2,8
Международная космическая станция (максимум)−2
Меркурий (максимум)−1,9
Галактика Андромеды+3,4
Проксима Центавра+11,1
Самый яркий квазар+12,6
Самые слабые звёзды, наблюдаемые невооружённым глазомОт +6 до +7
Самый слабый объект, заснятый в 8-метровый наземный телескоп+27
Самый слабый объект, заснятый в космический телескоп Хаббла+30

Самые яркие звёзды

ОбъектСозвездиеm
СириусБольшой пёс−1,47
КанопусКиль−0,72
α ЦентавраЦентавр−0,27
АрктурВолопас−0,04
ВегаЛира0,03
КапеллаВозничий+0,08
РигельОрион+0,12
ПроционМалый пёс+0,38
АхернарЭридан+0,46
БетельгейзеОрион+0,50
АльтаирОрёл+0,75
АльдебаранТелец+0,85
АнтаресСкорпион+1,09
ПоллуксБлизнецы+1,15
ФомальгаутЮжная рыба+1,16
ДенебЛебедь+1,25
РегулЛев+1,35

Солнце с разных расстояний

Местоположение наблюдателяm
Икар (перигелий)−30,4
Меркурий (перигелий)−29,3
Венера (перигелий)−27,4
Земля−26,7
Марс (афелий)−25,6
Юпитер (афелий)−23,0
Сатурн (афелий)−21,7
Уран (афелий)−20,2
Нептун (афелий)−19,3
Плутон (афелий)−18,2
631 а. е. (яркость полной Луны)−12,7
Седна (афелий)−11,8
2006 SQ372 (афелий)−10,0
Комета Хякутакэ (афелий)−8,3
0,456 св. года (яркость Венеры)−4,4
Альфа Центавра0,5
55 св. лет (порог видимости)6,0
Ригель12,0
Туманность Андромеды29,3

www.astro.websib.ru

📌 Звездная величина — это… 🎓 Что такое Звездная величина?

Видимая звёздная величина (иногда — просто «звёздная величина») — безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения

блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

Определение

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0m) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 106 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0m за пределами земной атмосферы создаёт освещённость в 2,54·10−6люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 101/2,5=2,512 раза.

В наши дни видимая звёдная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Спектральная зависимость

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или mv) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или mp) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U) имеет максимум в ультрафиолете при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

Звёздные величины некоторых объектов

Объекты звёздного неба
Объектm
Солнце−26,7 (в 400 000 раз ярче полной Луны)
Луна в полнолуние−12,7
Вспышка Иридиума (максимум)−9,5
Сверхновая 1054 года (максимум)−6,0
Венера (максимум)−4,4
Земля (глядя с Солнца)−3,84
Марс (максимум)−3,0
Юпитер (максимум)−2,8
Международная космическая станция (максимум)−2
Меркурий (максимум)−1,9
Галактика Андромеды+3,4
Самые слабые звёзды, наблюдаемые
невооружённым глазом
От +6 до +7
Проксима Центавра+11,1
Самый яркий квазар+12,6
Самый слабый объект, заснятый
в 8-метровый наземный телескоп
+27
Самый слабый объект, заснятый
в космический телескоп Хаббл
+30
Самые яркие звёзды
ОбъектСозвездиеm
СириусБольшой пёс−1,47
КанопусКиль−0,6
α ЦентавраЦентавр−0,3
АрктурВолопас−0,1
ВегаЛира0,0
КапеллаВозничий+0,1
РигельОрион+0,2
ПроционМалый пёс+0,4
АхернарЭридан+0,5
БетельгейзеОрион+0,9
АльтаирОрёл+0,9
АльдебаранТелец+1,1
ПоллуксБлизнецы+1,2
АнтаресСкорпион+1,2
ФомальгаутЮжная рыба+1,3
ДенебЛебедь+1,3
РегулЛев+1,3

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

описание, классификация и сравнение с фото

Объекты глубокого космоса > Звезды > Размеры звезд

Какого размера бывают звезды: описание параметров от красных карликов до сверхгигантов, сравнение размеров известных звезд на фото, классификация Солнца.

Хотя Солнце кажется нам огромным, но в общем звездном потоке считается средним. Бывают крупнее экземпляры, а иногда встречаются и совсем крошечные. Давайте же более подробно разберем вопрос о размерах звезд.

Самые маленькие звездные небесные тела – красные карлики. Они достигают половины солнечной массы, хотя встречаются и с показателем в 7.5%. Это минимальная отметка, при которой возможен ядерный синтез в ядре. Если же массы не хватает, то получаем коричневые карлики. На нижней схеме можно детально рассмотреть сравнение размеров планет Солнечной системы с Солнцем и другими крупными звездами (Сириус, Арктур, Альдебаран, Бетельгейзе, Мю Цефея).

Сравнительный размер некоторых звезд и планет

Среди красных карликов стоит вспомнить ближайшего к нам – Проксима Центавра, достигающий 12% солнечной массы и 14% его размера (немного крупнее Юпитера).

Сегодняшний диаметр Солнца составляет 1.4 миллиона км. Но в конце существования звезда трансформируется в красного гиганта и увеличится в 300 раз, поглощая ближайшие планеты. Еще более крупной звездой выступает Ригель (голубой сверхгигант), превышающий солнечную массу в 17 раз (производит в 66000 раз больше энергии) и в 62 раза крупнее.

Хотите еще больший размер звезды? Легко! Как насчет красного сверхгиганта Бетельгейзе, который в 20 раз больше солнечной массы и завершает жизненный цикл. Есть предположение, что звезда взорвется как сверхновая в ближайшую тысячу лет.

Самой большой звездой стала VY Большого Пса. Красный сверхгигант в 1800 раз превышает размер Солнца. Если бы она встала на позицию нашей звезды в Солнечной системе, то легко достигла бы Сатурна.


v-kosmose.com

📌 Видимая звездная величина — это… 🎓 Что такое Видимая звездная величина?

Видимая звёздная величина (иногда — просто «звёздная величина») — безразмерная числовая характеристика объекта на небе, чаще всего звезды, говорящая о том, сколько света приходит от него в точку, где находится наблюдатель. Видимая звёздная величина зависит не только от того, сколько света излучает объект, но и от того, на каком расстоянии от наблюдателя он находится. Видимая звёздная величина считается единицей измерения блеска звезды, причём чем блеск больше, тем величина меньше, и наоборот.

Определение

Современное понятие видимой звёздной величины сделано таким, чтобы оно соответствовало величинам, приписанным звёздам древнегреческим астрономом Гиппархом во II веке до н. э. Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины. Промежуточные величины он распределил равномерно между оставшимися звёздами.

В 1856 году Н. Погсон предложил формализацию шкалы звёздных величин. Видимая звёздная величина определяется по формуле:

где I — световой поток от объекта, C — постоянная.

Поскольку данная шкала относительная, то её нуль-пункт (0m) определяют как яркость такой звезды, у которой световой поток равен 10³ квантов /(см²·с·Å) в зелёном свете (шкала UBV) или 106 квантов /(см²·с·Å) во всём видимом диапазоне света. Звезда 0m за пределами земной атмосферы создаёт освещённость в 2,54·10−6люкс.

Шкала звёздных величин является логарифмической, поскольку изменение яркости в одинаковое число раз воспринимается как одинаковое (закон Вебера — Фехнера). Кроме того, поскольку Гиппарх решил, что величина тем меньше, чем звезда ярче, то в формуле присутствует знак минус.

Следующие два свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 101/2,5=2,512 раза.

В наши дни видимая звёдная величина используется не только для звёзд, но и для других объектов, например, для Луны и Солнца и планет. Поскольку они могут быть ярче самой яркой звезды, то у них может быть отрицательная видимая звёздная величина.

Спектральная зависимость

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

  • Визуальная звёздная величина (V или mv) определяется спектром чувствительности человеческого глаза (видимый свет), имеющего максимум чувствительности при длине волны 555 нм. или фотографически с оранжевым фильтром.
  • Фотографическая или «синяя» звёздная величина (B или mp) определяется фотометрированием изображения звезды на фотопластинке, чувствительной к синим и ультрафиолетовым лучам, или при помощи сурьмяно-цезиевого фотоумножителя с синим фильтром.
  • Ультрафиолетовая звёздная величина (U) имеет максимум в ультрафиолете при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах U−B и B−V являются интегральными показателями цвета объекта, чем они больше, тем более красным является объект.

  • Болометрическая звёздная величина соответствует полной мощности излучения звезды, т. е. мощности, просуммированной по всему спектру излучения. Для её измерения применяется специальное устройство — болометр.

Звёздные величины некоторых объектов

Объекты звёздного неба
Объектm
Солнце−26,7 (в 400 000 раз ярче полной Луны)
Луна в полнолуние−12,7
Вспышка Иридиума (максимум)−9,5
Сверхновая 1054 года (максимум)−6,0
Венера (максимум)−4,4
Земля (глядя с Солнца)−3,84
Марс (максимум)−3,0
Юпитер (максимум)−2,8
Международная космическая станция (максимум)−2
Меркурий (максимум)−1,9
Галактика Андромеды+3,4
Самые слабые звёзды, наблюдаемые
невооружённым глазом
От +6 до +7
Проксима Центавра+11,1
Самый яркий квазар+12,6
Самый слабый объект, заснятый
в 8-метровый наземный телескоп
+27
Самый слабый объект, заснятый
в космический телескоп Хаббл
+30
Самые яркие звёзды
ОбъектСозвездиеm
СириусБольшой пёс−1,47
КанопусКиль−0,6
α ЦентавраЦентавр−0,3
АрктурВолопас−0,1
ВегаЛира0,0
КапеллаВозничий+0,1
РигельОрион+0,2
ПроционМалый пёс+0,4
АхернарЭридан+0,5
БетельгейзеОрион+0,9
АльтаирОрёл+0,9
АльдебаранТелец+1,1
ПоллуксБлизнецы+1,2
АнтаресСкорпион+1,2
ФомальгаутЮжная рыба+1,3
ДенебЛебедь+1,3
РегулЛев+1,3

См. также

Wikimedia Foundation. 2010.

dic.academic.ru

📌 Звёздная величина — это… 🎓 Что такое Звёздная величина?

Звёздная величина́, (блеск) — безразмерная числовая характеристика яркости объекта. Обычно термин применяется к небесным светилам. Звёздная величина характеризует поток энергии (энергию всех фотонов в секунду) на единицу площади от рассматриваемого светила в видимом и ближними инфракрасном и ультрафиолетовом диапазоне электромагнитных волн. Таким образом, звёздная величина зависит и от физических характеристик самого объекта (то есть светимости), и от расстояния до него. Чем меньше значение звёздной величины, тем ярче данный объект.

Определение

Ещё во II веке до н. э. древнегреческий астроном Гиппарх разделил все звёзды на шесть величин. Самые яркие он назвал звёздами первой величины, самые тусклые — звёздами шестой величины, а остальные равномерно распределил по промежуточным величинам.

Как выяснилось позже, связь такой шкалы с реальными физическими величинами логарифмическая, поскольку изменение яркости в одинаковое число раз воспринимается глазом как изменение на одинаковую величину (закон Вебера — Фехнера). Поэтому в 1856 году Норман Погсон предложил следующую формализацию шкалы звёздных величин, ставшую общепринятой[1][2]:

где m — звёздные величины объектов, L — освещенности от объектов. Такое определение соответствует падению светового потока в 100 раз при увеличении звёздной величины на 5 единиц.

Данная формула даёт возможность определить только разницу звёздных величин, но не сами величины. Чтобы с её помощью построить абсолютную шкалу, необходимо задать нуль-пункт — блеск, которому соответствует нулевая звездная величина (0m). Сначала в качестве 0m был принят блеск Веги. Потом нуль-пункт был переопределён, но для визуальных наблюдений Вега до сих пор может служить эталоном нулевой звёздной величины (по современной системе, в полосе V системы UBV, её блеск равен +0,03m, что на глаз неотличимо от нуля).

По современным измерениям, звезда нулевой величины за пределами земной атмосферы создаёт освещённость в 2,54·10−6люкс. Световой поток от звезды 0m примерно равен 103 квантов /(см²·с·Å) в зелёном свете (полоса V системы UBV) или 106 квантов /(см²·с·Å) во всём видимом диапазоне света.

Следующие свойства помогают пользоваться видимыми звёздными величинами на практике:

  1. Увеличению светового потока в 100 раз соответствует уменьшение видимой звёздной величины ровно на 5 единиц.
  2. Уменьшение звёздной величины на одну единицу означает увеличение светового потока в 1001/5 ≈ 2,512 раза.

В наши дни понятие звёздной величины используется не только для звёзд, но и для других объектов, например, для Луны, Солнца и планет. Звёздная величина самых ярких объектов отрицательна. Например, блеск Луны в полной фазе достигает −12,7m, а блеск Солнца равен −26,7m.

Спектральная зависимость

Видимая звёздная величина зависит от спектральной чувствительности приёмника излучения (глаза, фотоэлектрического детектора, фотопластинки и т. п.)

Самой распространённой фотометрической системой является система UBV, которая состоит из трёх полос, перекрывающих разные интервалы длин волн. В ней для каждого объекта можно измерить 3 звёздные величины:

  • «Синяя» звёздная величина (B) характеризует яркость объекта в синей области спектра; максимум чувствительности на длине волны около 445 нм.
  • Ультрафиолетовая звёздная величина (U) имеет максимум в ультрафиолетовой области при длине волны около 350 нм.

Разности звёздных величин одного объекта в разных диапазонах (для системы UBV это U−B и B−V) являются показателями цвета объекта: чем они больше, тем более красным является объект. Фотометрическая система UBV определена таким образом, чтобы показатели цвета звёзд спектрального класса А0V равнялись нулю.

Другие используемые звёздные величины

  • Болометрическая звёздная величина показывает полную мощность излучения звезды (т. е. мощность излучения на всех длинах волн). Для её измерения применяется специальное устройство — болометр. Актуальность этой величины связана с тем, что некоторые звёзды (очень горячие и очень холодные) излучают преимущественно не в видимом спектре.

Звёздные величины некоторых объектов

Объекты звёздного неба
Объектm
Солнце−26,7 (в 400 000 раз ярче полной Луны)
Луна в полнолуние−12,74
Вспышка Иридиума (максимум)−9,5
Сверхновая 1054 года (максимум)−6,0
Венера (максимум)−4,67
Международная космическая станция (максимум)−4
Земля (при наблюдении с Солнца)−3,84
Юпитер (максимум)−2,94
Марс (максимум)−2,91
Меркурий (максимум)−2,45
Сатурн (максимум)+0,7
Звёзды Большого Ковша+2
Галактика Андромеды+3,44
Спутники Юпитера+5-6
Уран+5,5
Самые слабые звёзды, наблюдаемые
невооружённым глазом
От +6 до +7,72
Нептун+7,8
Проксима Центавра+11,1
Самый яркий квазар+12,6
Самый слабый объект, заснятый
в 8-метровый наземный телескоп
+27
Самый слабый объект, заснятый
в космический телескоп Хаббл
+31,5
Самые яркие звёзды
ОбъектСозвездиеm
СириусБольшой пёс−1,47
КанопусКиль−0,72
α ЦентавраЦентавр−0,27
АрктурВолопас−0,04
ВегаЛира+0,03
КапеллаВозничий+0,08
РигельОрион+0,12
ПроционМалый пёс+0,38
АхернарЭридан+0,46
БетельгейзеОрион+0,50
АльтаирОрёл+0,75
АльдебаранТелец+0,85
АнтаресСкорпион+1,09
ПоллуксБлизнецы+1,15
ФомальгаутЮжная рыба+1,16
ДенебЛебедь+1,25
РегулЛев+1,35
Солнце с разных расстояний[3]
Местоположение наблюдателяm
Непосредственно на поверхности Солнца (суммарно со всего диска)−38,4
Икар (перигелий)−30,4
Меркурий (перигелий)−29,3
Венера (перигелий)−27,4
Земля−26,7
Марс (афелий)−25,6
Юпитер (афелий)−23,0
Сатурн (афелий)−21,7
Уран (афелий)−20,2
Нептун (афелий)−19,3
Плутон (афелий)−18,2
631 а. е. (яркость полной Луны)−12,7
Седна (афелий)−11,8
2006 SQ372 (афелий)−10,0
Комета Хякутакэ (афелий)−8,3
0,456 св. года (яркость Венеры)−4,4
Альфа Центавра0,5
55 св. лет (порог видимости)6,0
Ригель12,0
Туманность Андромеды29,3
3C 273 (ярчайший квазар)44,2
UDFj-39546284 (самый далёкий астрономический объект на 2011 год, с учётом красного смещения)49,8

См. также

Примечания

  1. Звезды / Сурдин В.Г.. — Москва: Физматлит, 2009. — С. 63.
  2. Сурдин В. Г. Звездная величина  (рус.). Глоссарий Astronet.ru. Архивировано из первоисточника 28 ноября 2010. Проверено 16 сентября 2012.
  3. Вычислено исходя из того, что звёздная величина на расстоянии 1 а. е. равна −26,7, что соответствует абсолютной звёздной величине Солнца +4,87.

Ссылки

dic.academic.ru

Абсолютные предельные звездные величины: описание, шкала и яркость

Если в ясную безоблачную ночь поднять голову вверх, то можно увидеть множество звёзд. Так много, что, кажется, и не счесть вовсе. Оказывается, что небесные светила, видимые глазу, всё же посчитаны. Их насчитывается около 6 тыс. Это общее число как для северного, так и для южного полушарий нашей планеты. В идеале мы с вами, находясь, к примеру, в северном полушарии, должны были бы видеть приблизительно половину от их общего числа, а именно где-то 3 тыс. звёзд.

Мириады зимних звёзд

К сожалению, рассмотреть все имеющиеся звёзды практически невозможно, ведь для этого понадобятся условия с идеально прозрачной атмосферой и полное отсутствие любых источников света. Даже если вы окажетесь в чистом поле вдали от городской засветки глубокой зимней ночью. Почему зимой? Да потому, что летние ночи гораздо светлее! Это связано с тем, что солнце недалеко заходит за горизонт. Но даже и в этом случае нашему глазу будет доступно не более 2,5–3 тыс. звёзд. Почему же так?

Всё дело в том, что зрачок человеческого глаза, если его представить в качестве оптического прибора, собирает определённое количество света от разных источников. В нашем случае источниками света являются звёзды. Сколько мы их увидим, напрямую зависит от диаметра линзы оптического прибора. Естественно, стекло объектива бинокля или телескопа имеет больший диаметр, чем зрачок глаза. Поэтому и будет собирать больше света. Вследствие этого с помощью астрономических приборов можно увидеть гораздо большее количество звёзд.

Звёздное небо глазами Гиппарха

Конечно, вы замечали, что звёзды отличаются по яркости, или, как говорят астрономы, по видимому блеску. В далёком прошлом люди также обратили на это внимание. Древнегреческий астроном Гиппарх поделил все видимые небесные светила на звёздные величины, имеющие VI классов. Самые яркие из них «заработали» I, а самые невыразительные он охарактеризовал как звёзды VI категории. Остальные были разделены на промежуточные классы.

Впоследствии выяснилось, что разные звёздные величины имеют между собой некую алгоритмическую связь. А искажение яркости в равное количество раз нашим глазом воспринимается как удаление на одинаковое расстояние. Таким образом, стало известно, что сияние звезды I категории ярче сияния II примерно в 2,5 раза.

Во столько же раз звезда II класса ярче III, а небесное светило III, соответственно, — IV. В итоге разница между свечением звёзд I и VI величин отличается в 100 раз. Таким образом, небесные светила VII категории находятся за порогом человеческого зрения. Немаловажно знать, что звёздная величина — это не размер звезды, а её видимый блеск.

Что является абсолютной звёздной величиной?

Звёздные величины бывают не только видимыми, но и абсолютными. Этот термин применяют, когда необходимо сравнить между собой две звезды по их светимости. Чтобы это сделать, каждую звезду относят на условно-стандартное расстояние в 10 парсек. Иными словами, это величина звёздного объекта, которую он имел бы, если находился на расстоянии 10 ПК от наблюдателя.

К примеру, звёздная величина нашего солнца -26,7. А вот с расстояния в 10 ПК наша звезда была бы едва заметным глазу объектом пятой величины. Отсюда следует: чем выше светимость небесного объекта, или, как ещё говорят, энергия, которую звезда излучает в единицу времени, тем больше вероятность, что абсолютная звёздная величина объекта примет отрицательное значение. И наоборот: чем меньше светимость, тем выше будут положительные значения объекта.

Самые яркие звёзды

Все звёзды имеют различный видимый блеск. Одни немного ярче первой величины, вторые — намного слабее. Ввиду этого были введены дробные величины. К примеру, если видимая звёздная величина по своему блеску находится где-то между I и II категорией, то её принято считать звездой 1,5 класса. Также существуют звёзды с величинами 2,3…4,7…и т. д. Например, Процион, входящий в экваториальное созвездие Малого Пса, лучше всего виден по всей России в январе или феврале. Её видимый блеск — 0,4.

Примечательно, что I звёздная величина кратна 0. Только одна звезда практически точно соответствует ей — это Вега, ярчайшее светило в созвездии Лиры. Её блеск составляет примерно 0,03 звёздной величины. Однако есть светила, которые ярче её, но их звёздная величина носит отрицательный характер. Например, Сириус, который можно наблюдать сразу в двух полушариях. Его светимость — -1,5 звёздной величины.

Отрицательные звёздные величины присвоены не только звёздам, но и другим небесным объектам: Солнцу, Луне, некоторым планетам, кометам и космическим станциям. Однако существуют звёзды, которые могут менять свой блеск. Среди них есть множество звёзд пульсирующих, с переменными амплитудами блеска, но встречаются и такие, у которых можно наблюдать несколько пульсаций одновременно.

Измерение звёздных величин

В астрономии практически все расстояния измеряет геометрическая шкала звёздных величин. Фотометрический способ измерений используется для далёких расстояний, а также если нужно сравнить светимость объекта с его видимым блеском. В основном расстояние к ближайшим звёздам определяют по их годичному параллаксу — большой полуоси эллипса. Запущенные в будущем космические спутники увеличат визуальную точность изображений не менее чем в несколько раз. К сожалению, пока для расстояний более чем 50–100 ПК применяют другие методы.

Экскурсия в открытый космос

В далёком прошлом все небесные тела и планеты были гораздо меньше. Например, наша Земля когда-то была размером с Венеру, а ещё в более ранний период — с Марс. Миллиарды лет назад все континенты укрывали нашу планету сплошной материковой корой. Позднее размеры Земли увеличились, а материковые плиты разошлись, образовав океаны.

У всех звёзд с приходом «галактической зимы» росла температура, светимость и звёздная величина. Мера массы небесного светила (например, Солнца) со временем тоже увеличивается. Впрочем, происходило это чрезвычайно неравномерно.

Изначально эту небольшую звезду, как и любую другую планету-гигант, укрывал сплошной лёд. Позднее светило стало увеличиваться в размерах, пока не достигло своей критической массы и не прекратило расти. Это связано с тем, что звёзды периодически увеличиваются в своей массе по пришествию очередной галактической зимы, а в межсезонные периоды сокращаются.

Вместе с Солнцем росла и вся Солнечная система. К сожалению, не все звёзды смогут пройти по этому пути. Многие из них исчезнут в глубинах других, более массивных звёзд. Небесные светила обращаются по галактическим орбитам и, постепенно приближаясь к самому центру, рушатся на одну из ближайших звёзд.

Галактика — это сверхгигантская звёздно-планетарная система, произошедшая из карликовой галактики, которая появилась из более мелкого скопления, вышедшего из кратной планетарной системы. Последняя же произошла из такой же системы, как наша.

Предельная величина звёзд

Теперь уже не тайна, что чем прозрачнее и темнее над нами небо, тем большее количество звёзд или метеоров можно увидеть. Предельная звёздная величина — это характеристика, которую лучше определяют благодаря не только прозрачности неба, но и зрению созерцающего. Человек может увидеть сияние самой неяркой звезды только на горизонте, боковым зрением. Однако стоит упомянуть о том, что это индивидуальный критерий для каждого. Если сравнивать с визуальным наблюдением из телескопа, то существенное различие состоит в типе прибора и диаметре его объектива.

Сила проницания у телескопа с фотопластинкой фиксирует излучение тусклых звёзд. В современные телескопы можно наблюдать объекты светимостью в 26–29 звёздных величин. Проницающая сила прибора зависит от множества дополнительных критериев. Среди них немаловажное значение имеет качество изображений.

Размер звёздного изображения напрямую зависит от состояния атмосферы, фокусного расстояния объектива, фотоэмульсии, а также времени, отведённого на экспозицию. Однако самым важным показателем является яркость звезды.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *