РС-82 Википедия
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещён метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввёрнутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решётка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полёте обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
Топливо
Весной 1921 году в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5 % пироксилина, 23 % тротила и 0,5 % централита. Несмотря на серьёзные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
Выбор калибра
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжён пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учётом толщины стенок ракетной камеры и местных её утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82. Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии п
ruwikiorg.ru
Ракеты и ракетное оружие | СССР — Всё о Второй мировой
Рисунки реактивных ракетных снарядов: (слева направо) М-8; М-13, М-20; М-28; М-30, М-31, М-31УК; М-31ДД
Работы по разработке ракет (реактивных снарядов) в СССР начались в 1933 г в Ленинградском ракетном научно-исследовательском институте. В 1937-1938 гг. на вооружение были приняты твердотопливные реактивные авиационные снаряды «РС-82» и «РС-132», которые и легли в основу разработки ракетных снарядов для сухопутных войск – «М-8» и «М-13». В процессе выпуска, конструкция и тактико-технические данные реактивных снарядов постоянно улучшались. В результате серийно выпускалось более 10 разновидностей ракет. Во время артиллерийской подготовки атаки реактивная артиллерия вела огонь залпами батарей и дивизионов по различным целям: подавляла и уничтожала живую силу и огневые средства в опорных пунктах, сосредоточения резервов, нарушала управление противника и т. п. Всего было выпущено снарядов М-8 — 5,5 млн. шт., М-13 – 7 млн. шт., М-20 – 560,6 тыс. шт., М-30 и М-31 — 1,4 млн. шт. Краткая характеристика основных реактивных снарядов приведена в таблице.
Вид снаряда | Калибр (мм) | Длина (мм) | Масса (кг) | Масса ВВ (кг) | Масса заряда (кг) | Дальность (км) | Скорость (м/с) |
М-8 | 82 | 745 | 8 | 0,64 | 1,18 | 5,5 | 315 |
М-13 | 132 | 1415 | 42 | 4,9 | 7,15 | 8,5 | 355 |
М-13УК | 132 | 1415 | 42,3 | 4,9 | 7,15 | 7,9 | 355 |
М-13ДД | 132 | 2120 | 62,5 | 4,9 | 15 | 11,8 | 520 |
М-20 | 132 | 2090 | 57,5 | 18,4 | 7,15 | 5,0 | 260 |
М-28 | 280 | 1450 | 65 | 28,9 | 7,15 | 1,9 | 260 |
М-30 | 300 | 1450 | 76 | 28,9 | 7,15 | 2,8 | 195 |
М-31 | 310 | 1750 | 92 | 28,9 | 11,25 | 4,3 | 255 |
М-31УК | 310 | 1750 | 95 | 28,9 | 11,25 | 4,0 | 245 |
Горная (вьючная) пусковая установка М-8
В 1942 г. заводом «Компрессор» выпускалась переносная горная пусковая установка для 82-мм реактивных снарядов. Она представляла собой пакет с четырех сдвоенных направляющих длиной 1 м смонтированных на станке. Установка разбиралась на три части: Выпускалось две модификации различающихся системой запуска: с помощью аккумуляторной батареи и прибора управления огнем и пиропистолетами. Установки могли монтироваться на автомобили «Виллис-МВ» или «ГАЗ-67» под обозначением «БМ-8-8». Всего было изготовлено 48 установок. ТТХ установки: калибр – 82 мм; масса – 51 кг, количество направляющих – 8 шт.; масса снаряда – 7,9 кг; начальная скорость снаряда – 315 м/с; дальность стрельбы – 5,5 км.
Боевая машина реактивной артиллерии БМ-13-16
Для запуска реактивных снарядов «М-13» была создана пусковая установка, сначала под индексом «БМ-13», а затем получившая обозначение «БМ-13-16» (13-см снаряды в количестве 16 шт.). Установка имела 8 балок, на каждой из которых монтировалось по две направляющих длиной 7 м, соединенных общей рамой. Для наводки были предусмотрены поворотный и подъемный механизмы и артиллерийский прицел. Минимальный угол наклона направляющих был равен 15°, что не позволяло вести огонь по целям расположенным ближе 2 — 3 км. В задней части машины находились два домкрата, обеспечивающие устойчивость при стрельбе. Запуск производился рукояточной электрокатушкой, соединенной с аккумуляторной батарей и контактами на направляющих — при повороте рукоятки по очереди замыкались контакты и в очередном из снарядов срабатывал пусковой пиропатрон. Время производства залпа – 7 — 10 с, время заряжания – 5 — 10 минут. Серийное производство установки было начато в июне 1941 г. После первого применения установки в июле 1941 г. она получила фронтовое название «катюша». До ноября 1941 г. установка монтировалась на шасси грузового автомобиля «ЗиС-6». В дальнейшем — на шасси автомобилей «Форд», «Студебекер», «Остин», «Додж». Всего было выпущено около 600 установок.
Реактивная пусковая установка БМ 13-16 на шасси трактора СТЗ-5
После того, как установки «БМ-13-16» перестали устанавливать на шасси «ЗиС-6», для их носителя был выбран артиллерийский трактор-тягач «СТЗ-5 Сталинец» (СТЗ-5-НАТИ или СТЗ-НАТИ 2ТВ), принятый на вооружение в сентябре 1941 г. Установки на тракторном шасси имели несколько лучшую проходимость, чем на шасси «ЗиС-6», но гораздо меньшую скорость передвижения. Кроме того, так как установка получилась узкой и высокой, да еще и с высоким центром тяжести, она переворачивалась уже при уклоне 20-30°. Установки на шасси «СТЗ-5» монтировались вплоть до остановки Сталинградского тракторного завода во время битвы за Сталинград. ТТХ тягача: длина – 4,1 м; ширина – 1,8 м; высота – 2,3 м; клиренс – 288 мм; масса – 5,8 т; мощность – 56 л.с.; трансмиссия – 7 передач; запас хода – 145 км; скорость передвижения по шоссе – 22 км; число мест в кабине – 2 человека.
Реактивная пусковая установка БМ 13-16 на базе шасси автомобиля Chevrolet G-7107
Реактивная пусковая установка БМ 13-16 на базе шасси автомобиля GMC CCKW 352
С ноября 1941 г. в СССР начали поставлять грузовики по договору ленд-лиза. В основном они поставлялись в виде машинокомплектов, и собирались на советских автозаводах, в том числе, на Горьковском. В 1942 году неустановленное количество установок БМ-13-16 было смонтировано на шасси этих грузовиков.
Боевая машина реактивной артиллерии БМ-13Н на шасси Studebaker US6
В апреле 1943 г. на вооружение была принята установка «БМ-13Н» (нормализованная), которая отличалась от «БМ-13-16» по трем существенным параметрам: она собиралась отдельно от шасси автомобиля и лишь, затем монтировалась на шасси подходящего грузовика; минимальный угол возвышения направляющих был доведен до 4,5°, вместо 15 на предыдущей модификации; введено бронирования бензобака, бензопровода, боковых и задней стенок кабины водителя. С ноября 1941 г. установка, в основном, монтировалась на шасси американского грузового автомобиля «Studebaker US6». На каждой машине устанавливался заряд для самоуничтожения, чтобы при возможности захвата уничтожить её. Известны модификации установки: «БМ-13НМ» и «БМ-13НММ». Как «БМ-13-16» так и «БМ-13Н» могли вести огонь и реактивными снарядами «М-20». На базе« Studebaker US6» было изготовлено около 1,8 тысяч установок, а всего за годы войны было выпущено 6,8 тысяч установок БМ-13 всех модификаций. ТТХ установки: компоновка шасси – 6х6; мощность бензинового двигателя 95 л.с.; трансмиссия – 6 передач; длина – 6,3м, ширина – 2,2 м; высота – 2,1 м; клиренс – 248 мм; масса – 4,5 т; скорость передвижения по шоссе – 72 км/ч; калибр снаряда – 132 мм; количество направляющих – 16 шт.; время производства залпа – 7-10 с.
Реактивная пусковая установка БМ-8-36
В августе 1941 г. для 82-мм реактивных снарядов М-8 заводом «Компрессор» была выпущена 36-зарядная пусковая установка БМ-8-36 на шасси автомашины ЗИС-6. В ней использовались отдельные узлы и детали от БМ-13. К ноябрю 1941 г. было выпущено 270 установок. Около пятидесяти установок М-8-36 были смонтированы на шасси ГАЗ-ААА или ГАЗ-ММ. За время войны было произведено 2,4 тысячи установок БМ-8 всех модификаций. ТТХ установки: калибр – 82 мм; количество направляющих – 26 шт.; время перевода в боевое положение – 2 минуты; время залпа – 15-20 с; время заряжания – 4-5 минут; длина направляющих – 1,8 м; масса артиллерийской части – 1,7 т; расчет – 5-6 человек.
Реактивная пусковая установка БМ-8-24 на базе танка Т-40
Реактивная пусковая установка БМ-8-24 на базе танка Т-60
В октябре 1941 г. на заводе «Компрессор» была создана пусковая установка для ракет «М-8» на шасси легкого танка «Т-40» под обозначением БМ-8-24. Она была разработана на базе авиационных пусковых установок, имела снабженную механизмами наводки и прицельными приспособлениями артиллерийскую часть с направляющими для запуска 24 снарядов. Установка могла вести огонь прямой наводкой. Для запуска ракет использовался пиропатрон. Артиллерийская часть монтировалась на крыше танка, вместо башни. Вся необходимая электропроводка и приборы управления огнем размещались в боевом отделении танка. Всего было выпущено 44 машины. ТТХ установки: длина – 4,1 м; ширина – 2,3 м; высота – 1.9 м; бронирование корпуса – 13 — 15 мм; мощность двигателя – 85 л.с.; трансмиссия – 5 передач; скорость передвижения по шоссе – 44 км/ч; запас хода – 300 км; масса — 5,5 т; калибр – 82 мм; количество направляющих – 24; время залпа – 15 — 20 с. Установка БМ-8–24 изготавливалась также на шасси «Т-60» с сентября 1941 г. до конца 1943 г, который имел следующие ТТХ: длина – 4,1 м; ширина – 2,4 м; высота – 1,7 м; клиренс – 300 мм; масса – 5,8 т; бронирование корпуса – 15 мм; мощность двигателя – 70 л.с.; скорость передвижения по шоссе – 42 км/ч; запас хода – 450 км; трансмиссия – 5 передач.
Реактивная пусковая установка БМ-8-48
В начале 1942 г. на базе артиллерийской части пусковой установки «БМ-8-24» была создана более мощная установки «БМ-8-48», которая имела 48 направляющих. Установка монтировалась на шасси грузовиков «ЗИС-6», «Studebaker US6», «Ford-Marmon». Вследствие большого рассеивания реактивных снарядов стрельба должна была вестись только по целям, занимающим значительную площадь, одновременно из нескольких боевых машин, чтобы обеспечить достаточную плотность огня. Стрельба по целям малых размеров была неэффективна. Установка могла производить стрельбу группами по три снаряда, либо одним залпом, выпуская все 48 снарядов в течение 8 — 10 секунд. ТТХ установки: калибр – 82 мм; количество направляющих – 48 шт.; длина направляющих – 2,5 м; масса артиллерийской части – 1,8 т; время перевода в боевое положение – 2 минуты; время заряжания – 6-7 минут; дальность стрельбы – 5,5 км.
Реактивная пусковая установка БМ-8-72 на базе Studebaker US6
Установки появились в конце войны, принимали участие в параде Победы. Они также устанавливались на железнодорожных платформах.
Реактивная пусковая установка БМ-31-12 на шасси Studebaker US6
Реактивная пусковая установка БМ-31-12 на шасси ЗИС-12
Установка «БМ-31-12» была принята на вооружение в июне 1944 г. и являлась модификацией установки «БМ-13», отличающаяся применением направляющих сотового типа. Каждая направляющая ячейка состояла из четырех труб диаметром 32 мм и длиной 3 м, находящихся внутри связывающих их восьмигранных обойм. Трубы ячейки расположены друг относительно друга так, что поперечном сечении образуют квадрат, в который вписывается окружность диаметром 306 мм.
Таким образом, ячейки являлись как бы стволами, придающими снарядам направление полета. Двенадцать ячеек направляющих объединены в пакет, состоящий из двух ярусов по шесть ячеек в каждом. Благодаря наличию устройства стопорения снарядов на направляющих пусковые установки могли заряжаться в исходном районе, выдвигаться на огневую позицию, давать залп и покидать огневую позицию до того, как противник нанесет по ней удар. Пусковая установка имела подъёмный и поворотный механизмы, с помощью которых обеспечивалась достаточная точность и быстрота наведения пакета направляющих по углу возвышения (от 10° до 48°) и по горизонту (±10°) без передвижения базового шасси. Для стрельбы применялись снаряды «М-31», которые при разрыве оставляли воронку диаметром 7–8 метров и глубиной до 2,5 м. По аналогии с «катюшей», установка получила фронтовое прозвище «андрюша». Всего было выпущено 1800 установок. ТТХ установки: калибр – 310 мм; количество направляющих – 12 шт.; время залпа – 7 — 10 с; время заряжания – 5 — 10 минут.
Пусковой станок «Рама М-30»
В мае 1942 г. завод «Компрессор» разработал пусковую установку рамного типа — пусковой станок «М-30» для 300-мм реактивных снарядов «М-30». За основу были взяты германские метательные рамы обр. 1940 и 1941 гг. для 28-см и 32-см реактивных снарядов. Станок при стрельбе устанавливали прямо на грунт и на нем помещали четыре снаряда в специальной укупорке («ящик 30»). Внутри ящика имелись направляющие полосы, по которым снаряд скользил при выстреле. В этой укупорке реактивные снаряды поступали с заводов и складов, из нее и запускались. Затем по предложениям с фронта был разработан двухрядный способ заряжания, что позволяло с каждого станка «М-30» пускать 8 снарядов. Станки начали поступать на фронт с весны 1943 года. Фронтовики называли установку «Лука» (полное название – «Лука Мудищев») за характерную форму снаряда. Всего было построено около 15 тысяч установок. ТТХ установки: калибр – 310 мм; количество направляющих – 4-8 шт.; время залпа – 5-7 с.
wwii.space
РС-82 — Википедия
Ракетные снаряды М-8. Музей космонавтики и ракетной техники; Санкт-ПетербургРС-82 и РС-132 (сокращение от Реактивный Снаряд) — неуправляемые[1] авиационные боеприпасы класса «воздух-воздух» и «воздух-поверхность», оснащенные реактивным двигателем на бездымном порохе. Разработаны в СССР в период с 1929 по 1937 г. Широко использовались во время Великой Отечественной войны. Дальнейшим развитием РС-82 и РС-132 стали снаряды M-8 и М-13, использовавшиеся также в РСЗО класса «поверхность-поверхность» БМ-8 и БМ-13.
Тактико-технические характеристики[править]
Наименование | РС-82 | РС-132 |
---|---|---|
Калибр, мм | 82 | 132 |
Длина снаряда, мм | 600 | 845 |
Вес ВВ, кг | 0,36 | 0,9 |
Вес ракетного топлива, кг | 1,1 | 3,8 |
Полный вес снаряда, кг | 6,8 | 23 |
Максимальная скорость снаряда (без учета скорости носителя), м/с | 340 | 350 |
Максимальная дальность, км | 6,2 | 7,1 |
Радиус сплошного осколочного поражения, м | 6-7 | 9-10 |
Рассеивание при стрельбе по наземным целям, тысячные доли дальности | 14-16 | 14-16 |
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещен метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввернутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решетка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полете обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
История создания[править]
Топливо[править]
Весной 1921 году в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5 % пироксилина, 23 % тротила и 0,5 % централита. Несмотря на серьёзные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
Выбор калибра[править]
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжен пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учетом толщины стенок ракетной камеры и местных её утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82.
Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учетом толщины стенки ракетной камеры и местных её утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
По баллистическому расчету необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.
Выбор способа стабилизации[править]
Первый в СССР успешный полет ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалась в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения — стабилизированные оперением ракеты запускались из минометов — что давало бо́льшую дальность полета. В конце 20-х годов по результатам проведенных испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как маневренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
Первоначально для РС был выбран вариант стабилизации вращением в полете (Гироскопический). При этом 20-30 % энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полета, кучность же оставалась неудовлетворительной, что труднообъяснимо. Поэтому было решено вернуться к снарядам с оперением. Опытным путем были установлены оптимальные размеры оперения — 200 мм для РС-82 и 300 мм для РС-132. При дальности полета в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность.
Созданный в 1942 году инженерами предприятия «Чешска зброевка» на основе РС-82 собственный реактивный снаряд имел гибридную систему стабилизации: поверхности стабилизаторов имели малую (1,5 градуса) закрутку. Вращение снаряда вокруг своей оси было медленным и недостаточным для стабилизации вращением, но таким образом устранялся дестабилизирующий эффект неравномерного горения порохового заряда (эксцентриситет тяги). Германская ракета превосходила РС-82 по дальности полёта, кучности и действию по цели[2]. Собственные ракеты с косо поставленным оперением появились в РККА только в 1944 году, получив специальные баллистические индексы ТС-46 и ТС-47
Принятие на вооружение[править]
В 1933 году в Москве был создан Ракетный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клейменова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королева (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС — применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом ученых под руководством А. С. Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57 %, нитроглицерина — 28 %, динитротолуола — 11 %, централита — 3 %, вазелина — 1 %. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объёме с использованием самолетов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.
Модификации и варианты[править]
Модель | Характеристики |
---|---|
РС-82 (с 1942 М-8) | Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г. |
РБС-82 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2. |
РОС-82 | Реактивный осколочный снаряд. |
РОФС-82 | Вариант с осколочно-фугасной БЧ. |
ЗС-82 | Зажигательный РС. |
ТРС-82 | Турбореактивный снаряд, разработан в 1943 г. |
РС-132 (с 1942 М-13) | Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г. |
РБС-132 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2. |
РОФС-132 | Вариант с осколочно-фугасной БЧ. |
РОС-132 | Реактивный осколочный снаряд. |
ЗС-132 | Зажигательный РС. |
ТРС-132 | Турбореактивный снаряд, разработан в 1943 г. |
Пусковые и прицельные устройства[править]
В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолета. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили её П-образпым профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надежность схода снарядов.
Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих — 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолетах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих — 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряженные дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось летчику.
За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолета, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками летчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800—1200 м. Управление стрельбой РС — от электросбрасывателя бомб ЭСБР-3.
Боевое применение[править]
Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол, где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооруженных реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские летчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию советских войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолета.
В ходе советско-финской войны (1939—1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.
Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в маневренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай — при сближении встречными курсам пары самолетов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие — одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолета. Оставшиеся два самолета противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжелыми бомбардировщиками противника.
РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках — РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если летчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[3]
Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РБC-132 — до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.
Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400—500 м составил 1,1 %, а в плотную колонну танков — 3,7 %. Процент попадания РС-132 был ещё меньше. В условиях боевого применения с расстояния 600—700 м, при активном противодействии противника рассеивание было значительно выше.
Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели — мотомеханизированные колонны, ж/д составы, склады, батареи полевой и зенитной артиллерии
- Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
- Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты: История. Теория. Конструкция. — М.: Машиностроение, 1992. — 288 с. — ISBN 5-217-01748-1.
- Широкорад А. Б. Глава 2. Первые советские 82-мм и 132-мм неуправляемые реактивные снаряды // Отечественные минометы и реактивная артиллерия. — Мн., М.: Харвест, АСТ, 2000. — 464 с. — (Профессионал). — 7000 экз. — ISBN 985-13-0039-X, 5-17-001748-0.
- Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
- Пономаренко А. Наши славные «ЭРЭСы» // Моделист-Конструктор. — 1977. —. —.
www.wiki-wiki.ru
РС-82 — Википедия
Ракетные снаряды М-8. Музей космонавтики и ракетной техники; Санкт-ПетербургРС-82 и РС-132 (сокращение от Реактивный Снаряд) — неуправляемые[1] авиационные боеприпасы класса «воздух-воздух» и «воздух-поверхность», оснащенные реактивным двигателем на бездымном порохе. Разработаны в СССР в период с 1929 по 1937 г. Широко использовались во время Великой Отечественной войны. Дальнейшим развитием РС-82 и РС-132 стали снаряды M-8 и М-13, использовавшиеся также в РСЗО класса «поверхность-поверхность» БМ-8 и БМ-13.
Тактико-технические характеристики[править]
Наименование | РС-82 | РС-132 |
---|---|---|
Калибр, мм | 82 | 132 |
Длина снаряда, мм | 600 | 845 |
Вес ВВ, кг | 0,36 | 0,9 |
Вес ракетного топлива, кг | 1,1 | 3,8 |
Полный вес снаряда, кг | 6,8 | 23 |
Максимальная скорость снаряда (без учета скорости носителя), м/с | 340 | 350 |
Максимальная дальность, км | 6,2 | 7,1 |
Радиус сплошного осколочного поражения, м | 6-7 | 9-10 |
Рассеивание при стрельбе по наземным целям, тысячные доли дальности | 14-16 | 14-16 |
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещен метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввернутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решетка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полете обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
История создания[править]
Топливо[править]
Весной 1921 году в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5 % пироксилина, 23 % тротила и 0,5 % централита. Несмотря на серьёзные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
Выбор калибра[править]
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжен пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учетом толщины стенок ракетной камеры и местных её утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82.
Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учетом толщины стенки ракетной камеры и местных её утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
По баллистическому расчету необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.
Выбор способа стабилизации[править]
Первый в СССР успешный полет ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалась в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения — стабилизированные оперением ракеты запускались из минометов — что давало бо́льшую дальность полета. В конце 20-х годов по результатам проведенных испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как маневренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
Первоначально для РС был выбран вариант стабилизации вращением в полете (Гироскопический). При этом 20-30 % энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полета, кучность же оставалась неудовлетворительной, что труднообъяснимо. Поэтому было решено вернуться к снарядам с оперением. Опытным путем были установлены оптимальные размеры оперения — 200 мм для РС-82 и 300 мм для РС-132. При дальности полета в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность.
Созданный в 1942 году инженерами предприятия «Чешска зброевка» на основе РС-82 собственный реактивный снаряд имел гибридную систему стабилизации: поверхности стабилизаторов имели малую (1,5 градуса) закрутку. Вращение снаряда вокруг своей оси было медленным и недостаточным для стабилизации вращением, но таким образом устранялся дестабилизирующий эффект неравномерного горения порохового заряда (эксцентриситет тяги). Германская ракета превосходила РС-82 по дальности полёта, кучности и действию по цели[2]. Собственные ракеты с косо поставленным оперением появились в РККА только в 1944 году, получив специальные баллистические индексы ТС-46 и ТС-47
Принятие на вооружение[править]
В 1933 году в Москве был создан Ракетный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клейменова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королева (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС — применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом ученых под руководством А. С. Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57 %, нитроглицерина — 28 %, динитротолуола — 11 %, централита — 3 %, вазелина — 1 %. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объёме с использованием самолетов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.
Модификации и варианты[править]
Модель | Характеристики |
---|---|
РС-82 (с 1942 М-8) | Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г. |
РБС-82 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2. |
РОС-82 | Реактивный осколочный снаряд. |
РОФС-82 | Вариант с осколочно-фугасной БЧ. |
ЗС-82 | Зажигательный РС. |
ТРС-82 | Турбореактивный снаряд, разработан в 1943 г. |
РС-132 (с 1942 М-13) | Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г. |
РБС-132 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2. |
РОФС-132 | Вариант с осколочно-фугасной БЧ. |
РОС-132 | Реактивный осколочный снаряд. |
ЗС-132 | Зажигательный РС. |
ТРС-132 | Турбореактивный снаряд, разработан в 1943 г. |
Пусковые и прицельные устройства[править]
В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолета. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили её П-образпым профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надежность схода снарядов.
Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих — 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолетах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих — 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряженные дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось летчику.
За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолета, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками летчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800—1200 м. Управление стрельбой РС — от электросбрасывателя бомб ЭСБР-3.
Боевое применение[править]
Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол, где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооруженных реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские летчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию советских войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолета.
В ходе советско-финской войны (1939—1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.
Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в маневренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай — при сближении встречными курсам пары самолетов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие — одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолета. Оставшиеся два самолета противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжелыми бомбардировщиками противника.
РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках — РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если летчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[3]
Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РБC-132 — до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.
Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400—500 м составил 1,1 %, а в плотную колонну танков — 3,7 %. Процент попадания РС-132 был ещё меньше. В условиях боевого применения с расстояния 600—700 м, при активном противодействии противника рассеивание было значительно выше.
Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели — мотомеханизированные колонны, ж/д составы, склады, батареи полевой и зенитной артиллерии
- Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
- Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты: История. Теория. Конструкция. — М.: Машиностроение, 1992. — 288 с. — ISBN 5-217-01748-1.
- Широкорад А. Б. Глава 2. Первые советские 82-мм и 132-мм неуправляемые реактивные снаряды // Отечественные минометы и реактивная артиллерия. — Мн., М.: Харвест, АСТ, 2000. — 464 с. — (Профессионал). — 7000 экз. — ISBN 985-13-0039-X, 5-17-001748-0.
- Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
- Пономаренко А. Наши славные «ЭРЭСы» // Моделист-Конструктор. — 1977. —. —.
phys.wiki-wiki.ru
РС-82 — Википедия РУ
Тактико-технические характеристики
Наименование | РС-82 | РС-132 |
---|---|---|
Калибр, мм | 82 | 132 |
Длина снаряда, мм | 600 | 845 |
Вес ВВ, кг | 0,36 | 0,9 |
Вес ракетного топлива, кг | 1,1 | 3,8 |
Полный вес снаряда, кг | 6,8 | 23 |
Максимальная скорость снаряда (без учёта скорости носителя), м/с | 340 | 350 |
Максимальная дальность, км | 6,2 | 7,1 |
Радиус сплошного осколочного поражения, м | 6-7 | 9-10 |
Рассеивание при стрельбе по наземным целям, тысячные доли дальности | 14-16 | 14-16 |
Устройство
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещён метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввёрнутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решётка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полёте обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
История создания
Топливо
Весной 1921 году в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5 % пироксилина, 23 % тротила и 0,5 % централита. Несмотря на серьёзные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
Выбор калибра
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжён пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учётом толщины стенок ракетной камеры и местных её утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82.
Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учётом толщины стенки ракетной камеры и местных её утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
По баллистическому расчёту необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.
Выбор способа стабилизации
Первый в СССР успешный полёт ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалась в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения — стабилизированные оперением ракеты запускались из миномётов — что давало бо́льшую дальность полёта. В конце 20-х годов по результатам проведённых испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как манёвренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
Первоначально для РС был выбран вариант стабилизации вращением в полёте (Гироскопический). При этом 20-30 % энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полёта, кучность же оставалась неудовлетворительной, что труднообъяснимо. Поэтому было решено вернуться к снарядам с оперением. Опытным путём были установлены оптимальные размеры оперения — 200 мм для РС-82 и 300 мм для РС-132. При дальности полёта в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность.
Созданный в 1942 году инженерами предприятия «Чешска зброевка» на основе РС-82 собственный реактивный снаряд имел гибридную систему стабилизации: поверхности стабилизаторов имели малую (1,5 градуса) закрутку. Вращение снаряда вокруг своей оси было медленным и недостаточным для стабилизации вращением, но таким образом устранялся дестабилизирующий эффект неравномерного горения порохового заряда (эксцентриситет тяги). Германская ракета превосходила РС-82 по дальности полёта, кучности и действию по цели[1]. Собственные ракеты с косо поставленным оперением появились в РККА только в 1944 году, получив специальные баллистические индексы ТС-46 и ТС-47
Принятие на вооружение
В 1933 году в Москве был создан Реактивный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клеймёнова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королёва (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС — применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом учёных под руководством А. С. Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57 %, нитроглицерина — 28 %, динитротолуола — 11 %, централита — 3 %, вазелина — 1 %. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объёме с использованием самолётов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.
Модификации и варианты
Модель | Характеристики |
---|---|
РС-82 (с 1942 М-8) | Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г. |
РБС-82 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2. |
РОС-82 | Реактивный осколочный снаряд. |
РОФС-82 | Вариант с осколочно-фугасной БЧ. |
ЗС-82 | Зажигательный РС. |
ТРС-82 | Турбореактивный снаряд, разработан в 1943 г. |
РС-132 (с 1942 М-13) | Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г. |
РБС-132 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2. |
РОФС-132 | Вариант с осколочно-фугасной БЧ. |
РОС-132 | Реактивный осколочный снаряд. |
ЗС-132 | Зажигательный РС. |
ТРС-132 | Турбореактивный снаряд, разработан в 1943 г. |
Пусковые и прицельные устройства
В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолёта. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили её П-образным профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надёжность схода снарядов.
Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих — 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолётах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих — 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряжённые дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось лётчику.
За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолёта, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками лётчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800—1200 м. Управление стрельбой РС — от электросбрасывателя бомб ЭСБР-3.
Боевое применение
Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол, где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооружённых реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские лётчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию советских войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолёта.
В ходе советско-финской войны (1939—1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.
Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в манёвренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай — при сближении встречными курсам пары самолётов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие — одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолёта. Оставшиеся два самолёта противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжёлыми бомбардировщиками противника.
РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках — РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если лётчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[2]
Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РБC-132 — до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.
Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400—500 м составил 1,1 %, а в плотную колонну танков — 3,7 %. Процент попадания РС-132 был ещё меньше. В условиях боевого применения с расстояния 600—700 м, при активном противодействии противника рассеивание было значительно выше.
Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели — мотомеханизированные колонны, ж/д составы, склады, батареи полевой и зенитной артиллерии
Литература
- Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
- Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты: История. Теория. Конструкция. — М.: Машиностроение, 1992. — 288 с. — ISBN 5-217-01748-1.
- Широкорад А. Б. Глава 2. Первые советские 82-мм и 132-мм неуправляемые реактивные снаряды // Отечественные миномёты и реактивная артиллерия. — Мн., М.: Харвест, АСТ, 2000. — 464 с. — (Профессионал). — 7000 экз. — ISBN 985-13-0039-X, 5-17-001748-0.
- Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
- Пономаренко А. Наши славные «ЭРЭСы» // Моделист-Конструктор. — 1977. — № 7. — С. 29-30.
Ссылки
Примечания
www.http-wikipediya.ru
Реферат РС-82
скачатьРеферат на тему:
План:
- Введение
- 1 Тактико-технические характеристики
- 2 Устройство
- 3 История создания
- 3.1 Топливо
- 3.2 Выбор калибра
- 3.3 Выбор способа стабилизации
- 3.4 Принятие на вооружение
- 4 Модификации и варианты
- 5 Пусковые и прицельные устройства
- 6 Боевое применение Литература
Примечания
Введение
Ракетные снаряды М-8. Музей космонавтики и ракетной техники; Санкт-Петербург
РС-82 и РС-132 (сокращение от реактивный снаряд) — неуправляемые [1] авиационные боеприпасы класса «воздух-воздух» и «воздух-поверхность», оснащенные реактивным двигателем на бездымном порохе. Разработаны в СССР в период с 1929 по 1937 г. Широко использовались во время Великой Отечественной войны. Дальнейшим развитием РС-82 и РС-132 стали снаряды M-8 и M-13, использовавшиеся также в РСЗО класса «поверхность-поверхность» БМ-8 и БМ-13.
1. Тактико-технические характеристики
Наименование | РС-82 | РС-132 |
---|---|---|
Калибр, мм | 82 | 132 |
Длина снаряда, мм | 600 | 845 |
Вес ВВ, кг | 0,36 | 0,9 |
Вес ракетного топлива, кг | 1,1 | 3,8 |
Полный вес снаряда, кг | 6,8 | 23 |
Максимальная скорость снаряда (без учета скорости носителя), м/с | 340 | 350 |
Максимальная дальность, км | 6,2 | 7,1 |
Радиус сплошного осколочного поражения, м | 6-7 | 9-10 |
Рассеивание при стрельбе по наземным целям, тысячные доли дальности | 14-16 | 14-16 |
2. Устройство
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещен метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввернутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решетка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полете обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
3. История создания
3.1. Топливо
Весной 1921 в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5% пироксилина, 23% тротила и 0,5% централита. Несмотря на серьезные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
3.2. Выбор калибра
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжен пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учетом толщины стенок ракетной камеры и местных ее утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82. Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учетом толщины стенки ракетной камеры и местных ее утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
По баллистическому расчету необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.
3.3. Выбор способа стабилизации
Первый в СССР успешный полет ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалвсь в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения – стабилизированные оперением ракеты запускались из минометов – что давало бо́льшую дальность полета. В конце 20-х годов по результатам проведенных испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как маневренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
Первоначально для РС был выбран вариант стабилизации вращением в полете (Гироскопический). При этом 20-30% энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полета, кучность же оставалась неудовлетворительной. Поэтому было решено вернуться к снарядам с оперением. Опытным путем были установлены оптимальные размеры оперения – 200 мм для РС-82 и 300 мм для РС-132. При дальности полета в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность.
3.4. Принятие на вооружение
В 1933 году в Москве был создан Ракетный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клейменова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королева (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС – применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом ученых под руководством А.С.Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57%, нитроглицерина — 28%, динитротолуола — 11%, централита — 3%, вазелина — 1%. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объеме с использованием самолетов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.
4. Модификации и варианты
Модель | Характеристики |
---|---|
РС-82 (с 1942 М-8) | Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г. |
РБС-82 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2. |
РОС-82 | Реактивный осколочный снаряд. |
РОФС-82 | Вариант с осколочно-фугасной БЧ. |
ЗС-82 | Зажигательный РС. |
ТРС-82 | Турбореактивный снаряд, разработан в 1943 г. |
РС-132 (с 1942 М-13) | Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г. |
РБС-132 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2. |
РОФС-132 | Вариант с осколочно-фугасной БЧ. |
РОС-132 | Реактивный осколочный снаряд. |
ЗС-132 | Зажигательный РС. |
ТРС-132 | Турбореактивный снаряд, разработан в 1943 г. |
5. Пусковые и прицельные устройства
В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолета. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили ее П-образпым профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надежность схода снарядов. Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих – 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолетах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих – 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряженные дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось летчику.
За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолета, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками летчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800-1200 м. Управление стрельбой РС – от электросбрасывателя бомб ЭСБР-3.
6. Боевое применение
Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооруженных реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские летчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию наших войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолета.
В ходе советско-финской войны (1939-1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.
Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в маневренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай – при сближении встречными курсам пары самолетов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие – одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолета. Оставшиеся два самолета противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжелыми бомбардировщиками противника.
РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках – РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если летчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[2]
Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РСБ-132 – до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.
Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400 – 500 м составил 1,1%, а в плотную колонну танков — 3,7%. Процент попадания РС-132 был еще меньше. В условиях боевого применения с расстояния 600 – 700 м, при активном противодействии противника рассеивание было значительно выше.
Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели – мотомеханизированные колонны, ж.д. составы, склады, батареи полевой и зенитной артиллерии
Литература
- Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
- Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты – М.: Машиностроение – 288 с., 1992 ISBN 5-217-01748-1
- Широкорад А. Б. Отечественные минометы и реактивная артиллерия, — Харвест, АСТ, 2000 г. – 464 с., ISBN 985-13-0039-Х, ISBN 5-17-001748-0
- Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
- «Моделист-Конструктор» 1977, №7
wreferat.baza-referat.ru
Реферат РС-132
скачатьРеферат на тему:
План:
- Введение
- 1 Тактико-технические характеристики
- 2 Устройство
- 3 История создания
- 3.1 Топливо
- 3.2 Выбор калибра
- 3.3 Выбор способа стабилизации
- 3.4 Принятие на вооружение
- 4 Модификации и варианты
- 5 Пусковые и прицельные устройства
- 6 Боевое применение Литература
Примечания
Введение
Ракетные снаряды М-8. Музей космонавтики и ракетной техники; Санкт-Петербург
РС-82 и РС-132 (сокращение от реактивный снаряд) — неуправляемые [1] авиационные боеприпасы класса «воздух-воздух» и «воздух-поверхность», оснащенные реактивным двигателем на бездымном порохе. Разработаны в СССР в период с 1929 по 1937 г. Широко использовались во время Великой Отечественной войны. Дальнейшим развитием РС-82 и РС-132 стали снаряды M-8 и M-13, использовавшиеся также в РСЗО класса «поверхность-поверхность» БМ-8 и БМ-13.
1. Тактико-технические характеристики
Наименование | РС-82 | РС-132 |
---|---|---|
Калибр, мм | 82 | 132 |
Длина снаряда, мм | 600 | 845 |
Вес ВВ, кг | 0,36 | 0,9 |
Вес ракетного топлива, кг | 1,1 | 3,8 |
Полный вес снаряда, кг | 6,8 | 23 |
Максимальная скорость снаряда (без учета скорости носителя), м/с | 340 | 350 |
Максимальная дальность, км | 6,2 | 7,1 |
Радиус сплошного осколочного поражения, м | 6-7 | 9-10 |
Рассеивание при стрельбе по наземным целям, тысячные доли дальности | 14-16 | 14-16 |
2. Устройство
Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещен метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввернутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решетка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полете обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.
3. История создания
3.1. Топливо
Весной 1921 в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5% пироксилина, 23% тротила и 0,5% централита. Несмотря на серьезные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.
3.2. Выбор калибра
Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжен пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учетом толщины стенок ракетной камеры и местных ее утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82. Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учетом толщины стенки ракетной камеры и местных ее утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
По баллистическому расчету необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.
3.3. Выбор способа стабилизации
Первый в СССР успешный полет ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалвсь в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения – стабилизированные оперением ракеты запускались из минометов – что давало бо́льшую дальность полета. В конце 20-х годов по результатам проведенных испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как маневренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
Первоначально для РС был выбран вариант стабилизации вращением в полете (Гироскопический). При этом 20-30% энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полета, кучность же оставалась неудовлетворительной. Поэтому было решено вернуться к снарядам с оперением. Опытным путем были установлены оптимальные размеры оперения – 200 мм для РС-82 и 300 мм для РС-132. При дальности полета в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность.
3.4. Принятие на вооружение
В 1933 году в Москве был создан Ракетный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клейменова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королева (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС – применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом ученых под руководством А.С.Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57%, нитроглицерина — 28%, динитротолуола — 11%, централита — 3%, вазелина — 1%. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объеме с использованием самолетов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.
4. Модификации и варианты
Модель | Характеристики |
---|---|
РС-82 (с 1942 М-8) | Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г. |
РБС-82 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2. |
РОС-82 | Реактивный осколочный снаряд. |
РОФС-82 | Вариант с осколочно-фугасной БЧ. |
ЗС-82 | Зажигательный РС. |
ТРС-82 | Турбореактивный снаряд, разработан в 1943 г. |
РС-132 (с 1942 М-13) | Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г. |
РБС-132 | Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2. |
РОФС-132 | Вариант с осколочно-фугасной БЧ. |
РОС-132 | Реактивный осколочный снаряд. |
ЗС-132 | Зажигательный РС. |
ТРС-132 | Турбореактивный снаряд, разработан в 1943 г. |
5. Пусковые и прицельные устройства
В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолета. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили ее П-образпым профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надежность схода снарядов. Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих – 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолетах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих – 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряженные дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось летчику.
За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолета, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками летчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800-1200 м. Управление стрельбой РС – от электросбрасывателя бомб ЭСБР-3.
6. Боевое применение
Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооруженных реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские летчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию наших войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолета.
В ходе советско-финской войны (1939-1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.
Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в маневренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай – при сближении встречными курсам пары самолетов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие – одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолета. Оставшиеся два самолета противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжелыми бомбардировщиками противника.
РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках – РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если летчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[2]
Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РСБ-132 – до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.
Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400 – 500 м составил 1,1%, а в плотную колонну танков — 3,7%. Процент попадания РС-132 был еще меньше. В условиях боевого применения с расстояния 600 – 700 м, при активном противодействии противника рассеивание было значительно выше.
Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели – мотомеханизированные колонны, ж.д. составы, склады, батареи полевой и зенитной артиллерии
Литература
- Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
- Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты – М.: Машиностроение – 288 с., 1992 ISBN 5-217-01748-1
- Широкорад А. Б. Отечественные минометы и реактивная артиллерия, — Харвест, АСТ, 2000 г. – 464 с., ISBN 985-13-0039-Х, ISBN 5-17-001748-0
- Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
- «Моделист-Конструктор» 1977, №7
wreferat.baza-referat.ru