Содержание

Нейтронные звёзды. Плотность нейтронной звезды

Реклама

Меню

Тайны Вселенной / Звезды / Нейтронные звёзды
Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт «нейтрализация» вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звёзды могут обратиться в нейтронные, после того как они взорвутся как сверхновые.

Концепция нейтронных звезд

Концепция нейтронных звёзд не нова: первое предположение о возможности их существования было сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934г. (несколько раньше в 1932г. возможность существования нейтронных звёзд была предсказана известным советским учёным Л. Д. Ландау.) В конце 30-х годов она стала предметом исследований других американских учёных Оппенгеймера и Волкова. Интерес этих физиков к данной проблеме был вызван стремлением определить конечную стадию эволюции массивной сжи- мающейся звезды. Так как роль и значение сверхновых вскрылись примерно в то же время, было высказано предположение, что нейтронная звезда может оказаться остатком взрыва сверхновой. К несчастью, с началом второй мировой войны внимание учёных переключилось на военные нужды и детальное изучение этих новых и в высшей степени загадочных объектов было приостановлено. Затем, в 50-х годах, изучение нейтронных звёзд возобновили чисто теоретически с целью установить, имеют ли они отношение к проблеме рождения химических элементов в центральных областях звёзд.
Нейтронные звёзды остаются единственным астрофизическим объектом, существование и свойства которых были предсказаны задолго до их открытия.

В начале 60-х годов открытие космических источников рентгеновского излучения весьма обнадёжило тех, кто рассматривал нейтронные звёзды как возможные источники небесного рентгеновского излучения. К концу 1967г. был обнаружен новый класс небесных объектов — пульсары, что привело учёных в замешательство. Это открытие явилось наиболее важным событием в изучении нейтронных звёзд, так как оно вновь подняло вопрос о происхождении космического рентгеновского излучения. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах.

Свойства нейтронных звезд

Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём «набит» таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли! Естественное следствие такой концентрации вещества — невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс.
Радиус нейтронной звезды
принимается порядка 15 км, а масса — около 0,6 — 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных — излучение на высоких частотах.

Плотность нейтронной звезды

Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа. Следующий за наружным слой имеет характеристики металла. Этот слой «сверхтвёрдого» вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 — 39 и 58 — 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа.
Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно — примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, «загрязнённую» электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц.

Температура нейтронной звезды

Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 — 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения.
Неупокоенные души
К сообщениям о проявлениях потусторонних сил можно относиться по-разному. Но практически все, кому довелось столкнуться с подобным феноменом, воспринимали его не иначе как доказательство существования жизни после смерти…
Загадки Библии
Все время существования Библии не прекращаются поиски скрытого в ней тайного смысла. Многие ученые и исследователи пытались разгадать загадку Книги книг, но безрезультатно. Лишь в XXI веке появились новые возможности для этого. Компьютерные исследования говорят о том, что в Библии не только зашифрована вся история человечества, но и предсказано его будущее…
Звездные врата
В нашем мире происходит что-то странное. Вдруг возникают огненные вспышки прямо в центре городов, в небесах разворачиваются загадочные спирали, раздаются непонятные звуки… Происходит что-то, чего не могут толком объяснить ученые, какими бы науками они ни занимались…
Загадки современности
Идея эксперимента состояла в том, что очень сильное электромагнитное поле вокруг корабля будет служить экраном для лучей радара. Во время испытания корабль к изумлению военных не просто исчез с радаров, но просто в буквальном смысле пропал из поля зрения…
Что привело к гибели Титаника
Прошло более ста лет со дня со дня крушения знаменитого океанского лайнера «Титаник», во время которого погибли более 1500 человек. За минувшее столетие высказывалось множество версий причин этого страшного события: от очевидных до самых невероятных. Мы решили рассмотреть наиболее известные из них…
Китайские пирамиды
По внешнему виду китайские пирамиды очень напоминают пирамиды Центральной Америки. Сходство просто поразительное. Может быть, и американские пирамиды были построены » сыновьями неба»?…
Тайны интуиции
Традиционно различают телесную, чувственную, интеллектуальную и социальную интуиции. Телесная (или физическая) интуиция. По большому счету интуиция- это способность использовать для решения задачи «нетрадиционные» источники информации, конкретно — собственные телесные ощущения…
Магия растений
Говоря, что магия растений существует, следует отметить одну ее разновидность совершенно иного рода, которой, как мы можем видеть, пользуется друид при розысках королевы, похищенной обитателем сидов, одним из тех божеств Другого Мира…
Седьмое чувство
О каком седьмом чувстве идет речь, скажете вы, если во всех учебниках написано, что у нас с вами по пять чувств: зрение, слух, вкус, нюх, осязание. Меньше — бывает, больше — нет, хотя очень даже хотелось бы. А если человек что-то чувствует, предвидит, волнуется и не может понять причину своего беспокойства, то обычно в таких случаях говорят: «Я ощутил что-то каким-то шестым чувством»…
Подводный город Йонагуни
Впервые подводный город Йонагуни был обнаружен в 1986 году. Наблюдая за акулами-молотами у японского острова Йонагуни, ныряльщик Кихатиро заметил ряд морских образований, лежащих в 5 метрах под водой

tayny-zemli.ru

Астрофизики уточнили предельную массу нейтронных звезд

Kevin Gill / flickr.com

Немецкие астрофизики уточнили максимально возможную массу нейтронной звезды, опираясь на результаты измерений гравитационных волн и электромагнитного излучения от события GW170817. Оказалось, что масса невращающейся нейтронной звезды не может быть больше 2,16 масс Солнца, говорится в статье, опубликованной в Astrophysical Journal Letters.

Нейтронные звезды — это сверхплотные компактные звезды, которые образуются во время вспышек сверхновых. Радиус нейтронных звезд не превышает нескольких десятков километров, а масса может быть сравнима с массой Солнца, что приводит к огромной плотности вещества звезды (порядка 1017 килограмм на кубический метр). В то же время, масса нейтронной звезды не может превышать определенный предел — объекты с большими массами коллапсируют в черные дыры под действием собственной гравитации.

По различным оценкам, верхняя граница для массы нейтронной звезды лежит в диапазоне от двух до трех масс Солнца и зависит от уравнения состояния вещества, а также от скорости вращения звезды. В зависимости от плотности и массы звезды ученые выделяют несколько различных типов звезд, схематичная диаграмма изображена на рисунке. Во-первых, не вращающиеся звезды не могут иметь массу, большую MTOV (белая область). Во-вторых, когда звезда вращается с постоянной скоростью, ее масса может быть, как меньше MTOV (светло-зеленая область), так и больше (ярко-зеленая), но все же не должна превышать еще один предел, Mmax. Наконец, нейтронная звезда с переменной скоростью вращения теоретически может иметь произвольную массу (красные области разной яркости). Впрочем, всегда следует помнить, что плотность вращающихся звезд не может быть больше определенной величины, иначе звезда все равно коллапсирует в черную дыру (вертикальная линия на диаграмме отделяет стабильные решения от нестабильных).

Диаграмма различных типов нейтронных звезд в зависимости от их массы и плотности. Крестом отмечены параметры объекта, образовавшегося после слияния звезд двойной системы, пунктирными линиями — один из двух вариантов эволюции объекта

L. Rezzolla et al. / The Astrophysocal Journal

Группа астрофизиков под руководством Лучиано Реццолла (Luciano Rezzolla) установила новые, более точные ограничения на максимально возможную массу не вращающейся нейтронной звезды MTOV. В своей работе ученые использовали данные предыдущих исследований, посвященных процессам, которые происходили в системе двух сливающихся нейтронных звезд и привели к излучению гравитационных (событие GW170817) и электромагнитных (GRB 170817A) волн. Одновременная регистрация этих волн оказалось очень важным событием для науки, подробнее про него можно прочитать в нашей новости и в материале «Рождение золота».

Из предыдущих работ астрофизиков следует, что после слияния нейтронных звезд образовалась гипермассивная нейтронная звезда (то есть ее масса M > Mmax), которая в дальнейшем развивалась по одному из двух возможных сценариев и через небольшой промежуток времени превратилась в черную дыру (пунктирные линии на диаграмме). Наблюдение за электромагнитной компонентой излучения звезды указывает на первый сценарий, в котором барионная масса звезды остается практически постоянной, а гравитационная масса относительно медленно уменьшается за счет излучения гравитационных волн. С другой стороны, гамма-всплеск от системы пришел практически одновременно с гравитационными волнами (всего на 1,7 секунды позже), а значит, точка превращения в черную дыру должна лежать близко к Mmax.

Поэтому если проследить эволюцию гипермассивной нейтронной звезды обратно до начального состояния, параметры которого были с хорошей точностью рассчитаны в предыдущих работах, можно найти значение интересующей нас Mmax. Зная Mmax, несложно уже найти MTOV, поскольку эти две массы связаны соотношением Mmax ≈ 1,2 MTOV. В этой статье астрофизики выполнили такие вычисления, используя так называемые «универсальные соотношения», которые связывают параметры нейтронных звезд различной массы и не зависят от вида уравнения состояния их вещества. Авторы подчеркивают, что их вычисления используют только простые предположения и не опираются на численное моделирование. Конечный результат для максимально возможной массы составил от 2,01 до 2,16 масс Солнца. Нижняя граница для нее была получена раньше в результате наблюдений за массивными пульсарами в двойных системах — проще говоря, максимальная масса не может быть меньше 2,01 масс Солнца, поскольку астрономы в действительности наблюдали нейтронные звезды с такой большой массой.

Ранее мы писали о том, как астрофизики с помощью компьютерных симуляций получили ограничения на массу и радиус нейтронных звезд, слияние которых привело к событиям GW170817 и GRB 170817A.

Дмитрий Трунин

nplus1.ru

самая маленькая нейтронная звезда / Habr

Что будет, если отломить кусочек от нейтронной звезды?

Представьте, каково это, заснуть и не проснуться… А теперь представьте, каково это, проснуться, если ты не засыпал.
— Алан Уоттс

Иногда самые интересные эксперименты в физике можно проделывать только в своём воображении. Несмотря на физические ограничения, не позволяющие нам отправиться куда угодно, разрезать и детально изучить любой интересующий нас объект Вселенной, наше понимание материи – во всех её проявлениях – и законов, управляющих ею, продвинулось достаточно далеко.

На этой неделе мне сложно было выбрать самый интересный вопрос, но я остановился на этом взрывающем мозг вопросе от Руи Карвалхо, который звучит так:

Если бы мы отломили кусочек нейтронной звезды (кубический сантиметр) и удалили бы его от неё, что бы с ним случилось?

Что же это за звёзды такие – нейтронные?

Судя по названию, это шары из нейтронов, связанных вместе благодаря сильнейшему гравитационному притяжению, массой примерно равной массе звезды типа Солнца. Но это, конечно же, полная ерунда, поскольку нейтроны не могут долго существовать. Можно взять любую интересующую вас частицу, изолировать и посмотреть, что случится. Для трёх частиц, составляющих большую часть нормальной материи – протонов, нейтронов и электронов – результаты будут сильно отличаться.

Электроны – это фундаментальные и наилегчайшие стабильные частицы с электрическим зарядом. Насколько нам известно, они абсолютно стабильны и не распадаются.

Протоны – это составные частицы, состоящие из кварков и глюонов. В принципе они могут распадаться и мы попробовали исследовать этот вопрос. Мы построили огромные ёмкости, наполненные отдельными протонами – в каждом по 1033 протонов – и ждали годы, чтобы посмотреть, не распадётся ли какой из них. Спустя десятки лет мы выяснили, что даже если протон и нестабилен, его период полураспада составляет не менее 1035 лет, или в 1025 раз больше возраста Вселенной. Судя по всему, они тоже абсолютно стабильны.

Но не нейтроны! Если пронаблюдать за свободным нейтроном, он, скорее всего, исчезнет минут через 15, распадаясь на протон, электрон и антинейтрино (его период полураспада составляет 10 минут).

И как же тогда нам получить такой объект, как нейтронная звезда?

Существует разница между свободным и связанным нейтроном, из-за чего многие элементы и изотопы не распадаются: когда ядро связано, в нём есть определённое количество связывающей энергии, достаточное, чтобы сохранять нейтроны стабильными.

В случае стабильных элементов некоторые конфигурации оказываются стабильнее других, а всего стабильных вариантов существует примерно 254. Не исключено, что на больших временных масштабах некоторые из них окажутся нестабильными – мы такого просто ещё не обнаружили. Но они не особенно тяжёлые и не содержат очень уж много нейтронов. Самый тяжёлый стабильный элемент – свинец, за номером 82, с четырьмя известными стабильными изотопами: Pb-204, Pb-206, Pb-207 и Pb-208.

Итак, из всех известных стабильных элементов, самым тяжёлым оказывается ядро с 82 протонами и 126 нейтронами.

Но это если предположить, что связывают частицы ядерные силы. А в случае нейтронной звезды за это отвечает кое-что другое. Чтобы разобраться, давайте поймём, как возникает нейтронная звезда.

Самые массивные звёзды – самые яркие и голубые, родившиеся в молодых звёздных кластерах – синтезируют в своих ядрах гелий из водорода, как и все молодые звёзды. Но в отличие от таких звёзд, как Солнце, у них уходит на сжигание всего горючего не миллиарды лет, а несколько миллионов, или даже меньше, поскольку сверхвысокие температуры и плотности приводят к очень большой скорости синтеза.

Когда у них заканчивается водород, внутренности начинают сжиматься и разогревать звезду. По достижению критической температуры в звезде начинается синтез углерода из гелия, что приводит к ещё более активному выходу энергии.

Всего через несколько тысяч лет заканчивается и гелий, и внутренности ещё сильнее сжимаются, разогреваясь до температур, которых ядро Солнца никогда не достигнет. В таких экстремальных условиях начинается синтез кислорода из углерода, а затем, в последующих реакциях, из кислорода получаются кремний и сера, из кремния – железо, а затем у нас появляется проблема.

Железо – самый стабильный элемент. Обладая 26 протонами и 30 нейтронами, оно получает самое высокое отношение связывающей энергии на один нуклон, а это значит, что все остальные комбинации менее стабильны. (По некоторым параметрам никель-62 чуть более стабилен, но для простоты мы остановимся на железе-56). Конечно, существуют элементы и тяжелее железа, но создаются они не синтезом из железа. Когда ядро наполняется железом, оно начинает сжиматься под воздействием гравитации, а топлива для сгорания больше нет. И остаётся невероятно горячая и плотная плазма, которая постоянно разогревается и уплотняется.

По достижению критического значения – сюрприз – начинается синтез из электронов и протонов, что приводит к появлению нейтронов, нейтрино и энергии!

Эта реакция производит столько энергии, что во взрыве сверхновой уничтожается весь верхний слой звезды, поскольку синтез электронов и протонов в нейтроны и нейтрино занимает всего несколько секунд.

Внешним слоям на разлёт от звезды потребуются недели и месяцы, а ядро сжимается до шара из нейтронов под воздействием огромной силы, но не ядерной, а гравитационной.

Нейтронная звезда весит примерно как Солнце, а вся эта масса сконцентрирована в объёме радиусом всего несколько километров. Плотность звезды составляет 1019 килограмм на кубометр и это самый плотный трёхмерный объект из известных во Вселенной.

Чтобы нейтрон был стабильным и не распадался, связывающая его энергия должна превышать разницу масс нейтрона и протона, порядка 1МэВ, или 0,1% массы нейтрона. Нейтроны в ядре довольно просто сдерживать, а те, что на поверхности, будут находиться в наиболее разреженных условиях. Если масса нейтронной звезды будет равна солнечной, а радиус – 3 км, то связанный на поверхности нейтрон будет иметь 400 МэВ связывающей энергии: достаточно, чтобы не допустить его распад.

А что, если мы вытянем кубический сантиметр такой материи, как спрашивает Руи, из нейтронной звезды? Что мы получим?

К сожалению, гравитационная энергия связи нейтронов на поверхности составит лишь 0,07 эВ – слишком мало для того, чтобы удержать их от распада!

В реальной Вселенной встречаются аналогичные ситуации: когда нейтронные звёзды сталкиваются между собой. Большая часть материи сливается и образовывает чёрную дыру, но порядка 3% массы выбрасывается прочь. Вместо образования экзотической материи она быстро распадается и приводит к появлению большой части самых тяжёлых элементов периодической таблицы Менделеева. Если вас интересовало, откуда на Земле появились такие элементы, как золото, вот именно оттуда: от объединения нейтронных звёзд!

Так что, если извлечь небольшую массу нейтронов, она быстро распадётся на стабильные (или долгоживущие) элементы и изотопы из периодической таблицы, за время, не превышающее время жизни нейтрона, а скорее всего, гораздо быстрее.

А если бы мы захотели отломить кусок достаточный для того, чтобы на его поверхности нейтроны оставались стабильными? Для этого он должен быть радиусом не менее 200 метров.

Масса такого куска будет сравнимой с массой Сатурна и это лишь нижняя граница по массе, необходимой для достижения вашей цели. Всё, что будет иметь меньшую массу, распадётся.

Так что, даже если бы вы хотели верить, что молот Тора сделан из материи нейтронной звезды…


Физика этого не позволит. Он слишком маленький и гравитационная энергия связи будет слишком маленькой, в результате чего он подвергнется быстрому и катастрофическому радиоактивному распаду.

Спасибо за прекрасный вопрос, Руи, и я надеюсь, что если ты мечтаешь создать самую маленькую нейтронную звезду, ты начнёшь думать в крупном масштабе! Присылайте мне ваши вопросы и предложения для следующих статей.

habr.com

Белый карлик, нейтронная звезда, черная дыра

Нейтронная звезда

    Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

p + e n + e

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 1014 — 1015 г/см3. Характерный размер нейтронной звезды 10 — 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но — давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
    Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 1011 до 109 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 109 до 108 K происходит за 100 лет и до 106 K — за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
    В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения — пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10-2 до 4.3 с. Согласно современным представлениям, пульсары — это вращающиеся нейтронные звезды, имеющие массу 1 — 3M и диаметр 10 — 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 1012 Гс.
    Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.


Рис. 39. Модель пульсара.

    Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
    В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
    Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
    Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.


Рис. 40. Сечение нейтронной звезды массой 1.4M и радиусом R=16 км. Указана плотность ρ в г/см3 в различных частях звезды.

    I — тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
    Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
    Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 1010 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
    Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска — 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 — 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
    Хорошо известно, что на малых расстояниях между нуклонами ( < 0.3·10-13 см ) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρяд и достигает 1015 г/см3, то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρяд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
    В соответствии с современными представлениями о поведении вещества при плотностях в 102 — 103 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре  np/nn, учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения np/nn как для ядра — мишени, так и для налетающего ускоренного ядра невелики (~ 1 — 0.7).
    Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
    Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 105 — 106 лет после её образования.

nuclphys.sinp.msu.ru

Астрономы уточнили размер нейтронных звезд и усомнились в существовании их кварковых «близнецов»

Каков размер нейтронных звезд? Предыдущие оценки радиуса варьировались от восьми до шестнадцати километров. Астрофизикам из Университета Гете во Франкфурте (Германия) удалось определить размер нейтронных звезд с точностью до 1,5 километров с помощью сложного статистического подхода, основанного на измерении гравитационных волн. Отчет исследователей представлен в Physical Review Letters.

Нейтронные звезды – самые плотные объекты во Вселенной с массой, превышающей Солнце, но уплотненные в относительно маленькую сферу. Уже более 40 лет определение размеров нейтронных звезд является Святым Граалем ядерной физики, находка которого предоставит важную информацию о фундаментальном поведении ядерных плотностей.

Данные об обнаружении гравитационных волн от слияния нейтронных звезд (GW170817) вносят важный вклад в решение этой головоломки. В конце 2017 года профессор Лучиано Реццолла вместе со своими учениками Элиасом Мостом и Лукасом Вейхом уже использовали их, чтобы ответить на давний вопрос о максимальной массе, которую могут иметь нейтронные звезды перед тем, как коллапсировать в черную дыру. После первого важного результата эта же команда с помощью профессора Юргена Шаффнера-Белича приступила к установке более жестких ограничений на размер нейтронных звезд.

Художественное представление столкновения нейтронных звезд, породившего гравитационные волны. Credit: Carnegie Institution for Science

Суть в том, что уравнение состояния, которое описывает вещество внутри нейтронных звезд, неизвестно. Физики выбрали статистические методы для определения размеров нейтронных звезд в узких пределах. Они рассчитали более двух миллиардов теоретических моделей, решив для них уравнение Эйнштейна, и объединили этот большой набор данных с ограничениями, исходящими из обнаружения гравитационных волн GW170817.

В результате исследователи определили радиус типичной нейтронной звезды в пределах разницы 1,5 километров: он составляет от 12 до 13,5 километров, что может быть дополнительно уточнено будущими обнаружениями гравитационных волн.

Сравнение радиуса типичной нейтронной звезды с размерами города Франкфурта-на-Майне (Германия). Credits: Lukas Weih, Goethe University, satellite image: GeoBasis-DE/BKG (2009) Google

«Тем не менее, у задачи могло быть не одно решение», – комментирует Юрген Шаффнер-Белич. Возможно, что при сверхвысоких плотностях вещество резко меняет свойства и приближается к так называемому «фазовому переходу». Это похоже на то, что происходит с водой, когда она замерзает и переходит из жидкого в твердое состояние. В случае нейтронных звезд этот переход предположительно превращает обычную материю в «кварковую», создавая звезды, которые будут иметь ту же массу, что и их «близнец» –  нейтронная звезда, но они будут намного меньше и, следовательно, еще более компактны.

Хотя нет доказательств их существования, они могут быть правдоподобным решением, и исследователи из Франкфурта учли эту возможность, несмотря на дополнительные осложнения. Усилие оправдалось: звезды-близнецы оказались статистически маловероятны. Это важный вывод, который теперь позволяет ученым потенциально исключить существование этих очень компактных объектов. Будущие наблюдения гравитационных волн покажут, имеют ли нейтронные звезды экзотических близнецов.

in-space.ru

Нейтронная звезда – Журнал «Все о Космосе»

27 декабря 2004 года, всплеск гамма-лучей, прибывших в нашу солнечную систему от SGR 1806-20 (изображено в представлении художника). Взрыв был настолько мощным, что воздействовал на атмосферу Земли на расстоянии свыше 50 000 световых лет

Нейтронная звезда — космическое тело, являющийся одним из возможных результатов эволюции звёзд, состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронное звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, — до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек сверхновых звёзд.

Массы большинства нейтронных звёзд с надёжно измеренными массами составляют 1,3—1,5 массы Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Строение нейтронной звезды.

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше. Такие магнитные поля (превышающие «критическое» значение 4,414·1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec²) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2012 году открыто около 2000 нейтронных звёзд. Порядка 90% из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этом ситуации видна с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды — одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звёзда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический раиомаяк». Но любая обычная звёзда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Взаимодействие нейтронной звездой с окрружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии в развитии, существуют альтернативные теоретические модели.

Эжектор

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвездное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такого уровня, что веществу теперь ничего не препятсвует падать на такую нейтронную звезду. Падая вещество уже будучи в состоянии плазмы движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе ее полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм рабатает в магнитосфере Земли, из-за чего данный тип нейтронных звезд и получил своё название.

Магнетар

Нейтронная звезда, обладающая исключительно сильным магнитным полем (до 1011 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров составляет около 1 000 000 лет. У магнетаров сильнейшее магнитное поле во Вселенной.

Магнетары являются малоизученным типом нейтронных звёзд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20—30 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Наблюдаются в гамма-излучении, близком к рентгеновскому, радиоизлучение не испускает. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звёзд с начальной массой около 40 М☉.

Толчки, образованные на поверхности магнетара, вызывают огромные колебания в звезде; колебания магнитного поля, которые сопровождают их, часто приводят к огромным выбросам гамма-излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах.

По состоянию на май 2007 года было известно двенадцать магнетаров, и ещё три кандидата ожидали подтверждения. Примеры известных магнетаров:

SGR 1806-20, расположенный на расстоянии 50 000 световых лет от Земли на противоположной стороне нашей галактики Млечный Путь в созвездии Стрельца.
SGR 1900+14, отдалённый на 20 000 световых лет, находящийся в созвездии Орла. После длительного периода низких эмиссионных выбросов (существенные взрывы только в 1979 и 1993) активизировался в мае-августе 1998, и взрыв, обнаруженный 27 августа 1998 г., имел достаточную силу, чтобы заставить выключить космический аппарат NEAR Shoemaker в целях предотвращения ущерба. 29 мая 2008 года телескоп НАСА «Спитцер» обнаружил кольца материи вокруг этого магнетара. Считается, что это кольцо образовалось при взрыве, наблюдавшемся в 1998 году.
1E 1048.1-5937 — аномальный рентгеновский пульсар, расположенный в 9000 световых лет в созвездии Киль. Звезда, из которой сформировался магнетар, имела массу в 30—40 раз больше, чем у Солнца.
Полный список приведён в каталоге магнетаров.

По состоянию на сентябрь 2008, ESO сообщает об идентификации объекта, который изначально считали магнетаром, SWIFT J195509+261406; первоначально он был выявлен по гамма-всплескам (GRB 070610)

По материалам Wikipedia

aboutspacejornal.net

Нейтронная звезда — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat

Основная статья: Виды звёзд

Содержание (план)

История открытия

Нейтронные звёз­ды были предсказаны в начале 30-х гг. XX в. советским физиком Л. Д. Ландау, астрономами В. Бааде и Ф. Цвикки. В 1967 г. были открыты пульсары, которые к 1977 г. были окончательно отождествлены с нейтронными звёздами.

Образование нейтронных звёзд

Нейтронные звёзды обра­зовываются в результате взрыва сверхновой на последней стадии эволюции звезды большой массы.

Если масса остатка сверхновой (т. е. то, что остаётся пос­ле сброса оболочки) больше 1,4 M, но меньше 2,5 M, то сжатие его продолжается и после взрыва до тех пор, пока плотность не достигнет ядерных значений. Это приведёт к то­му, что электроны будут «вдавлены» в ядра, и образуется ве­щество, состоящее из одних нейтронов. Возникает нейтронная звезда.

Размеры нейтронных звёзд

Радиусы нейтронных звёзд, как и радиусы белых карли­ков, уменьшаются при увеличении массы. Так, нейтронная звезда массой 1,4 M (минимальная масса нейтронной звезды) имеет радиус 100—200 км, а при массе 2,5 M (максималь­ная масса) — всего 10—12 км. Материал с сайта http://wikiwhat.ru

Строение и состав нейтронной звезды

Схематический разрез нейтрон­ной звезды показан на рисунке 86. Наружные слои звезды (рис. 86, III) состоят из железа, образующего твёрдую ко­ру. На глубине примерно 1 км начинается твёрдая кора из железа с примесью нейтронов (рис. 86), которая перехо­дит в жидкое сверхтекучее и сверхпроводящее ядро (рис. 86, I). При массах, близких к предельным (2,5—2,7 M), в центральных областях нейтронной звезды появля­ются более тяжёлые элементарные частицы (гипероны).

Плотность нейтронной звезды

Плотность вещества в нейтронной звезде сравнима с плот­ностью вещества в атомном ядре: она достигает 1015—1018 кг/м3. При таких плотностях самостоятельное существование элек­тронов и протонов невозможно, и вещество звезды состоит практически из одних нейтронов.

Картинки (фото, рисунки)

  • Рис. 86. Разрез нейтронной звезды
На этой странице материал по темам:
  • Состав нейтронной звезды

  • Нейтронная звезда это

  • Сообщение на тему нейтронная звезда

  • Нейтронные звезды доклад 4 класс

  • Ytnhjyyfz pdtplf ljrkfl

Вопросы к этой статье:
  • Что такое нейтронная звезда?

wikiwhat.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *