Содержание

Из спирального рукава Млечного Пути вылезла какая-то «заноза»

20 августа 2021 17:38 Наталия Теряева

Так видят современные астрономы крупномасштабную структуру Млечного Пути. Звезды и их скопления сгруппированы в спиральные рукава.
Изображение NASA/JPL-Caltech.

«Заноза» поперек Рукава Стрельца состоит из множества звезд и туманностей.
Изображение NASA/JPL-Caltech.

Туманности Орел, Омега, Триффид и Лагуна являются частью «занозы» в Рукаве Стрельца.


Изображение NASA/JPL-Caltech.

Ученые обнаружили ранее неизвестную деталь в невероятно упорядоченном облике Млечного Пути: молодые звезды и газовые облака торчат из одного из спиральных рукавов Галактики, словно щепка из деревянной доски.

Млечный Путь – это спиральная галактика с четырьмя рукавами. Так специалисты называют вращающиеся вокруг общего центра части нашего звёздного дома.

Приблизительное представление о размерах и форме рукавов Млечного Пути астрономы имеют уже достаточно давно. Однако многое остается неизвестным. Ведь мы никак не можем увидеть полную структуру нашей галактики, так как Земля находится внутри нее. А вылететь за пределы Млечного Пути, чтобы сфотографировать его издали, пока у человечества не выходит. Показать Млечный Путь снаружи нам могут разве что инопланетяне.

Ну а пока они себя не обнаружили, астрономы изучают Млечный Путь по частям. Вот и авторы нового исследования сосредоточились на близлежащей части одного из рукавов нашей галактики – Рукава Стрельца.

Для своих изысканий они использовали данные, полученные космическим телескопом Spitzer, который в январе 2020 года «вышел на пенсию». Но, как водится, петабайты собранных космической станцией данных будут анализировать ещё долгие годы.

Ученые искали новорожденные звезды, расположенные в газовых и пылевых облаках (туманностях), где светила формируются. Считается, что судьба молодых звезд и туманностей в значительной степени определяется формой галактических рукавов, в которых они находятся.

Для получения 3D-изображения сегмента Рукава Стрельца ученые воспользовались последними данными космического телескопа Gaia – с его помощью астрономы составляют карту расположения звезд в Млечном Пути.

Данные двух телескопов показали, что поперек Рукава Стрельца расположилась связанная с ним длинная тонкая структура из молодых звезд, движущихся почти с одинаковой скоростью и в одном направлении.

«Ключевым свойством спиральных рукавов является то, насколько плотно они обвивают центр галактики», – говорит Майкл Кун (Michael Kuhn), астрофизик из Калифорнийского технологического института и ведущий автор новой статьи.

Характеристика плотности прилегания галактических рукавов друг к другу измеряется углом тангажа рукава. Чем больше становится этот угол, тем сильнее растягивается спираль – то есть тем больше становится расстояние между ее рукавами.

«Большинство моделей Млечного Пути предполагают, что Рукав Стрельца образует спираль, которая имеет угол тангажа около 12 градусов. А структура, которую мы исследовали, стоит под углом почти 60 градусов», – объясняет Кун.

То есть эта структура стоит поперек Рукава Стрельца.

Подобные «торчащие» структуры, иногда называемые шпорами или перьями, обычно встречаются в рукавах других спиральных галактик. На протяжении десятилетий ученые задавались вопросом, есть ли «шпоры» у рукавов нашей галактики Млечный Путь.

И вот ответ на этот вопрос получен: найдена первая шпора. Длина этой звездной «занозы» в Рукаве Стрельца составляет примерно 3 000 световых лет. Крупная структура.

Авторы исследования сочли обнаруженную ими «щепку» в Рукаве Стрельца Млечного Пути напоминанием о том, как мало мы знаем о нашей галактике и как много нам еще предстоит узнать о нашем звездном доме.

Результаты исследования были опубликованы в журнале Astronomy & Astrophysics.

Ранее мы писали о том, что Млечный Путь вытягивается и скручивается в погоне за своим спутником. А еще мы рассказывали о том, что в сердце Млечного Пути найдены остатки мёртвой галактики.

Больше интересных новостей науки и медицины вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».

наука астрономия Галактика Млечный Путь общество созвездие новости

Ранее по теме

  • Расширение не по плану: «Хаббл» обнаружил нестыковку в знаниях учёных о Вселенной
  • Астрономы уточнили скорость движения Солнца по просторам Галактики
  • Крупнейшая галактика во Вселенной поразила астрономов размахом своих лепестков
  • Впервые обнаружено «перо», соединяющее два рукава Млечного Пути
  • Галактический фейерверк: получены новые снимки соседних с нами галактик
  • Астрономы увидели вращение крупнейших структур во Вселенной

Галактики

    Следующая ступень организации материи во Вселенной − галактики. Типичным примером является наша галактика − Млечный путь. Она содержит около 1011 звезд и имеет форму тонкого диска с утолщением в центре.
    На рис. 39 схематически показано строение нашей галактики Млечный путь и указано положение Солнца в одном из спиральных рукавов галактики.


Рис. 39. Строение галактики Млечный путь.

    На рис. 40 показана проекция на плоскость 16 ближайших соседей нашей галактики.


Рис. 40. 16 ближайших соседей нашей Галактики, спроецированных на плоскость. БМО и ММО − Большое и Малое Магелланово Облако

    Звезды в галактиках распределены неравномерно.
    Размеры галактик изменяются от 15 до 800 тысяч световых лет. Масса галактик варьируется от 107 до 1012 масс Солнца. В галактиках сосредоточено основное число звезд и холодного газа. Звезды в галактиках удерживаются суммарным гравитационным полем галактики и темной материи.
    Наша галактика Млечный путь представляет собой типичную спиральную систему. Звезды в галактике наряду с общим вращением галактик имеют также собственные скорости относительно галактики. Орбитальная скорость Солнца в нашей галактике составляет 230 км/с. Собственная скорость Солнца относительно галактики составляет
20 км/с.


Э. Хаббл
(1889–1953)

    Открытие мира галактик принадлежит Э. Хабблу. В 1923–1924 гг., наблюдая изменения светимости цефеид, находящихся в отдельных туманностях, он показал, что обнаруженные им туманности являются галактиками, расположенными за пределами нашей галактики − Млечного пути. В частности он обнаружил, что Туманность Андромеды является другой звездной системой − галактикой, не входящей в состав нашей галактики Млечный путь. Туманность Андромеды – спиральная галактика, находящаяся на расстоянии 520 кпк. Поперечный размер туманности Андромеды составляет 50 кпк.
    Изучая лучевые скорости отдельных галактик, Хаббл сделал выдающееся открытие:

 

Закон Хаббла

Расстояние R между любыми двумя удаленными галактиками увеличивается со скоростью v

v = H·R, (9)

H = 73.8 ± 2.4 км·сек-1·мегапарсек-1 – параметр Хаббла.


Рис. 41. Оригинальный график Хаббла из работы 1929 г.


Рис. 42. Скорость удаления галактик в зависимости от расстояния до Земли.

    На рис. 42 в начале координат квадратом показана область скоростей галактик и расстояний до них, на основе которой Э. Хаббл вывел соотношение (9).
    Открытие Хаббла имело предысторию. В 1914 г. астроном В. Слайфер показал, что туманность Андромеды и ещё несколько туманностей движутся относительно Солнечной системы со скоростями около 1000 км/ч. Э. Хабблу, работавшему на крупнейшем в мире телескопе с главным зеркалом диаметром 2,5 м обсерватории Маунт Вилсон в Калифорнии (США), удалось впервые разрешить отдельные звезды в туманности Андромеды. Среди этих звезд были звезды-цефеиды, для которых известна зависимость между периодом изменения светимости и светимостью.

    Зная светимость звезды и скорость звезды, Э. Хаббл получил зависимость скорости удаления звезд от Солнечной системы в зависимости от расстояния. На рис. 41 приведен график из оригинальной работы Э. Хаббла.


Рис. 43. Космический телескоп Хаббл

Эффект Доплера

    Эффект Доплера − изменение частоты, регистрируемой приемником при движении источника или приемника.

    Если движущийся источник излучает свет, имеющий частоту ω0, то частота света, регистрируемая приемником, определяется соотношением

с − скорость света в вакууме, v − скорость движения источника излучения относительно приемника излучения, θ − угол между направлением на источник и вектором скорости в системе отсчета приемника. θ = 0 соответствует радиальному удалению источника от приемника, θ = π соответствует радиальному приближению источника к приемнику.

    Лучевую скорость движения небесных объектов − звезд, галактик − определяют, измеряя изменение частоты спектральных линий. При удалении источника излучения от наблюдателя происходит смещение длин волн в сторону более длинных длин волн (красное смещение). При приближении источника излучения к наблюдателю происходит смещение длин волн в сторону более коротких длин волн (синее смещение). По увеличению ширины распределения спектральной линии можно определить температуру излучающего объекта.
    Хаббл разделил галактики по их внешнему виду на три больших класса:

  • эллиптические (E),

  • спиральные (S),

  • иррегулярные (Ir).


Рис. 44. Типы галактик (спиральная, эллиптическая, иррегулярная).

    Характерной чертой спиральных галактик являются спиральные ветви, простирающиеся от центра по всему звездному диску.
    Эллиптические галактики представляют собой бесструктурные системы эллиптической формы.
    Иррегулярные галактики выделяются внешне хаотической, клочковатой структурой и не имеют какой-то определенной формы.
    Такая классификация галактик отражает не только их внешние формы, но и свойства входящих в них звезд.
    Эллиптические галактики состоят преимущест­венно из старых звезд. В иррегулярных галактиках основной вклад в излучение дают звезды моложе Солнца. В спиральных галактиках обнаруживаются звезды всех возрастов. Таким образом, различие во внешнем виде галактик определяется характером их эволюции. В эллиптических галактиках звездообразование практически прекратилось миллиарды лет назад. В спиральных галактиках образование звезд продолжается. В иррегулярных галактиках звездообразование происходит так же интенсивно, как и миллиарды лет назад. Почти все звезды сосредоточенны в широком диске, основную массу которого составляет межзвездный газ.
    В таблице 19 приведены относительное сравнение этих трех типов галактик и сравнение их свойств на основе анализа Э.Хаббла.

Таблица 19

Основные типы галактик и их свойства (по Э. Хабблу)

Спиральные

Эллиптические

Иррегулярные

Процентное соотношение во Вселенной

34%

13%

53%

Форма и структурные свойства

Плоский диск звезд и газа со спиральными рукавами, утолщающимися к центру. Ядро из более старых звезд и примерно сферическое гало (межзвездный газ, немного звезд и магнитные поля)

Диск отсутствует. Звезды распределены в объеме, напоминающем эллипсоид.

Никаких внутренних особенностей, кроме плотного ядра в центре. Структура отсутствует.

Состав звезд

Диск содержит молодые и старые звезды. Ядро − только старые

Только старые звезды.

Молодые и старые звезды.

Газ и пыль

В диске довольно много газа и пыли, в гало − мало или нет совсем.

Газа и пыли мало или нет совсем.

Газа и пыли много.

Образование звезд

Звезды продолжают рождаться в спиральных рукавах.

Звезды практически не образуются последние 10 млрд. лет.

Энергичное рождение звезд сейчас.

Движение звезд и газа

Газ и звезды в диске движутся по эллиптическим орбитам вокруг галактического центра. Звезды в гало движутся хаотически.

Звезды движутся хаотически.

Звезды и газ движутся хаотически.

 

Млечный путь – строение, части, состав, история и развитие галактики – SunPlanets.

info

Содержание:

  • 1 Строение и основные характеристики
    • 1.1 Размер галактического диска
    • 1.2 Количество звёзд
    • 1.3 Масса Галактики
    • 1.4 Диск
    • 1.5 Ядро
    • 1.6 Галактические рукава
    • 1.7 Галактическое гало
    • 1.8 Светимость
    • 1.9 Движение
  • 2 История открытия
  • 3 Расположение Солнечной системы, Солнца и Земли в Галактике Млечный путь
  • 4 Окрестности
  • 5 Развитие Галактики и ее будущее
  • 6 Видео

Планета Земля и планеты Солнечной системы являются частью галактики, именуемой Млечный Путь. Галактика Млечный Путь вместе с миллиардами других галактик составляет Вселенную, а Вселенная – это весь материальный мир, который не имеет границ в пространстве, существует вечно и по формам, принимаемым материей в ходе своего развития, является бесконечным.

Слово галактика ведёт своё происхождение от древнегреческого galaktikós – млечный. Древние греки вкладывали в это слово понятие “молочное кольцо” – именно так в древности наблюдатели описывали видимое на ночном небосводе явление.

Сегодня принято, что если в научной литературе слово Галактика пишется с заглавной буквы, то это означает, что речь идёт о галактике Млечный Путь.

Галактика представляет собой систему из звёзд, скоплений звёзд, межзвёздного газа и межзвездной пыли, а также иного вида материи, называемой тёмной, и планет.

Все перечисленные космические объекты связаны между собой силами гравитации (притяжения). Именно поэтому галактические составляющие и выделяют в отдельную систему.

Млечный Путь – это галактика, в которую входит планета Земля, Солнце и планеты Солнечной системы, а также отдельные звёзды, видимые на ночном небе без специальных приборов, то есть невооружённым глазом.

Строение и основные характеристики

Наша галактика имеет ряд интересных и уникальных особенностей, с которыми вы можете ознакомится ниже:

Размер галактического диска

Самая большая галактика во вселенной в сравнении с другими галактиками слева на право: Млечный путь, Андромеда, М87 и IC 1101. Изображение: Fernando de Gorocica / Wikimedia Commons

По своей форме Млечный путь представляет собой диск. Учёные определяют размеры галактики, соотносительно её геометрии. Длина диаметра диска составляет около 30 тысяч парсек, что приблизительно равняется 100 тысячам световых лет или в земном метрическом исчислении одному квинтиллиону километров. Усреднённое значение толщины диска Млечного пути равняется 1 тысяче световых лет.

Учёные Канарского института (Институт астрофизический исследований, Канарские острова, Северная европейская обсерватория) провели изучение данных, полученных при исследовании галактики и сделали вывод, что диаметр диска Млечного Пути равен приблизительно 200 тысячам световых лет.

В результате на сегодняшний день можно предположить, что диаметр диска Млечного Пути находится в пределах от 100 до 200 тысяч световых лет.

Количество звёзд

В настоящее время учёные-астрофизики насчитывают в Галактике от 0,2 до 0,4 триллиона звёзд. Основное их количество образует по форме плоский диск, в котором и сосредоточена основная масса этих галактических тел.

Кроме этого, Млечный Путь имеет от 0,25 до 0,1 триллиона коричневых карликов – космических тел, схожих со звёздами, но имеющими размеры всего лишь в несколько десятков раз больше, чем, например, планета Юпитер Солнечной системы.

Сходство же со звёздами у коричневых карликов проявляется в том, что внутри и тех и других космических тел непрерывно происходят термоядерные реакции, и выделяется тепло в открытое космическое пространство. Вследствие этого такие космические тела, идентичные звёздам по строению и физическим процессам, но отличающиеся от них лишь по размерам, и получили название карлики.

Масса Галактики

Галактика Млечный путь в представлении художника: NASA / GSFC

Современная астрофизика столкнулась с нерешённой пока задачей – какова общая масса галактики Млечный Путь? С открытием такой составляющей Галактики как тёмная материя, изучение которой в сегодняшнее время находится только на начальной стадии, учёные обнаружили, что масса этой материи составляет большую часть от массы всей Галактики.

Свойства, строение и массу тёмной материи, её влияние на космические тела во Вселенной, в том числе в Млечном Пути, ещё предстоит изучить. Тем не менее, на сегодняшний день можно принять, что масса галактики Млечный Путь на расстоянии 130 000 световых лет от галактического центра составляет приблизительно 1,5х1012 масс звезды Солнце.

Эти данные астрофизики представили на основе объединения данных миссии “Gaia” (оптический телескоп Европейского космического агентства (ЕКА), выведен на орбиту Земли 19 декабря 2013 года с целью составления подробной звёздной карты Млечного Пути)  и миссии “Hubble” (космический телескоп-обсерватория, совместный проект НАСА (США) и ЕАК, выведен на орбиту Земли 25 апреля 1990 года).

Диск

Художественная концепция галактики Млечный Путь / Nick Risinger

Млечный Путь является спиральной галактикой. Однако, имеет важную особенность, о наличии которой учёные-астрофизики высказали гипотезу в 80-х годах 20 века. Данная особенность заключается в том, что Млечный путь – не обычная спиральная галактика, а спиральная галактика с перемычкой.

Выдвинутая ранее это теоретическое предположение подтвердилась информацией, полученными в 2005 году космическим телескопом имени Лаймана Спитцера (космический телескоп НАСА, выполняет сбор информации в инфракрасном диапазоне излучения, запущен в космос 23 августа 2003 года, назван в честь американского учёного-астрофизика Лаймана Спитцера (1914–1997), изучавшего физику звёзд).

По полученной с него информации астрофизики установили, что Млечный Путь имеет центральную перемычку. Перемычкой спиральной галактика является скопление ярких звёзд, которое в виде “объёмной полосы” или “бара, бруска” проходит через центр галактики. Спиральные ветви в таких галактиках исходят из концов перемычки, а в обычных спиральных галактиках ветви выходят непосредственно из ядра.

В области центра Галактики галактический диск имеет диаметр 0,1 миллиона световых лет. Диск движется во вращении значительно быстрее, чем гало – невидимая сфера галактики, простирающаяся за видимую часть галактики и состоящая из звёзд, горячего газа и тёмной материи.

Скорость вращательного движения диска Галактики в центре нулевая. С увеличением отдалённости от центра она возрастает. На расстояния 2000 световых лет от диска скорость вращения диска уже составляет 240 км/с. На этом участке Галактики учёные-астрофизики определили стремительное возрастание скорости вращения. Далее наблюдается небольшое её снижение. А затем скорость вращательного движения диска возрастает и вновь достигает значения 240 км/с, и уже остаётся приблизительно неизменной, то есть расхождение с данной величиной небольшое.

Именно исследование вращения диска Галактики дало возможность астрофизикам сделать оценку массы диска (150 миллиардов масс Солнца).

Если рассматривать плоскость диска Галактики, то вблизи плоскости можно наблюдать сосредоточение молодых звёзд и звёздных скоплений, которые образуют так называемую плоскую составляющую. Значительная часть этих звёзд имеет высокую яркость и высокую температуру (горячие звёзды).

Аналогично расположению таких звёзд и их скоплений основная масса газа Млечного Пути сконцентрирована около плоскости диска. Особенностью распределения газа является неравномерность, вследствие чего образуются многочисленные газовые облака: гигантские, которые тянутся на несколько тысяч световых лет и малые, гораздо меньших размеров (не более 3,2 светового года).

Интересным представляется вопрос возраста Млечного Пути. Учёные-астрофизики получили информацию с космического телескопа Kepler (космическая обсерватория НАСА, названа в честь немецкого математика и астронома, запущена на орбиту Земли 6 марта 2009 года, функционировала до 12 мая 2013 года, предназначалась для поиска экзопланет и исследования звёзд), на основании которой определили – средний возраст толстого диска Галактики, где сконцентрировано 4/5 от общего числа звёзд системы, составляет 10 миллиардов лет.

Ядро

Симуляция сверхмассивной чёрной дыры Стрельца А* / Event Horizon Telescope project

В центральной части галактики Млечный Путь расположен участок, который называют галактическим центром. Длина диаметра данного участка равна приблизительно 6400 световых лет, а его свойства имеют ярко выраженные отличия по сравнению с другими частями Галактики.

Учёные, проводящие исследования физических процессов нашей галактической системы, называют центр Галактики своеобразной “космической лабораторией”, потому что и в настоящее время здесь происходят процессы образования новых звёзд системы.

Именно здесь и расположено ядро нашей Галактики, давшее много миллиардов лет назад начало конденсации (сгущения) нашей звёздной системы. Расстояние от Солнца до центра Галактики равняется приблизительно 3 тысячам световых лет.

В центре Галактики, как полагают исследователи, расположена чёрная дыра Стрелец A*. Масса её приблизительно равно 4 000 000 масс Солнца. Это сверхмассивный галактический объект. Вторая по величине чёрная дыра, как предполагают учёные, находится и совершает своё обращение вокруг этой сверхмассивной, и является средней по массе (от 1 до 10 тысяч масс Солнца). Свой полный оборот среднемассивная чёрная дыра совершает за время, равное приблизительно 100 земным годам.

Исследователи установили, что кроме этих двух объектов, в галактическом ядре присутствует ещё несколько тысяч чёрных дыр, которые в сравнении с первыми двумя достаточно небольшие по массе и размерам. Каждая чёрная дыра создаём гравитационное поле. Чем больше масса и размер объекта, тем с большей силой данный объект воздействует на другие, и тем большее по силе гравитационное поле он создаёт.

Чёрные дыры галактического ядра в совокупности создают сверхмощное гравитационное поле. Посредством этой суммарной силы притяжения чёрные дыры воздействуют на галактические звёзды и удерживают их на своих орбитах. Учёные наблюдают, что звёзды под воздействием такого сверхмощного поля гравитации двигаются по нестандартным (необычным) траекториям, которые имеют своеобразные впадины и выпуклости.

Следует отметить, что на основе изучения нашей звездной системы учёные по аналогии выдвигают предположение, что подобная галактика имеет в своём ядре чёрную дыру сверхбольшой массы.

Галактические рукава

Схема галактики Млечный путь и ее рукавов

Галактическим рукавом называют составную часть, которая по форме напоминает рукав (или ответвление) галактики, имеющей спиралевидную форму. Эти структурные элементы состоят из звёздной пыли и газа, молодых звёзд и их скоплений.

Исследователи установили, что спиральные рукава обладают таким свойством, как долгая живучесть, то есть данные структурные галактические элементы имеют достаточно большое время существования, а не “рассеиваются” в окружающем космическом пространстве за сравнительно короткий временной период.

Данный вывод основан на дедукции от обратного: если допустить, что галактические рукава существуют непродолжительное время, тогда следует, что во Вселенной должны преобладать “безрукавные” (неспиральные) типы галактик. Здесь противоречие с наблюдениями за галактиками во Вселенной – во Вселенной преобладающим типом галактик являются спиралевидные объекты.

В основе генезиса (зарождения и развития) галактических рукавов лежит неустойчивость в галактическом диске, вследствие которой материя “отрывается” от диска галактики и в ходе вращения приобретает спиралевидную форму ветвей, который в свою очередь являются волнами плотности.

Галактические спиральные рукава обладают следующими свойствами, доступными для наблюдения:

  • в данных структурных элементах сосредоточено в 2 раза больше молодых звёзд, чем в галактическом диске;
  • количество старых галактических объектов (звёзд) меньше на 1/3, чем в среднем по галактическому диску;
  • количество звездного газа в 2–5 раз превышает количество газа, находящегося в смежных с рукавами областях;
  • наличие большого количества непрозрачной звёздной пыли;
  • постоянное отклонение скорости вращения объектов, составляющих галактические рукава, от круговой.

Интересным представляется факт, что если галактика является спиральной и имеет перемычку, то в спиралевидных галактических рукавах звёзды вращаются по круговой орбите (с очень малыми отклонениями от правильной окружности).

Галактические рукава расположены в плоскости галактического диска. А наша Солнечная система расположена на рукаве Ориона галактики около плоскости Млечного Пути. Расстояние от Солнца до центра Галактики составляет 27 000 световых лет.

Вследствие такого положения Солнца с его планетарной системой возможность визуального наблюдения рукавов Галактики из нашей Солнечной системы отсутствует, а космические расстояния настолько гигантские, что у человечества в настоящее время нет даже зачатков технологий, позволяющих преодолевать такие огромные пространства для наблюдения за нашей Галактикой “со стороны”.

Поэтому учёные исследуют форму галактических рукавов, наблюдая молекулярный газ оксид углерода (СО) в космическом пространстве. На основе анализа исследователи определили, что наша галактика Млечный Путь имеет 2 рукава. Эти рукава берут своё начало во внутренней части Млечного пути у перемычки (бара).

Также астрофизики определили, что внутренняя галактическая часть имеет ещё 2 рукава, которые вместе с первой парой составляют структуру четырёх рукавов галактики Млечный Путь во внешней её части, где расположена область (линия) нейтрального водорода.

Галактическое гало

Галактическое гало Млечного пути в представлении художника. Изображение: ESO/L. Calçada

Гало (от греч. halos – круг, диск) представляет собой круги, дуги, столбы, пятна света, видимые вокруг или вблизи дисков звёзд (например, звезды жёлтого карлика Солнца), планет (например, спутника Земли планеты Луна), которые вызываются преломлением и отражением света от материальных частиц в космическом пространстве (соответственно для галактик такие преломления и отражения света соотносятся со звёздами).

Гало Млечного Пути имеет форму сферы и простирается за границы Галактики на 10 световых лет. Диск галактики Млечный Путь окружён гало, которое образуют старые звёзды и шаровые скопления. Почти 90% из этих космических объектов находится на расстояниях до 100 тысяч световых лет от центра Галактики.

Исследования гало непрерывно продолжаются и в настоящее время обнаружено несколько шаровидных скоплений, отстоящих от центра нашей Галактики на расстоянии 2х105 световых лет. Состав гало Млечного пути однороден и имеет преимущественно старые неяркие звёзды с малой массой.

Сферическое гало Млечного Пути имеет космические объекты, возраст которых оценивается более, чем 12 миллиардов лет. Этот возраст принимают за возраст самого Млечного Пути.

Диск Галактики имеет в своём составе большое количество пыли и газа. Эти материальные объекты препятствуют свободному прохождению видимого света. В отличие от этого, сфероидное гало не содержит ни космической пыли, ни космического газа, поэтому видимый свет имеет свободное прохождение и может наблюдаться.

В галактике Млечный Путь в диске идёт интенсивный процесс образования новых звёзд. Особенно активно звёзды образуются в спиралевидных рукавах Млечного Пути, которые являются областями высокой плотности материи. В гало, наоборот, процесса образования новых звёзд нет, он уже завершился.

Современные исследователи выдвигают теорию о том, что основную массу галактики Млечный Путь образует тёмная материя, которая в свою очередь образует гало тёмной материи со сверхгигантской массой, оцениваемой величиной от 600 до 3000 миллиардов масс Солнца.

Относительно особенностей движения гало Млечного Пути учёными на данный момент определено, что составляющие гало звёзды и звёздные скопления движутся относительно центра Млечного Пути, и орбиты из движения являются значительно вытянутыми.

Сами же звёзды, составляющие гало, по отдельности могут двигаться немного хаотично, то есть звёзды-соседи могут иметь самые разные направления своих скоростей. Однако, совокупное движение гало единообразно и происходит с медленной скоростью вращения.

Светимость

В общефизическом смысле под светимостью тела понимают величину полного потока света, испускаемого единицей поверхности источника.

В астрофизике используется термин светимость звезды, под которым понимается мощность светового излучения этого космического объекта. Обычно светимость звёзд определяется относительно светимости звезды Солнце. Аналогично данное понятие переносится и на галактику. Здесь рассматривают совокупную (полную) светимость Галактики. Астрофизики оценивают эту величину равной 2х1010 светимостей Солнца.

Движение

Иллюстрация вращения галактики

Галактика Млечный Путь имеет два вида движения. Объекты, составляющие галактическую систему непрерывно совершают вращение относительно галактического центра.

Сама же галактическая система в целом движется в космическом пространстве относительно реликтового (древнего) излучения со скоростью, равной приблизительно 620 км/с. Вектор движения Млечного Пути как единой системы направлен в сторону созвездия Гидры.

История открытия

Схема устройства Галактики из статьи Гершеля «On the Construction of the Heavens», 1785

История открытия галактики Млечный Путь и открытия множественности галактик во Вселенной связано с именами выдающихся учёных. К таковым относятся:

  • Уильям Гершель (1738 – 1822), британец немецкого происхождения, астроном: открыл планетe Уран, а также инфракрасное излучение, исследовал дальний  космос;
  • Иммануил Кант (1724 –1804), немецкий философ, выдвинул научную гипотезу о звёздных туманностях;
  • Харлоу Шепли (1885 – 1972), американский учёный, исследовал переменные звёзды Млечного Пути и других галактик, открыл большое число переменных звёзд в шаровых звёздных скоплениях, исследовал строение галактики Млечный Путь;
  • Эрнст Эпик (1893 – 1985), эстонский астроном-астрофизик, исследовал спиральные туманности;
  • Эдвин Хаббл (1889 – 1953), американский астрофизик, проводил масштабные исследования галактик.

Астрономическая наука развивалась с древнейших времён посредством наблюдений за небосводом. На основании этих наблюдений учёные старались понять, как устроена Вселенная.

В основу понимания устройства Вселенной легла следующая цепь логических рассуждений: Луна вращается вокруг Земли и составляет систему планета – спутник, другие большие планеты Солнечной системы также имеют свои спутники и также формируют системы планета – спутники; далее планета Земля и другие планеты вращаются вокруг Солнца и образуют Солнечную систему; отсюда появляется вопрос: входит ли Солнце вместе с планетами Солнечной системы в систему большего размера?

Уильям Гершель первым из учёных провёл систематическое научное исследование данного вопроса. Он занимался подсчётом звёзд в различных областях неба. На основании своих астрономических наблюдений У. Гершель открыл на небосводе большой круг, который делит небо на две части, равные между собой. Количество звёзд, расположенных на этом круге, оказывается наибольшим.

Следующим важным научным выводом из наблюдений У. Гершеля было положение – участок неба, расположенный ближе к этому кругу, имеет большее число звёзд, а с отдалённостью число звёзд уменьшается. Открытый Уильямом Гершелем большой круг позднее получил название галактического экватора. И наиболее важный вывод – именно на этом круге лежит галактика Млечный Путь, а созерцаемые звёзды образуют гигантскую систему, и эта система является сплюснутой в направлении экватора Галактики.

Немецкий философ Иммануил Кант также внес вклад в концепцию понимания устройства Вселенной. Он выдвинул предположение, что отдельные туманности могут быть галактиками, такими как Млечный путь.

Данная идея Канта получила окончательное доказательство в 20-е годы 20 века. В это время два выдающихся учёных-астрофизика Эрнст Эпик и Эдвин Хаббл смогли измерить расстояние до некоторых туманностей, имеющих форму спирали, и, что самое важное – доказали, что данные космические объекты слишком удалены и поэтому не могут являться частью галактики Млечный Путь.

Расположение Солнечной системы, Солнца и Земли в Галактике Млечный путь

Схема расположения Солнца в галактике Млечный / Wikimedia Commons

Астрофизики в процессе изучения нашей галактики сделали предположительную оценку расстояния от нашей звезды Солнце до галактической  перемычки. Оно приблизительно равно 3,5х104 световых года.

Последние астрономические данные показали, что Солнце отстоит от галактического центра приблизительно на расстоянии, равном 2,7х104 световых года.

Разница в числовых данных указала учёным на однозначный вывод – Солнце расположено ближе к краю галактического диска, чем к центру галактики.

Солнце является звездой (жёлтый карлик), входящей во множество других звёзд нашей галактики. И вместе с ними наша звезда движется вокруг галактического центра со скоростью от 220 до 240 км/с и при этом совершает полный оборот приблизительно за время, равное 200 000 000 лет.

Нетрудно подсчитать, что планета Земля за время своего существования сделала не более 30 полных оборотов вокруг центра Млечного Пути.

Галактика Млечный Путь имеет спиралевидные рукава, два из которых учёным удалось отследить на расстоянии около 3 000 световых лет от Солнца. Участки эти галактических рукавов наблюдаются в двух созвездиях, по названиям которых и были наименованы рукавом Стрельца и рукавом Персея. Солнце расположено между этими спиральными ветвями почти посередине.

Кроме этих двух рукавов (Стрельца и Персея) около нашей Солнечной системы проходит ещё один – рукав Ориона. Этот галактический рукав не столь чётко выражен, как два других и считается ответвлением одного из основных спиральных рукавов Млечного Пути.

Учёными установлено, что в спиральных рукавах Галактики происходят очень бурные процессы, следствием которых является мощнейшее излучение, несущее гибель любому живому организму. Земная атмосфера не может защитить от такой радиации.

Но Земля расположена в относительно спокойном месте Млечного Пути и за время своего существования не была подвергнута воздействию, губительному для всего живого.

Возможно, именно вследствие этого на планете Земля зародилась жизнь и существуют условия, благоприятные для её продолжения.

Окрестности

Карта Млечного Пути и галактик-спутников. Изображение: Richard Powell / Wikimedia Commons,

Помимо изучения самой галактики Млечный Путь, интересным представляется исследование окрестностей нашей звездной системы.

На данном этапе исследования Галактики основной задачей учёных при изучении окрестностей Млечного пути является обнаружение других, карликовых галактик, которые могли бы быть связаны с нашей.

Вначале астрофизики пытаются получить данные о спутниках Млечного Пути. Такие данные были получены и астрофизики открыли 9 новых спутников нашей галактики  в 2015 году.

Также изучается вопрос, связанный с карликовыми галактиками, которые могли бы быть поглощены нашей галактикой. К таким относится, например, галактика Омега Центавра – шаровое звёздное скопление в созвездии Центавр, одно из самых близких к Земле и самое крупное из известных.

Исследования, нацеленные на поиск новых галактик-спутников Млечного Пути, активно продолжаются.

Развитие Галактики и ее будущее

В настоящее время наука обладает определёнными знаниями об эволюции нашей галактики. Следующие события относительно генезиса (зарождения и развития) таковы:

  • Более десяти миллиардов лет назад Млечный Путь столкнулся с галактикой, носящей название Кракен.
  • Через некоторое время после первого события случилось столкновение и слияние Млечного Пути и большой галактики Гайя-Энцелад, Результатом этого стало образование дутого толстого диска Млечного Пути.
  • Исследователи только предполагают, что десять миллиардов лет назад с галактикой Млечный Путь могла столкнуться галактика, считающаяся прародителем системы Inner Galaxy Structure (IGS). Вывод основан на том, что в гало Млечного Пути треть звёзд принадлежит этой системе.
  • Астрономы определили, что за время существования Млечного Пути произошло не менее двенадцати коллизий между нашей галактикой и иными.

Об эволюционных перспективах нашей звёздной системы учёные делают следующие предположения:

  • Существует вероятность коллизии нашей галактики с другими галактиками и даже с крупной галактикой Андромеда. Но на текущее время более точные предсказания сделать нельзя, так как учёные не способны пока определить скорость галактик, с которыми может столкнуться Млечный Путь.
  • В 2014 году астрономы представили эволюционную модель будущего Млечного Пути.

По этой модели спустя четыре миллиарда наша галактика сойдётся в столкновении с Большим и Малым Магеллановыми Облаками. А затем спустя один миллиард после этого события Млечный Путь будет поглощён галактикой Туманность Андромеды.

Сейчас у человечества  немало о нашей галактике Млечный Путь. Однако очевидно, что эти знания лишь небольшая крупица в бесконечном пространстве знаний, таком же бескрайнем, как и наша Вселенная.

Видео