Содержание

МАССЫ НЕБЕСНЫХ ТЕЛ • Большая российская энциклопедия

МА́ССЫ НЕБЕ́СНЫХ ТЕЛ (ме­то­ды оп­ре­де­ле­ния). Оп­ре­де­ле­ние М. н. т. ста­ло воз­мож­ным в 17 в., по­сле от­кры­тия все­мир­но­го тя­го­те­ния за­ко­на.

Массы Земли и других планет

Од­на из пер­вых оце­нок мас­сы Зем­ли по­лу­че­на Г. Ка­вен­ди­шем по­сле про­ве­де­ния опы­та по экс­пе­рим. оп­ре­де­ле­нию уни­вер­саль­ной гра­ви­тац. по­сто­ян­ной. Из­ме­ряя с по­мо­щью кру­тиль­ных ве­сов си­лу при­тя­же­ния ме­ж­ду мас­сив­ным свин­цо­вым ша­ром и под­ве­шен­ным вбли­зи не­го не­боль­шим ме­тал­лич. ша­ри­ком, Ка­вен­диш срав­нил ве­ли­чи­ну этой си­лы с си­лой при­тя­же­ния ша­ри­ка Зем­лёй и су­мел вы­чис­лить, во сколь­ко раз мас­са Зем­ли пре­вы­ша­ет мас­су свин­цо­во­го ша­ра. Та­ким об­ра­зом бы­ла по­лу­че­на оцен­ка мас­сы Зем­ли (6·1024 кг) и её ср. плот­но­сти (5,5 кг/м3).

 

Мас­сы др. пла­нет оп­ре­де­ля­ют по па­ра­мет­рам их ор­бит с по­мо­щью третье­го за­ко­на Ке­п­ле­ра (см. 3$. По па­ра­мет­рам ор­бит Зем­ли и Лу­ны бы­ла про­ве­де­на оцен­ка массы Солнца – при­мер­но в 333 000 раз боль­ше мас­сы Зем­ли.

 

Мас­сы Мер­ку­рия и Ве­не­ры, у ко­то­рых от­сут­ст­ву­ют ес­теств. спут­ни­ки, этим спо­со­бом оп­ре­де­лить не­воз­мож­но. Един­ст­вен­ный и го­раз­до бо­лее труд­ный путь со­сто­ит в ис­поль­зо­ва­нии воз­му­ще­ний (все­гда яв­ляю­щих­ся функ­ция­ми воз­му­щаю­щей мас­сы), ко­то­рые пла­не­та вы­зы­ва­ет в дви­же­нии др. тел Сол­неч­ной сис­те­мы. Зна­чи­тель­но бо­лее труд­ную за­да­чу пред­став­ля­ет оп­ре­де­ле­ние мас­сы Лу­ны. Яв­ля­ясь бли­жай­шим к Зем­ле не­бес­ным те­лом, Лу­на не мо­жет, стро­го го­во­ря, счи­тать­ся спут­ни­ком на­шей пла­не­ты, т. к. Солн­це при­тя­ги­ва­ет её в 2,5 раза силь­нее, чем Зем­ля. Во­круг Солн­ца об­ра­ща­ет­ся т. н. ба­ри­центр (центр масс) двой­ной пла­не­ты Зем­ля–Лу­на, в то вре­мя как обе они опи­сы­ва­ют от­но­си­тель­но ба­ри­цен­тра эл­лип­тич. ор­би­ты с пе­рио­дом в 1 ме­сяц. По­это­му мас­су Лу­ны мож­но вы­чис­лить по ве­ли­чи­не ме­сяч­но­го сме­ще­ния Зем­ли от­но­си­тель­но ба­ри­цен­тра. В точ­ных ас­тро­но­мич. на­блю­де­ни­ях дол­го­ты Солн­ца про­яв­ля­ет­ся т. н. лун­ное не­ра­вен­ст­во, сви­де­тель­ст­вую­щее о том, что центр Зем­ли в те­че­ние ме­ся­ца опи­сы­ва­ет эл­липс с боль­шой по­лу­осью, рав­ной при­мер­но 3/4 ра­диу­са Зем­ли. По­след­нее оз­на­ча­ет, что ба­ри­центр сис­те­мы Зем­ля–Лу­на все­гда рас­по­ла­га­ет­ся внут­ри Зем­ли и ни­ко­гда не вы­хо­дит за пре­де­лы её по­верх­но­сти. Оп­ре­де­лён­ная по этим дан­ным мас­са Лу­ны со­став­ля­ет ок. 1/81 мас­сы Зем­ли.

Мас­сы всех пла­нет Сол­неч­ной сис­те­мы вхо­дят в чис­ло фун­дам. ас­тро­но­мич. по­сто­ян­ных, зна­че­ния ко­то­рых ре­гу­ляр­но уточ­ня­ют­ся на ос­но­ве всей со­вокуп­но­сти ас­тро­но­мич. на­блю­де­ний и утвер­жда­ют­ся Ме­ж­ду­на­р. ас­тро­но­ми­ч. сою­зом.

Массы звёзд

Тре­тий за­кон Ке­п­ле­ра в его обоб­щён­ной фор­ме по­зво­ля­ет так­же оп­ре­де­лить сум­мар­ную мас­су двой­ной звез­ды по из­вест­но­му зна­че­нию её го­дич­но­го па­рал­лак­са. 2$. Напр., для двой­ной звёзд­ной сис­те­мы Си­ри­ус А и Си­ри­ус B со­от­вет­ст­вую­щие зна­че­ния со­став­ля­ют $a″$=7,57″, $π$=0,37″ и $P$ = 50 лет, со­от­вет­ст­вен­но сум­мар­ная мас­са этой двой­ной звёзд­ной сис­те­мы оце­ни­ва­ет­ся в 3,4$M_☉$.

В том слу­чае, ко­гда уда­ёт­ся из­ме­рить по­ло­же­ния ви­зу­аль­но-двой­ных звёзд от­но­си­тель­но их ба­ри­цен­тра, воз­ни­ка­ет воз­мож­ность оп­ре­де­лить от­но­ше­ние масс обо­их ком­по­нен­тов. Та­кие из­ме­ре­ния тре­бу­ют зна­ния точ­ных по­ло­же­ний ком­по­нен­тов сис­те­мы от­но­си­тель­но да­лё­ких звёзд (т. н. звёзд фо­на) на дос­та­точ­но дли­тель­ных ин­тер­ва­лах вре­ме­ни. Про­дол­жит. на­блю­де­ния оди­ноч­ной звез­ды в те­че­ние мн. лет по­ка­зы­ва­ют, что ес­ли она име­ет соб­ст­вен­ное дви­же­ние от­но­си­тель­но звёзд­но­го фо­на, то её пе­ре­ме­ще­ние про­ис­хо­дит по ду­ге боль­шо­го кру­га не­бес­ной сфе­ры. Но ес­ли звез­да – ви­зу­аль­но-двой­ная, то по ду­ге боль­шо­го кру­га сме­ща­ет­ся её ба­ри­центр, а оба ком­по­нен­та сис­те­мы дви­жут­ся по кри­во­ли­ней­ным ба­ри­цен­трич. тра­ек­то­ри­ям. Точ­ные ас­т­ро­мет­рич. из­ме­ре­ния по­ло­же­ний ком­по­нен­тов двой­ной сис­те­мы по­зво­ля­ют про­сле­дить тра­ек­то­рию цен­тра масс, а за­тем и ин­ди­ви­ду­аль­ные ор­би­ты отд. ком­по­нен­тов. Ес­ли $α_1$ и $α_2$ – вы­ра­жен­ные в се­кун­дах ду­ги уг­ло­вые рас­стоя­ния от гл. звез­ды с мас­сой $M_1$ и звез­ды-спут­ни­ка с мас­сой $M_2$ до ви­ди­мо­го по­ло­же­ния цен­тра масс двой­ной сис­те­мы, то то­гда, по оп­ре­де­ле­нию цен­тра масс, $M_1α_1=M_2α_2$, от­ку­да сле­ду­ет фор­му­ла для от­но­ше­ния масс ком­по­нен­тов ви­зу­аль­но-двой­ной звез­ды: $M_1/M_2=α_2/α_1$.

Зна­ние сум­мар­ной мас­сы двой­ной звез­ды и от­но­ше­ния масс её ком­по­нен­тов по­зво­ля­ет без тру­да вы­чис­лить мас­сы обе­их звёзд. Ти­пич­ные зна­че­ния масс звёзд, по­лу­чен­ные по на­блю­де­ни­ям ви­зу­аль­но-двой­ных звёзд, ле­жат в пре­де­лах (0,1–20)$M_☉$. Бо­лее по­ло­ви­ны звёзд на­шей Га­лак­ти­ки вхо­дят в со­став двой­ных, трой­ных звёзд или звёзд­ных сис­тем боль­шей крат­но­сти. Имен­но ис­сле­до­ва­ния двой­ных звёзд по­зво­ли­ли по­лу­чить дан­ные о звёзд­ных мас­сах и по­слу­жи­ли ос­но­вой для ус­та­нов­ле­ния со­от­но­ше­ния мас­са – све­ти­мость (см. Мас­са – све­ти­мость за­ви­си­мость). Это со­от­но­ше­ние ши­ро­ко ис­поль­зу­ет­ся в звёзд­ной ас­тро­но­мии и ас­т­ро­фи­зи­ке в ка­че­ст­ве не­за­ме­ни­мо­го сред­ст­ва оцен­ки масс звёзд по их све­ти­мо­стям.

Со­глас­но совр. пред­став­ле­ни­ям, мас­сы звёзд за­клю­че­ны в пре­де­лах (0,08–100)$M_☉$. Мас­са отд. звез­ды в сред­нем близ­ка к $M_☉$, в то вре­мя как звёз­ды с мас­са­ми, в де­сят­ки раз бóльшими мас­сы Солн­ца, встре­ча­ют­ся дос­та­точ­но ред­ко: это гл. обр. звёз­ды ран­них спек­траль­ных клас­сов O и B.

Массы звёздных скоплений и галактик

Мас­су $M$ ша­ро­во­го звёзд­но­го ско­п­ле­ния ра­диу­са $R$ мож­но оце­нить по ве­ли­чи­не кру­го­вой ско­ро­сти $V$ звез­ды, дви­жу­щей­ся на гра­ни­це ско­п­ле­ния, счи­тая, что цен­тро­ст­ре­мит. ус­ко­ре­ние звез­ды вы­зва­но при­тя­же­ни­ем всех звёзд ша­ро­во­го ско­п­ле­ния. 2R/G$, где $G$ – гра­ви­тац. по­сто­ян­ная. Бо­лее точ­ная оцен­ка мас­сы звёзд­но­го ско­п­ле­ния по­лу­ча­ет­ся при ис­поль­зо­ва­нии не­ко­то­рых ус­ред­нён­ных зна­че­ний ско­ро­стей звёзд и их ср. уда­лён­но­сти от цен­тра ско­п­ле­ния.

На­ли­чие у га­лак­ти­ки од­но­го спут­ни­ка (иг­раю­ще­го роль проб­но­го те­ла) по­зво­ля­ет оце­нить мас­су га­лак­ти­ки с по­мо­щью ана­ло­гич­ной фор­му­лы, но точ­ность та­кой оцен­ки очень не­вы­со­ка. В ка­че­ст­ве проб­но­го те­ла мо­жет рас­смат­ри­вать­ся др. га­лак­ти­ка, ша­ро­вое ско­п­ле­ние, рас­по­ло­жен­ное на пе­ри­фе­рии га­лак­ти­ки, и да­же об­ла­ко меж­звёзд­но­го га­за. Ес­ли у га­лак­ти­ки име­ет­ся неск. спут­ни­ков (или др. проб­ных тел), то мож­но пред­по­ло­жить, что рас­пре­де­ле­ние по­ло­же­ний и ско­ро­стей спут­ни­ков име­ет слу­чай­ный ха­рак­тер. Это пред­по­ло­же­ние реа­ли­зу­ет­ся тем точ­нее, чем боль­ше име­ет­ся проб­ных тел (напр., в га­лак­ти­ке М31 в со­звез­дии Ан­дро­ме­ды ок. 400 ша­ро­вых ско­п­ле­ний). То­гда в при­ве­дён­ной фор­му­ле мож­но ис­поль­зо­вать ви­ди­мые рас­стоя­ния и ско­ро­сти проб­ных тел, ус­ред­нён­ные за про­ме­жу­ток вре­ме­ни, зна­чи­тель­но пре­вы­шаю­щий их ор­би­таль­ные пе­рио­ды. Мас­сы спи­раль­ных га­лак­тик мож­но оце­ни­вать с по­мо­щью об­ла­ков меж­звёзд­но­го га­за на кру­го­вых ор­би­тах в га­лак­тич. плос­ко­сти. Из­ло­жен­ный ме­тод из­ме­ре­ния масс га­лак­тик (ме­тод Нью­то­на) ба­зи­ру­ет­ся на за­ко­не все­мир­но­го тя­го­те­ния. Бо­лее пер­спек­тив­ным счи­та­ет­ся ме­тод Эйн­штей­на, в ко­то­ром мас­сив­ные га­лак­ти­ки рас­смат­ри­ва­ют­ся в ка­че­ст­ве гра­ви­тац. лин­зы (см. Гра­ви­та­ци­он­ная фо­ку­си­ров­ка).

В оцен­ке сум­мар­ной мас­сы га­лак­ти­ки с учё­том всех её со­став­ляю­щих (звёзд, га­за, пы­ли и др.) су­ще­ст­вен­ную роль иг­ра­ет кру­го­вая ско­рость проб­но­го те­ла. Эта ско­рость при уда­ле­нии от цен­тра га­лак­ти­ки долж­на умень­шать­ся по оп­ре­де­лён­но­му за­ко­ну. Од­на­ко по ре­зуль­та­там на­блю­де­ний уда­лось ус­та­но­вить, что этот за­кон вы­пол­ня­ет­ся толь­ко во внутр. об­лас­ти га­лак­ти­ки. На пе­ри­фе­рии лю­бой га­лак­ти­ки кру­го­вая ско­рость поч­ти все­гда вы­ше зна­че­ния, по­лу­чен­но­го в пред­по­ло­же­нии, что вся мас­са га­лак­ти­ки за­клю­че­на в её звёз­дах и га­зе. Ча­ще все­го ско­рость вра­ще­ния звёзд не умень­ша­ет­ся с рас­стоя­ни­ем от цен­тра га­лак­ти­ки, а ос­та­ёт­ся по­сто­ян­ной или да­же рас­тёт при при­бли­же­нии к ви­ди­мо­му краю га­лак­ти­ки. Для объ­яс­не­ния та­ко­го фе­но­ме­на бы­ло вы­дви­ну­то пред­по­ло­же­ние о су­ще­ст­во­ва­нии в га­лак­ти­ках скры­той мас­сы, по­вы­шаю­щей ве­ли­чи­ну на­пря­жён­но­сти гра­ви­тац. по­ля га­лак­ти­ки вда­ли от её цен­тра. Во­прос о гра­ни­цах га­лак­тик и их пол­ных мас­сах на нач. 21 в. не ре­шён: не­све­тя­щие­ся час­ти га­лак­тик мо­гут про­сти­рать­ся на по­ря­док даль­ше ви­ди­мой гра­ни­цы их звёзд­ных дис­ков.

Как измеряют массу планет, звёзд и галактик: просто о сложном

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Содержание:

  • 1 Рассчитываем массу Земли и Луны
  • 2 Общие методики определения масс планет
  • 3 Значения масс планет Солнечной системы
  • 4 Определение масс звезд и галактик

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Самой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 21616

Запись опубликована: 08.04.2021
Автор: Администратор

Через два миллиона лет океаны могут закипеть / / Независимая газета

В результате неуклонного увеличения массы радиус нашей планеты растет примерно на 2 см в год, а площадь поверхности – на 3,12 кв. км в год. Фото Юрия Батурина

В 60-е годы прошлого века сначала за рубежом, а затем и в Советском Союзе доминирующее положение в геонауках заняли мобилисты, то есть сторонники гипотезы о дрейфе континентов и тектонике литосферных плит на планете фиксированного размера. В нашем веке тектонику плит безоговорочно поддерживают геологи всего мира, но тем не менее критики этой гипотезы остаются, и особенно много их как раз в нашей стране. Почему?

Бегущая по эфирным волнам

Российская философская и, в частности, геологическая мысль всегда отличалась самобытностью. Задолго до того, как в 1912 году немецкий географ и метеоролог Альфред Вегенер взбудоражил научный мир Европы своей гипотезой о расколе древнего суперконтинента Пангея и современном беспорядочном дрейфе континентов, русский инженер и мыслитель Иван Осипович Ярковский пришел к новому пониманию природы материи.

Ярковский предложил свое объяснение гравитации, имевшее далекоидущие последствия. В 1889 году в Петербурге была издана его книга под названием «Всемирное тяготение как следствие образования весомой материи внутри небесных тел. Кинетическая гипотеза». Согласно Ярковскому, размеры и масса Земли и других крупных небесных тел неуклонно увеличиваются со временем. Ярковский полагал, что вакуум – это не пустота, а материальная среда с очень сложными свойствами, ответственными за инерцию тел и существование гравитации.

Идея физического вакуума, или эфира, заполняющего мировое пространство, была введена еще в Древней Греции Аристотелем, и эта идея прошла через всю историю науки. Но Ярковский предположил, что субстанция, из которой состоит вещество и эфир, одна и та же и что эффект гравитации создают направленные потоки эфира, который может поглощаться в больших небесных телах, превращаться в них в вещество и увеличивать их размер и массу. Поэтому Ярковского можно назвать первым, кто отошел от креационизма, то есть от представления о единожды созданной и неизменной Земле, и сформулировал идею постепенно растущей планеты.

Ярковский надеялся привлечь внимание к своим идеям и на рубеже XIX и XX веков разослал свою книгу в ведущие европейские университеты и научные центры. Но ему не суждено было дождаться какой-либо реакции. В 1902 году он безвременно скончался в возрасте 58 лет.

В зарубежной литературе обычно считается, что гипотеза расширяющейся Земли первоначально была предложена немецким ученым Отто Хильгенбергом в 1933 году, когда он изготовил глобусы разного размера, иллюстрирующие появление и расширение океанов.

Согласно его гипотезе, современные континенты некогда плотно покрывали всю маленькую планету, площадь которой была в три раза меньше, а радиус составлял порядка 60% от современной величины, или около 4 тыс. км. Эта гипотеза не получила признания, поскольку Хильгенберг и его сторонники не смогли предложить механизм расширения планеты.

Геологи пытались воспользоваться подсказкой нобелевского лауреата Поля Дирака об уменьшении гравитационной постоянной обратно пропорционально возрасту Вселенной, но это давало увеличение радиуса Земли только на 0,002 см в год. А для увеличения площади планеты в три раза примерно за последние 200 млн лет требовалось ежегодное увеличение радиуса на 2 см в год, что считалось явно невозможным.

Из-за отсутствия приемлемого для геологов механизма в 30-е годы прошлого века были отвергнуты не только гипотезы о расширении Земли, но и гипотеза Вегенера о распаде суперконтинента Пангея на Земле такого же размера, как и сегодня. Доминирующим в то время геологам-фиксистам, предпочитавшим вертикальные колебания земной коры, беспричинное свободное плавание континентов по Вегенеру со скоростями до нескольких десятков сантиметров в год казалось не менее фантастичным, чем раздувание планеты. Тем не менее, как сейчас принято говорить, «альтернативщики» продолжали разрабатывать обе группы тектонических гипотез.

Растущие океаны

В 30-е годы во Франции горячим сторонником гонимой в то время гипотезы Вегенера стал молодой геолог Борис Шубер. Он и его младший брат Юрий родились в Петербурге в семье прибалтийских немцев, носивших фамилию фон Шуберт. В революционный 1917 год семья эмигрировала и осела во Франции. Получив университетское образование, оба брата стали геологами и выполняли исследования в различных французских колониях Африки и Южной Америки.

В 1935 году Борис Шубер опубликовал статью с описанием своей палеореконструкции Атлантического океана. Шубер пошел дальше Вегенера и совместил континенты не по их современным береговым линиям, а по континентальным склонам с изобатами –1000 м (изобата – линия на географической карте, соединяющая точки одинаковых глубин).

К сожалению, оригинальная работа Бориса Шубера была не замечена современниками. Только в конце 50-х годов к палеореконструкциям Атлантики и всего земного шара приступил австралийский геолог, профессор Самюэль Кэри. Он убедился, что современные континенты гораздо лучше смыкаются на сферах меньшего радиуса, и в западном мире стал известен как один из самых последовательных приверженцев гипотезы расширения Земли.

Кэри приезжал в Советский Союз, где встречался со своими немногочисленными единомышленниками, такими как Владимир Борисович Нейман и И.В. Кириллов. Кэри вспоминал: когда в 1965 году он посетил Москву, практически никто не интересовался расширением Земли. Однако он не сомневался в том, что эта идея вскоре будет доказана на геологическом материале и принята всеми.

Иван Осипович Ярковский пришел к новому
пониманию природы материи. 
Фото конца XIX века
В 1965 году знаменитый английский геофизик сэр Буллард вместе с молодыми коллегами Эвереттом и Смитом опубликовал новую палеореконструкцию Атлантики. Эта реконструкция была несколько удачнее, чем у Бориса Шубера. Для относительного поворота континентов и определения наилучшей подгонки стыкуемых материков Буллард и его коллеги впервые использовали компьютерные расчеты, которые вызывали большее доверие у современников.

Ни Кэри, ни Буллард никогда не ссылались на пионерскую палеореконструкцию Бориса Шубера. Зная об этой несправедливости, известный французский геолог и один из основателей теории тектоники плит Ле Пишон в начале 70-х годов на одной из конференций предложил связывать палеореконструкцию Атлантики с двумя именами – Булларда и Шубера. Но это предложение не прижилось.

Что касается младшего брата Бориса Шубера, Жоржа, то он стал известен благодаря участию в составлении «Геологического атласа мира», изданного под эгидой ЮНЕСКО на французском и английском языках. За эту и другие фундаментальные геологические и геохимические работы Жорж Шубер был награжден французским правительством орденом Почетного легиона.

Жорж Шубер не забывал свою родину. В 70-е и 80-е годы прошлого века он неоднократно приезжал в нашу страну для участия в геологических конгрессах и конференциях, печатался в советских научных журналах. Самое важное – именно благодаря Жоржу Шуберу бесценный «Геологический атлас мира» попал в руки советских геологов. На самом деле Жоржа Шубера у нас называли Юрием Александровичем – именем, данным ему при рождении.

Остановимся на сотрудничестве Юрия Александровича с самобытным украинским ученым Виталием Филипповичем Блиновым. Результатом этого сотрудничества стали совместные доклады на 27-й сессии Международного геологического конгресса в Москве в 1984 году.

Шубер рассказал конгрессу о завершении грандиозной работы – составлении «Геологического атласа мира», а Блинов сообщил о своем открытии – установлении закономерности возрастного состава океанической коры.

Когда планета потекла

Блинов и его коллега Осипишин занялись количественным анализом «Геологического атласа мира» и тектонических карт океанов и выявили неизвестную ранее закономерность: экспоненциальное распределение площади океанической коры по возрастам. Благодаря растущим океанам суммарная площадь земной коры удвоилась за последние 150 млн лет – от 250 до более чем 500 млн кв. км. Экспоненциальная кривая говорит о том, что современное человечество живет в эпоху океанического развития земной коры!

Ожидаемый вопрос скептиков: если поверхность Земли была в два раза меньше 150 млн лет назад, то современная масса воды покрывала бы всю планету многокилометровым слоем, что противоречит данным палеонтологии о большом разнообразии сухопутных животных и растений в то время.

Но, с позиций Блинова, большую часть истории Земли, до фанерозоя (который длится последние 540 млн лет) свободной воды было очень мало. В середине фанерозоя, 300–400 млн лет назад, появились мелководные моря. И только в последние 200 млн лет, после распада Пангеи, эволюция гидросферы на растущей по экспоненте Земле претерпела резкие изменения и образовались глубоководные океаны.

Такую позицию разделяли многие известные геологи. Например, профессор МГУ им. М.В. Ломоносова В.В. Белоусов был хорошо осведомлен о маловодности планеты в докембрии и в первой половине фанерозоя. В своей книге «Основы геотектоники», вышедшей в 1975 году, Белоусов отмечал: «Весь объем океанских вод образовался за последние 200 млн лет. Если допустить, что палеозойские моря покрывали 25% площади современной материковой коры, а средняя их глубина была 200 м, то объем воды на растущей Земле к началу океанообразования составлял примерно 7% от современного».

Что касается материков, то распределение площадей земной коры по возрастам не является экспонентой, но также аппроксимируется плавной функцией, показывающей преобладание площади земной коры более молодого возраста над площадями земной коры более древних геологических эпох. Очень важно, что кривые для площадей океанической и континентальной земной коры являются продолжением друг друга. Эту кривую назвали главной геологической закономерностью.

Открытия Блинова и его соавторов позволили перевести представления о расширении Земли из гипотезы в закономерный, геологически документируемый процесс. Осталось только найти причину и механизм расширения. И ответы уже есть!

Гравитационный прирост

Используя гипотезу Ярковского о кинетической природе гравитации, Блинов независимым путем вывел закон притяжения Ньютона, оценил скорости поглощения материи из вакуума и получил численные характеристики роста Земли. Блинов подсчитал, что за счет взаимодействия с физическим вакуумом масса Земли в настоящее время увеличивается на 1 млн 730 тыс. т в секунду (!). В результате неуклонного увеличения массы радиус нашей планеты растет примерно на 2 см в год, а площадь поверхности – на 3,12 кв. км в год. Соответственно сила тяжести должна ежегодно увеличиваться на 3 микрогала (Гал – единица измерения ускорения в системе СГС, равна 1 см/с2).

Некоторые исследователи считают также целесообразным учитывать улавливание Землей космической пыли и метеоритов. Хотя такой прирост массы нашей планеты, по разным оценкам, может составлять миллионы и даже десятки миллионов тонн в год, это пренебрежимо малая величина по сравнению с гравитационным приростом массы Земли.

Еще один вывод Блинова – неуклонное повышение температуры на поверхности Земли благодаря увеличению светимости Солнца и теплового потока из недр Земли. По прогнозу Блинова, через 2–3 млн лет океаны Земли могут закипеть, и наша планета станет непригодна для жизни.

Здесь уместно вспомнить о современнике И.О. Ярковского – Константине Эдуардовиче Циолковском. Калужский школьный учитель математики Циолковский на досуге успел стать изобретателем, исследователем реактивного движения, философом, писателем-фантастом и, наконец, основоположником теоретической космонавтики. В начале XX века в ряде своих статей и писем Циолковский повторял ставшую знаменитой фразу о том, что «человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а затем завоюет все околосолнечное пространство».

Циолковский не рассматривал будущие полеты в космос как прихоть. Он был не меньшим диалектиком, чем Ярковский, и полагал, что Солнце и планеты проходят определенные циклы своего развития и рано или поздно может произойти общеземная катастрофа. Циолковский надеялся, что это случится не скоро, через многие тысячи лет, и человечество успеет осознать, что его ждет, и приготовиться к бегству в космос для спасения жизни и разума на других планетах. «Через многие миллионы лет мы, может быть, будем жить у солнца, которое еще теперь не возгорелось, а существует лишь в зачатке», – прогнозировал Циолковский.

Я позволю себе немного поправить Константина Эдуардовича. Его знаменитая фраза должна начинаться так: «Человечество не сможет вечно оставаться на Земле…» 

Масса планет Солнечной системы – по возрастанию кратко, таблица сравнение (5 класс, география)

4. 6

Средняя оценка: 4.6

Всего получено оценок: 172.

Обновлено 8 Февраля, 2022

4.6

Средняя оценка: 4.6

Всего получено оценок: 172.

Обновлено 8 Февраля, 2022

В Солнечной системе основная масса приходится на Солнце, и лишь незначительная часть (0,0013 %) распределена между всеми планетами: от самой маленькой планеты Меркурий до наибольшей планеты Юпитер. По своим размерам и прочим характеристикам все восемь планет Солнечной системы разделены на две группы: внутреннюю (земную) и внешнюю (планеты-гиганты).

Планеты внутренней группы

Внутренняя область Солнечной системы наполнена разнообразными космическими телами: планетами, их спутниками, а также малыми телами — астероидами и кометами. К планетам земной группы относятся Меркурий, Венера, Земля и Марс. По сравнению с планетами-гигантами они обладают очень скромными размерами.

Рис. 1. Планеты Солнечной системы.

Краткая характеристика планет внутренней группы включает:

  • Меркурий — наименьшая планета Солнечной системы, средний радиус которой составляет 2439 км. Обладает аномально большим по отношению к коре и мантии железным ядром. Масса Меркурия составляет около 3,3*1023 кг.
  • Венера — планета, которая имеет много общего с Землёй. Однако из-за атмосферы, наполненной серной кислотой, азотом и углекислым газом, жизнь здесь невозможна. Средний радиус Венеры составляет 6050 км, а масса — 4,9*1024 кг.
  • Земля — самая крупная и самая плотная из планет внутренней группы. Её радиус составляет 6371 км, а масса — 5,98*1024 кг.
  • Марс — последняя планета внутренней группы. Несмотря на то, что планеты внутренней группы расположены по возрастанию размеров и массы, Марс выбивается из этого стройного порядка своими скромными размерами. Радиус его составляет 3397 км, а масса — 6,44*1023 кг, и относительно Земли он меньше почти в 10 раз.

Планеты внутренней части нашей системы имеют меньшие размеры, но являются более плотными, чем газовые или ледяные гиганты, располагающиеся во внешней части Солнечной системы. А в ряде случаев планеты могут быть даже меньше, чем некоторые спутники. Однако размер планеты не обязательно пропорционален его массе.

Рис. 2. Планета Земля.

Группа планет-гигантов

Планеты-гиганты Солнечной системы отличаются внушительными размерами. К ним относятся 4 планеты:

  • Юпитер — самая крупная система Солнечной системы. Её радиус — 69911 км, а масса — 1,9*1027 кг, что составляет рекорд по массе планет Солнечной системы. Юпитер почти в 2,5 раза массивнее всех других планет в Солнечной системе вместе взятых, но, как газовый гигант, он имеет более низкую общую плотность, чем планеты земной группы.
  • Сатурн — второй по величине газовый гигант с радиусом 58000 км и массой 5,68*1026 кг. Он является единственной планетой в Солнечной системе, которая имеет меньшую плотность, чем вода (1 г/куб. см).
  • Уран — седьмая от Солнца и четвертая по массе планета. Его радиус составляет 25400 км, а масса — 8,7*1025 кг.
  • Нептун — последняя планета в группе гигантов Солнечной системы. Его радиус — 24300 км, а вес — 1,03*1026 кг. Его плотность выше, чем у остальных планет-гигантов.
Рис. 3. Юпитер — самая большая планета Солнечной системы.

В состав Солнечной системы входит 8 планет. Ранее считалось, что их больше, однако в начале ХХ века из списка был исключён Плутон. Причиной тому стала низкая масса карликовой планеты, из-за чего терялась возможность поддержания гравитации и правильной сферической формы.

При изучении массы планет на уроках географии в 5 классе важно учитывать, что большой размер планеты не означает её большую массу, и наоборот. Кроме размера, масса напрямую зависит от плотности.

Удобно указать размеры и массу планет Солнечной системы в таблице.

Планета

Радиус, км

Масса, кг

Плотность, г/куб. см

Меркурий

2 439

3,3*1023

5,5

Венера

6 050

4,9*1024

5,2

Земля

6 371

5,98*1024

5,5

Марс

3397

6,44*1023

3,9

Юпитер

69 911

1,9*1027

1,3

Сатурн

58 000

5,68*1026

0,7

Уран

25 400

8,7*1025

1,4

Нептун

24 300

1,03*1026

1,6

Что мы узнали?

Восемь планет Солнечной системы разделены на две группы: планеты внутренней или земной группы и внешнюю группу планет-гигантов. Одной из важнейших характеристик планет является их масса. Однако большой размер не гарантирует высокую массу, так как этот показатель напрямую связан с плотностью.

Тест по теме

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Август Мандаринский

    6/6

Оценка доклада

4.6

Средняя оценка: 4.6

Всего получено оценок: 172.


А какая ваша оценка?

Глава 8. Закон всемирного тяготения

Массивные тела, даже находящиеся на больших расстояниях друг от друга, притягиваются друг к другу. Такое взаимодейст-вие называется гравитационным. Закон гравитационного взаимодействия тел был установлен Ньютоном на основе анализа имеющихся в его распоряжении экспериментальных данных и называется законом всемирного тяготения. Закон всемирного тяготения утверждает, что два точечных тела с массами и , находящиеся на расстоянии друг от друга, притягиваются друг к другу с силой

(8. 1)

где — коэффициент пропорциональности, который называется гравитационной постоянной.

Обратим внимание читателя на то, что закон всемирного тяготения в форме (8.1) справедлив только для точечных тел. Для нахождения силы гравитационного взаимодействия протяженных тел используется принцип суперпозиции гравитационных сил. В соответствии с этим принципом силы гравитационного взаимодействия в системе из трех точечных тел можно вычислить, находя силы взаимодействия каждой пары тел друг к другу по формуле (8.1) и складывая затем векторы этих сил. Например, чтобы найти силу , действующую на массу в системе тел , и (см. рисунок), нужно найти силу , действующую на тело со стороны тела (при этом можно использовать закон всемирного тяготения в форме (8.1)). Затем по закону всемирного тяготения нужно найти силу , действующую на тело со стороны тела , а затем сложить получившиеся векторы

(8. 2)

(аналогичным образом можно найти силу, действующую на другие массы и ). Принцип суперпозиции дает рецепт поиска гравитационных сил, действующих между протяженными (неточечными) телами. Такие тела нужно мысленно разделить на точечные части, найти силу взаимодействия каждой пары точечных частей, просуммировать полученные вектора (число которых, вообще говоря, бесконечно большое). В математике разработаны методы такого суммирования, но в программу школьного курса физики эти методы не входят. Нужно знать только, что такая процедура существует и уметь применять ее в простейших случаях, когда суммирование выполняется элементарно на основе свойств симметрии тел. Кроме того, нужно знать, что для тел сферической формы, находящихся вне друг друга, применение принципа суперпозиции приводит в точности к закону всемирного тяготения в форме (8.1), в котором — расстояние между центрами тел (это утверждение впервые доказал Ньютон, разработав для выполнения бесконечного суммирования основы математического анализа). Из последнего утверждения следует, что для силы тяжести точечного тела массой , находящегося на поверхности некоторой планеты сферической формы, справедливо соотношение

(8.3)

где и — масса и радиус планеты. С другой стороны, сила тяжести описывается соотношением . Поэтому из формулы (8.3) получаем выражение для ускорения свободного падения на поверхности планеты через ее массу и радиус

(8.4)

В задачах на закон всемирного тяготения часто рассматривают вращательное движение спутников вокруг планет. Если спутник движется с выключенным двигателем, то существует определенное соотношение между его скоростью и радиусом орбиты. Действительно, при движении со скоростью по окружности радиуса спутник имеет ускорение , которое сообщается ему гравитационной силой (другие силы на спутник не действуют). Поэтому второй закон Ньютона для спутника дает

(8. 5)

Откуда находим

(8.5)

Если рассматриваются орбиты, расположенные на небольшой высоте над поверхностью планеты, когда в формуле (8.6) практически совпадает с радиусом планеты, скорость (8.6) называется первой космической скоростью для данной планеты. Рассмотрим применение этих соотношений и законов к решению задач.

В задаче 8.1.1 рассматриваются точечные тела, поэтому для вычисления силы их взаимодействия используем закон все-мирного тяготения (8.1). Из него следует, что при увеличении в 3 раза расстояния между этими телами сила их гравитационного притяжения уменьшается в 9 раз (ответ 4).

Если массу одного точечного тела увеличить в 2 раза, а массу второго увеличить в 3 раза при неизменном расстоянии между телами (задача 8.1.2), то из закона (8.1) следует, что сила их гравитационного взаимодействия увеличится в 6 раз (ответ 3). Аналогично из закона (8.1) находим, что в задаче 8.1.3 сила взаимодействия тел уменьшится 8 раз (ответ 3).

Применяя формулу (8.4) для ускорения свободного падения на поверхности планеты и на таком расстоянии от центра, когда ускорение свободного падения равно половине его значения на поверхности, получаем (задача 8.1.4)

Из этих формул заключаем, что (ответ 1).

Из формулы (8.4) следует, что отношение ускорений свободного падения на поверхности двух планет с массами и радиусами , и , равно

Поэтому в задаче 8.1.5 получаем для ускорения свободного падения на поверхности Марса

(ответ 2).

В задаче 8.1.6 используется то обстоятельство, что гравитационное взаимодействие тел подчиняется третьему закону Ньютона: сила всемирного тяготения (8.1) действует как на одно, так и на другое тело. Поэтому из второго закона Ньютона заключаем, что ускорения этих тел относятся обратно отношению масс

(ответ 3).

Используя закон всемирного тяготения, получим для силы притяжения Меркурия и Земли к Солнцу (задача 8.1.7)

где — масса Солнца, и — массы Меркурия и Земли, и — расстояния от Меркурия и Земли до Солнца. Отсюда находим

(ответ — 2).

Из закона всемирного тяготения для ракеты (задача 8.1.8) следует, что сила притяжения ракеты к Земле уменьшается в 4 раза по сравнению с силой притяжения на поверхности, если расстояние от ракеты до центра Земли возрастает вдвое. Это значит, что ракета будет находиться на расстоянии, равном радиусу Земли от поверхности (ответ 1).

В задаче 8.1.9 будем использовать принцип суперпозиции. Силы, действующие на центральное тело со стороны двух других тел, показаны на рисунке. По закону всемирного тяготения находим силу, действующую на центральное тело со стороны левого тела

и силу, действующую на центральное тело со стороны правого тела

Поскольку эти силы направлены противоположно, находим, что результирующая сила равна

(ответ 3).

Очевидно, силы, действующие на тело, находящееся в вершине прямого угла (задача 8.1.10) направлены под прямым углом друг к другу (см. рисунок) и определяются законом всемирного тяготения . Поэтому результирующая сила направлена по биссектрисе прямого угла и равна

(ответ 2).

Ускорение свободного падения тела массой определяется соотношением

(1)

где — гравитационная сила, действующая на тело. Очевидно, что не зависит от массы тела, поскольку гравитационная сила пропорциональна массе этого тела, которая, таким образом, сокращается в отношении (1) (задача 8.2.1 – ответ 4).

Как говорилось во введении к настоящей главе, сила притяжения сферических тел определяется законом всемирного тяготения в форме (8.1), в котором — расстояние между их центрами. Поэтому в задаче 8.2.2 сила притяжения двух шаров определяется формулой (2).

Сила взаимодействия двух одинаковых шаров с массой и радиусом , касающихся друг друга, равна (задача 8.2.3)

Для ответа на вопрос задачи эту силу удобно выразить через плотность и радиус. Используя определение плотности ( , где — объем шаров), получаем

Из этой формулы следует, что сила взаимодействия двух касающихся шаров при их фиксированной плотности пропорциональна четвертой степени их радиуса. Поэтому при увеличении радиуса вдвое сила взаимодействия возрастет в 16 раз (ответ 4).

Согласно принципу суперпозиции для нахождения силы, действующей на точечное тело, помещенное в центр массивного кольца, со стороны этого кольца (задача 8.2.4), необходимо мысленно разбить кольцо на точечные части, вычислить силы, действующие на тело со стороны этих частей и просуммировать найденные векторы. Очевидно, благодаря симметрии задачи мы получим нуль, поскольку для каждого малого участка кольца найдется противоположный (см. рисунок), который даст такую же по величине, но противоположно направленную силу (ответ 4).

Когда тело движется на малой высоте над поверхностью планеты, его ускорение равно , где — первая космическая скорость, — радиус планеты. С другой стороны ускорение тела равно ускорению свободного падения на поверхности . Поэтому ускорение свободного падения на поверхности планеты из задачи 8.2.5 равно

(ответ 1).

Первая космическая скорость определяется формулой (8.6). Поэтому правильный ответ в задаче 8.2.63. Чтобы ответить на вопрос об изменении первой космической скорости при изменении радиуса и массы планеты, но неизменной плотности (задача 8.2.7), удобно выразить скорость (8.6) через плотность и радиус планеты

Отсюда следует, что при фиксированной плотности планеты первая космическая пропорциональна ее радиусу (ответ 2).

Для Земли вычисления первой космической скорости по формуле из решения задачи 8. 2.5 дают: , где — ускорение свободного падения на поверхности Земли, — радиус Земли. Поэтому правильный ответ в задаче 8.2.83.

Весом тела называется сила, с которой тело действует на опору и которая равна по величине силе реакции опоры. Сила реакции опоры может обратиться в нуль по двум причинам. Во-первых, если нет силы тяжести, которая бы действовала на тело и прижимала бы его к опоре. А во-вторых, если сила тяжести есть, но она сообщает и телу и опоре одинаковые ускорения, в результате чего тело к опоре не прижимается. Именно второй случай реализуется в космическом корабле, свободно вращающемся вокруг Земли (задача 8.2.9). Сила тяжести здесь, конечно, есть (в противном случае корабль не вращался бы, а двигался прямолинейно и равномерно). Но поскольку сила тяжести, действующая на любое тело, пропорциональна его массе, она сообщает и кораблю и всем телам внутри него одинаковые ускорения. В результате корабль и все тела внутри него постоянно «падают» на Землю с одинаковыми ускорениями и, следовательно, вес этих тел внутри корабля равен нулю (ответ 3).

При свободном круговом движении спутника вокруг планеты его скорость и радиус орбиты связаны друг с другом соотноше-нием (8.6). Эта связь возникает потому, что на данной орбите гравитационная сила сообщает определенное ускорение, которое совпадает с центростремительным ускорением только при определенной скорости спутника. А если скорость спутника уменьшить по сравнению с этой скоростью (задача 8.2.10)? Тогда для сохранения орбиты спутника потребуется меньшая центростремительная сила (так как уменьшится его центростремительное ускорение). А поскольку гравитационная сила на той же орбите не изменится необходимо направить силу тяги двигателя так, чтобы сумма гравитационной силы и силы тяги была направлена к центру орбиты, а по величине была меньше гравитационной силы. Это значит, что сила тяги должна быть направлена противоположно гравитационной силе (ответ 3).

Космические объекты | Большой новосибирский планетарий

Астероид

Мелкое каменистое небесное тело неправильной формы, движущееся по своей орбите вокруг Солнца и уступающее по массе и размерам планетам.

Термин «астероид» был придуман композитором Чарлзом Бёрни и введён Уильямом Гершелем на основании того, что эти объекты при наблюдении в телескоп выглядели как точки, подобно звёздам, — в отличие от планет, которые при наблюдении в телескоп выглядят дисками. Точное определение термина «астероид» до сих пор не установилось. До 2006 года астероиды также называли малыми планетами.

В Солнечной системе обнаружены сотни тысяч астероидов. По данным Центра малых планет по состоянию на 11 сентября 2017 г. в базе данных насчитывалось 739 062 объекта, из которых для 496 915 точно определены орбиты и им присвоен официальный номер, более 19 000 из них имели официально утверждённые наименования. Предполагается, что в Солнечной системе может находиться от 1,1 до 1,9 миллиона объектов, имеющих размеры более 1 км. Большинство известных на данный момент астероидов сосредоточено в пределах пояса астероидов, расположенного между орбитами Марса и Юпитера. Общая масса всех астероидов главного пояса оценивается в 3,0—3,6⋅1021 кг, что составляет всего около 4 % от массы Луны.

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью. Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы — относительно свободные образования, тогда как семейства — более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Сначала астероидам давали имена героев римской и греческой мифологии, позднее открыватели получили право называть их как угодно — например, своим именем. Вначале астероидам давались преимущественно женские имена, мужские имена получали только астероиды, имеющие необычные орбиты. Позднее и это правило перестало соблюдаться.

В настоящее время имена астероидам присваивает Комитет по номенклатуре малых планет. Получить имя может не любой астероид, а лишь тот, орбита которого достаточно надёжно вычислена.

Млечный Путь

Семейство миллиардов звёзд, к которому принадлежат Солнце и Солнечная система, собранное в сплющенный спиралевидный диск.

Название Млечный Путь распространено в западной культуре и является заимствованным из древнегреческой мифологии. По древнегреческой легенде, Зевс решил сделать своего сына Геракла, рождённого от смертной женщины, бессмертным, и для этого подложил его спящей жене Гере, чтобы Геракл выпил божественного молока. Гера, проснувшись, увидела, что кормит не своего ребёнка, и оттолкнула его от себя. Брызнувшая из груди богини струя молока превратилась в Млечный Путь.

В советской астрономической школе галактика Млечный Путь называлась просто «наша Галактика» или «система Млечный Путь»; словосочетание «Млечный Путь» использовалось для обозначения видимых звёзд, которые оптически для наблюдателя составляют Млечный Путь.

Галактика содержит, по современной оценке, от 200 до 400 миллиардов звёзд. Их основная масса расположена в форме плоского диска. Большая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи, поэтому точное определение массы Млечного Пути весьма затруднено. По оценкам учёных, галактический диск, выдающийся в разные стороны в районе галактического центра, имеет диаметр около 100 000 световых лет. Вблизи плоскости диска концентрируются молодые звёзды и звёздные скопления, возраст которых не превышает нескольких миллиардов лет. Они образуют так называемую плоскую составляющую. Среди них очень много ярких и горячих звёзд. Газ в диске Галактики также сосредоточен в основном вблизи его плоскости. Он распределён неравномерно, образуя многочисленные газовые облака — от гигантских неоднородных по структуре облаков, протяжённостью свыше нескольких тысяч световых лет, к небольшим облакам размерами не более парсека. По расчётам астрофизиков, основанным на данных наблюдений миссии космического телескопа Kepler, средний возраст толстого диска галактики, где находятся 80 % звёзд, составляет 10 миллиардов лет.

Галактика

Далёкий космический объект, состоящий из гравитационно-связанной системы из звёзд, межзвёздного газа, пыли и тёмной материи.

Все галактики (за исключением нашей) — чрезвычайно далёкие астрономические объекты. Расстояние до ближайших из них измеряют в мегапарсеках, а до далёких — в единицах красного смещения z . Разглядеть на небе невооружённым глазом можно всего лишь четыре галактики: галактика Андромеды, Большое и Малое Магеллановы Облака и галактика М33 в созвездии Треугольника.

Общее количество галактик в наблюдаемой части Вселенной пока точно неизвестно. В 1990-х годах основываясь на наблюдениях космического телескопа «Хаббл» считали что, всего существует порядка 100 миллиардов галактик. В 2016 году эту оценку пересмотрели и увеличили число галактик до двух триллионов. В 2021 году по новым данным, полученных космическим аппаратом New Horizons оценка числа галактик была вновь уменьшена, и теперь составляет всего несколько сотен миллиардов.

Галактики отличаются большим разнообразием: среди них можно выделить сфероподобные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), линзовидные, карликовые, неправильные и т. д.

Галактики не имеют чётких границ. Нельзя точно сказать, где кончается галактика и начинается межгалактическое пространство. Спектр галактик складывается из излучения всех составляющих её объектов. Спектр среднестатистической галактики имеет два локальных максимума. Основной источник излучения — это звёзды, максимум интенсивности излучения большинства из них находится в оптическом диапазоне (первый максимум). Обычно в галактике много пыли, которая поглощает излучение в оптическом диапазоне и переизлучает его в инфракрасном диапазоне. Отсюда второй максимум — в инфракрасной области.

Солнце

Звезда самая близкая к Земле и единственная в Солнечной системе. По спектральной классификации Солнце относится к типу G2V — желтый карлик. Эффективная темпетарура поверхности Солнца — 5780 кельвин. Солнце состоит из водорода и гелия, а также других элементов: железа, никеля, кислорода, азота, кремния, серы, магния, угрерода, неона, кальция и хрома. Масса  Солнца составляет 99,866 % от суммарной массы всей Солнечной системы.

Звезда вырабатывает энергию путем термоядерного синтеза. В случае Солнца подавляющая часть энергии вырабатывается при синтезе гелия из водорода.

Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот за 225—250 миллионов лет.  В настоящее время Солнце находится во внутреннем крае рукава Ориона нашей Галактики, между руковом Персея и рукавом Стрельца, в так называемом Местном межзвездном облаке — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность Местном пузыре — зоне рассеянного высокотемпературного межзвездного газа.

Текущий возраст Солнца равен приблизительно 4,5 миллиарда лет. Звезда обладает мощным магнитным полем, напряженность которого меняется со временем и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума.

Излучение Солнца — основной источник энергии на Земле. Ультрафиолетовое излучение Солнца имеет антисептические свойства, позволяющие использовать его для дизенфекции воды и различных предметов. Оно также вызывает загар и имеет другие биологические эффекты, например стимулирует производство в организме витамина D.

Звезда

Небесное тело в виде раскалённого газового шара огромной массы и величины, в котором протекают активные термоядерные процессы.

Ближайшей к Земле звездой является Солнце, другие звёзды на ночном небе выглядят как точки различной яркости, сохраняющие своё взаимное расположение. Звёзды различаются структурой и химическим составом, а такие параметры, как радиус, масса и светимость, у разных звёзд могут отличаться на порядки.

Самая распространённая схема классификации звёзд — по спектральным классам — основывается на их температуре и светимости. Кроме того, среди звёзд выделяют переменные звёзды, которые меняют свой видимый блеск по различным причинам, с собственной системой классификации. Звёзды часто образуют гравитационно-связанные системы: двойные или кратные системы, звёздные скопления и галактики. Со временем звёзды меняют свои характеристики, так как в их недрах проходит термоядерный синтез, в результате которого меняется химический состав и масса — это явление называется эволюцией звёзд, и в зависимости от начальной массы звезды она может проходить совершенно по-разному.

Расстояния до звёзд измеряются различными методами. Расстояния до самых близких звёзд измеряют методом годичных параллаксов. Для измерения расстояния до более далёких звёзд используются другие методы, например, фотометрический метод: если известно, какая у звезды абсолютная светимость, то, сравнивая её с освещённостью, можно определить расстояние до звезды. Совокупность методов определения расстояний, в том числе до звёзд, образует шкалу расстояний в астрономии.

Химический состав звёзд также различается. В основном они состоят из водорода и гелия, причём в молодых звёздах водород составляет 72—75 % массы, а гелий — 24—25 %, а с возрастом доля гелия возрастает.

У всех звёзд имеется магнитное поле. Например, у Солнца оно непостоянно, имеет сложную структуру, и его напряжённость в пятнах может достигать 4000 эрстед.

Квазар

Самый отдалённый, самый яркий и самый мощный объект глубокого космоса, выделяющий  огромное количество энергии и излучающий радиоволны.

По современным представлениям, квазары представляют собой активные ядра галактик на начальном этапе развития, в которых сверхмассивная чёрная дыра поглощает окружающее вещество, формируя аккреционный диск. Он и является источником излучения, исключительно мощного и имеющего помимо космологического гравитационное красное смещение.

В первую очередь квазары были определены как объекты с большим красным смещением, имеющие электромагнитное излучение (включая радиоволны и видимый свет) и настолько малые угловые размеры, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. Следы родительских галактик вокруг квазаров были обнаружены лишь позднее.

Квазары обнаруживаются на очень широком диапазоне расстояний, и исследования по обнаружению квазаров показали, что в далеком прошлом активность квазаров была более распространенной. Пик эпохи квазарной активности был примерно 10 миллиардов лет назад.

Квазары называют маяками Вселенной. Они видны с огромных расстояний, по ним исследуют структуру и эволюцию Вселенной, определяют распределение вещества на луче зрения: сильные спектральные линии поглощения водорода разворачиваются в лес линий по красному смещению поглощающих облаков. Ввиду большой удалённости квазары, в отличие от звёзд, выглядят практически неподвижными (не имеют параллакса), поэтому радиоизлучение квазара используется для высокоточного определения с Земли параметров траектории автоматической межпланетной станции.

Квазары находятся в центре активных галактик и являются одними из самых ярких объектов, известных во Вселенной, излучая в тысячу раз больше энергии, чем Млечный Путь, который содержит от 200 до 400 миллиардов звезд. В среднем, квазар производит примерно в 10 триллионов раз больше энергии в секунду, чем наше Солнце (и в миллион раз больше энергии, чем самая мощная известная звезда), и обладает переменностью излучения во всех диапазонах длин волн. Спектральная плотность излучения квазара распределена почти равномерно от рентгеновских лучей до дальнего инфракрасного диапазона с пиком в ультрафиолетовом и видимом диапазонах, причем некоторые квазары также являются сильными источниками радиоизлучения и гамма-излучения.

Комета

Небольшое каменно-ледяное небесное тело, обращающееся вокруг Солнца по вытянутой орбите. При приближении к Солнцу образует кому и иногда хвост из газа и пыли.

Кометы, прибывающие из глубин космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров. Ядро кометы представляет собой тело из твёрдых частиц, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.

Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было увидеть невооружённым глазом. Самые заметные из них иногда называют «большими (великими) кометами».

Массы комет в космических масштабах ничтожны — примерно в миллиард раз меньше массы Земли, а плотность вещества из их хвостов практически равна нулю. Поэтому «небесные гостьи» никак не влияют на планеты Солнечной системы. Например, в мае 1910 года Земля проходила сквозь хвост кометы Галлея, но никаких изменений в движении нашей планеты не произошло.

Результаты исследования спектра межзвёздной кометы C/2019 Q4 (Борисова) показывают, что кометы в других планетных системах могут образовываться в результате процессов, аналогичных тем, которые привели к образованию комет в облаке Оорта в Солнечной системе.

Луна

Естественный спутник, самое близкое к Земле небесное тело, совершающее вокруг Земли полный оборот за 28 дней. Второй по яркости объект на земном небосводе после Солнца и пятый по величине естественный спутник планеты Солнечной системы. Среднее расстояние между центрами Земли и Луны — 384 467 км.  Луна является единственным внеземным астрономическим объектом, на котором побывал человек. Спутник постепенно удаляется от Земли, на 38 мм в год, поэтому его орбита представляет собой медленно раскручивающуюся спираль.

Сила тяжести у поверхности Луны в 6 раз слабее земной. Гравитационное влияние спутника вызывает на Земле некоторые интересные эффекты. Наиболее известный из них — морские приливы и отливы. Луна не имеет магнитного, хотя некоторые из горных пород на её поверхности проявляют остаточный магнетизм, что указывает на возможность существования магнитного поля Луны на ранних стадиях развития.

Атмосфера Луны крайне разряжена. Около 3,5 млрд лет назад, во время масштабных излияний лавы, лунная атмосфера была плотнее. Время её рассеяния оценивают в 70 млн лет. По последним данным исследователей, в регионе северного полюса обнаружено не менее 600 млн тонн воды, большая часть которой находится в виде ледяных глыб, покоящихся на дне лунных кратеров.

Ввиду практического отсутствия атмосферы небо на Луне всегда чёрное и со звёздами, даже когда Солнце находится над горизонтом. Когда поверхность не освещена Солнцем, содержание газов над ней не превышает 2⋅105 частиц/см³, а после восхода Солнца увеличивается на два порядка за счёт дегазации грунта. Разрежённость атмосферы приводит к высокому перепаду температур на поверхности Луны (от −173 °C ночью до +127 °C в подсолнечной точке), в зависимости от освещённости; при этом температура пород, залегающих на глубине 1 м, постоянна и равна −35 °C.

Луна состоит из коры, мантии (астеносферы), свойства которой различны и образуют четыре слоя, кроме того, переходной зоны между мантией и ядром, а также самого ядра, которое имеет внешнюю жидкую и внутреннюю твёрдую части. Атмосфера и гидросфера практически отсутствуют. Поверхность Луны покрыта реголитом — смесью тонкой пыли и скалистых обломков, образующихся в результате столкновений метеоритов с лунной поверхностью. Ударно-взрывные процессы, сопровождающие метеоритную бомбардировку, способствуют взрыхлению и перемешиванию грунта, одновременно спекая и уплотняя частицы грунта. Толщина слоя реголита составляет от долей метра до десятков метров.

Так как Луна не светится сама, а лишь отражает солнечный свет, с Земли видна только освещённая Солнцем часть лунной поверхности. Луна обращается по орбите вокруг Земли, и тем самым угол между Землёй, Луной и Солнцем изменяется; мы наблюдаем это явление как цикл лунных фаз. Период времени между последовательными новолуниями в среднем составляет 29,5 дней и называется синодический месяц.

20 июля 1969 года произошла первая посадка человека на поверхность Луны, в рамках реализации американской программы пилотируемого полета «Аполлон». Первым человеком, ступившим 21 июля 1969 года на поверхность Луны, стал американец Нил Армстронг, вторым — Эдвин Олдрин. В 1972 году астронавты «Аполлона-17» капитан Джин Сернан и д-р Харрисон Шмидт стали последними людьми, высадившимися на Луну.

 

Метеорит

Мелкое каменное небесное тело, путешествующее по космосу и достигшее поверхности Земли.

Космическое тело размером до 30 метров называется метеорным телом, или метеороидом. Явления, порождаемые при прохождении метеорными телами через атмосферу Земли, носят названия метеоров или, в общем случае, метеоритным дождём. Твёрдое тело космического происхождения, упавшее на поверхность Земли, называется метеоритом.

Если метеорное тело не сгорело в атмосфере, то по мере торможения оно теряет горизонтальную составляющую скорости. Это приводит к изменению траектории падения от часто почти горизонтальной в начале до практически вертикальной в конце. По мере торможения свечение метеорного тела падает, оно остывает. При соприкосновении метеорита с земной поверхностью на больших скоростях (порядка 2000-4000 м/с) происходит выделение большого количества энергии, в результате метеорит и часть горных пород в месте удара испаряются, что сопровождается мощными взрывными процессами, формирующими крупный округлый кратер, намного превышающий размеры метеорита.

Основными внешними признаками метеорита являются кора плавления, регмаглипты и магнитность. Кроме того, метеориты, как правило, имеют неправильную форму. Кора плавления образуется на метеорите при его движении через земную атмосферу, в результате которого он может нагреться до температуры около 1800°. Она представляет собой подплавленный и вновь затвердевший тонкий слой вещества метеорита. Как правило, кора плавления имеет чёрный цвет и матовую поверхность; внутри же метеорит более светлого цвета.

Регмаглипты представляют собой характерные углубления на поверхности метеорита, напоминающие отпечатки пальцев на мягкой глине. Они также возникают при движении метеорита сквозь земную атмосферу, как следствие абляционных процессов.

Метеориты обладают магнитными свойствами, причём не только железные, но и каменные. Объясняется это тем, что в большинстве каменных метеоритов имеются включения никелистого железа.

Венера

Самая яркая и самая горячая планета в Солнечной системе, не имеющая естественных спутников и вращающаяся вокруг своей оси против часовой стрелки.

Названа в честь древнеримской богини любви и красоты. По ряду характеристик — например, по массе и размерам — Венера считается «сестрой» Земли. Венерианский год составляет 224,7 земных суток. Она имеет самый длинный период вращения вокруг своей оси, около 243 земных суток.

Венера не имеет естественных спутников. Это третий по яркости объект на небе Земли, после Солнца и Луны.

Планета имеет плотную атмосферу, состоящую более чем на 96 % из углекислого газа. Атмосферное давление на поверхности планеты в 92 раза больше, чем на поверхности Земли, и примерно равно давлению воды на глубине 900 метров. Из-за высокого давления, CO2 в приповерхностной части атмосферы по агрегатному состоянию является уже не газом, а сверхкритической жидкостью, поэтому эта часть атмосферы представляет собой «полужидкий-полугазообразный» океан из сверхкритического углекислого газа. Венера — самая горячая планета в Солнечной системе: средняя температура её поверхности 462 °C.

Венера покрыта непрозрачным слоем облаков из серной кислоты с высокой отражающей способностью, что, помимо всего прочего, закрывает поверхность планеты от прямой видимости. Высокая температура поверхности обусловлена действием парникового эффекта.

Собственное магнитное поле Венеры очень слабое. В связи со слабостью собственного магнитного поля Венеры солнечный ветер проникает глубоко в её экзосферу, что ведёт к небольшим потерям атмосферы. Наблюдения с автоматических космических станций зафиксировали в атмосфере Венеры электрическую активность, которую можно описать как грозы и молнии.

Земля

Единственная известная планета в Солнечной системе, где есть благоприятные условия для жизни человека.

Самая плотная, пятая по диаметру и массе среди всех планет и крупнейшая среди планет земной группы, в которую входят также Меркурий, Венера и Марс. Единственное известное человеку в настоящее время тело Солнечной системы в частности и Вселенной вообще, населённое живыми организмами.

Научные данные указывают на то, что Земля образовалась из солнечной туманности около 4,54 миллиарда лет назад и вскоре после этого обрела свой единственный естественный спутник — Луну. Жизнь, предположительно, появилась на Земле примерно 4,25 млрд лет назад, то есть вскоре после её возникновения.

Приблизительно 70,8 % поверхности планеты занимает Мировой океан, остальную часть поверхности занимают континенты и острова. На материках расположены реки, озёра, подземные воды и льды, которые вместе с Мировым океаном составляют гидросферу.

Внутренние области Земли достаточно активны и состоят из толстого, очень вязкого слоя, называемого мантией, которая покрывает жидкое внешнее ядро, являющееся источником магнитного поля Земли, и внутреннее твёрдое ядро, предположительно, состоящее из железа и никеля.

Земля обращается вокруг Солнца и делает вокруг него полный оборот примерно за 365,26 солнечных суток — сидерический год. Ось вращения Земли наклонена на 23,44° относительно перпендикуляра к её орбитальной плоскости, это вызывает сезонные изменения на поверхности планеты с периодом в один тропический год — 365,24 солнечных суток. Сутки сейчас составляют примерно 24 часа.

Атмосфера определяет погоду на поверхности Земли, защищает планету от космических лучей, и частично — от метеоритных бомбардировок. Она также регулирует основные климатообразующие процессы: круговорот воды в природе, циркуляцию воздушных масс, переносы тепла.

Магнитное поле Земли в первом приближении представляет собой диполь, полюсы которого расположены рядом с географическими полюсами планеты. Поле формирует магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах — двух концентрических областях в форме тора вокруг Земли. Около магнитных полюсов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний.

Планета является домом примерно для 8,7 млн видов живых существ, включая человека. Территория Земли поделена человечеством на 195 независимых государств или 252 страны, взаимодействующих между собой.

Меркурий

Самая маленькая и самая быстрая планета Солнечной системы, расположенная ближе всех к Солнцу.

Названа в честь древнеримского бога торговли — быстрого Меркурия, поскольку она движется по небу быстрее других планет. Её период обращения вокруг Солнца составляет всего 87,97 земных суток — самый короткий среди всех планет Солнечной системы. Оказалось, что меркурианские звёздные сутки равны 58,65 земных суток, то есть 2/3 меркурианского года.

Меркурий относится к планетам земной группы. По своим физическим характеристикам Меркурий напоминает Луну. У него нет естественных спутников, но есть очень разрежённая атмосфера. Планета обладает крупным железным ядром, являющимся источником магнитного поля. Ядро Меркурия составляет 83 % от всего объёма планеты.

Близость к Солнцу и довольно медленное вращение планеты, а также крайне разрежённая атмосфера приводят к тому, что на Меркурии наблюдаются самые резкие перепады температур в Солнечной системе. Средняя температура его дневной поверхности равна 349,9 °C, ночной поверхности −170,2 °C.

Кратеры на Меркурии варьируют от маленьких впадин, имеющих форму чаши, до многокольцевых ударных кратеров, имеющих в поперечнике сотни километров. Они находятся на разных стадиях разрушения. Есть относительно хорошо сохранившиеся кратеры с длинными лучами вокруг них, которые образовались в результате выброса вещества в момент удара. Некоторые кратеры разрушены очень сильно. Меркурианские кратеры отличаются от лунных меньшим размером окружающего ореола выбросов, из-за большей силы тяжести на Меркурии. Наличие на поверхности Меркурия хорошо сохранившихся больших кратеров говорит о том, что в течение последних 3—4 млрд лет там не происходило в широких масштабах движение участков коры, а также отсутствовала эрозия поверхности, последнее почти полностью исключает возможность существования в истории Меркурия сколько-нибудь существенной атмосферы.

Марс

Марс — четвертая по удаленности от Солнца и седьмая по размерам планета Солнечной системы. Названа в честь древнеримского бога войны. Иногда Марс называют «красной планетой» из-за красноватого оттенка поверхности, придаваемого ей минералом маггемитом. Марс — планета земной группы с разряженной атмосферой: давление у поверхности в 160 раз меньше земного. У планеты есть два естественных спутника — Фобос и Деймос, что в переводе означают «Страх» и «Ужас», вечные спутники войны.

Масса Марса составляет 0,107 массы Земли, объём — 0,151 объёма Земли, а средний линейный диаметр — 0,53 диаметра Земли. Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп — самая высокая известная гора на планетах Солнечной системы (26 000 м).

Минимальное расстояние от Марса до Земли составляет 55,76 млн км. Среднее расстояние от Марса до Солнца составляет 228 млн км, период обращения вокруг Солнца равен 687 земным суткам.  По линейному размеру Марс почти вдвое меньше Земли. Сила тяжести у поверхности Марса составляет 39,4 % от земной (в 2,5 раза слабее). 

Период вращения планеты — 24 часа 37 минут 22,7 секунды (относительно звёзд), длина средних марсианских солнечных суток составляет 24 часа 39 минут 35,24409 секунды, всего на 2,7 % длиннее земных суток. Для удобства марсианские сутки именуют «солами». Марсианский год равен 668,59 сола, что составляет 686,98 земных суток.

Температура на планете колеблется от −153 °C на полюсах зимойи до +20 °Cна экваторе летом. 

Разреженность марсианской атмосферы и отсутствие магнитосферы являются причиной того, что уровень ионизирующей радиации на поверхности Марса существенно выше, чем на поверхности Земли. Например, за один-два дня космонавт на поверхности Марса получит такую же эквивалентную дозу облучения, какую на поверхности Земли он получил бы за один год.

Климат, как и на Земле, носит сезонный характер. Угол наклона Марса к плоскости орбиты почти равен земному и составляет 25,1919°; соответственно, на Марсе, так же как и на Земле, происходит смена времён года.

Юпитер

Пятая планета в Солнечной системе. Юпитер — самая большая планета Солнечной системы, газовый гигант. Его экваториальный радиус в 11,2 раза превышает радиус Земли.

Юпитер — единственная планета, у которой центр масс с Солнцем находится вне Солнца и отстоит от него примерно на 7 % солнечного радиуса. Масса Юпитера в 2,47 раза превышает суммарную массу всех остальных планет Солнечной системы, вместе взятых и в 317,8 раз массу Земли.

Юпитер вращается вокруг своей оси быстрее, чем любая другая планета Солнечной системы. Период вращения у экватора — 9 ч 50 мин 30 сек, а на средних широтах — 9 ч 55 мин 40 сек.

Химический состав внутренних слоёв Юпитера невозможно определить современными методами наблюдений, однако обилие элементов во внешних слоях атмосферы известно с относительно высокой точностью. Два основных компонента атмосферы Юпитера — молекулярный водород и гелий. Атмосфера содержит также немало простых соединений, например, воду, метан, сероводород, аммиак и фосфин.

С помощью измеренных моментов инерции планеты можно оценить размер и массу её ядра. На данный момент считается, что масса ядра — 10 масс Земли, а размер — 1,5 её диаметра.

Скорость ветров на Юпитере может превышать 600 км/ч. Большое красное пятно — овальное образование изменяющихся размеров, расположенное в южной тропической зоне. Было открыто в 1664 году. Большое красное пятно — это уникальный долгоживущий гигантский ураган.

Вокруг Юпитера, как и вокруг большинства планет Солнечной системы, существует магнитосфера — область, в которой поведение заряженных частиц, плазмы, определяется магнитным полем. Для Юпитера источниками таких частиц являются солнечный ветер и его спутник Ио.

Юпитер имеет, по крайней мере, 79 спутников, самые крупные из которых — Ио, Европа, Ганимед и Каллисто — были открыты Галилео Галилеем в 1610 году.

У Юпитера имеются слабые кольца, обнаруженные во время прохождения «Вояджера-1» мимо Юпитера в 1979 году.

Юпитер — самый мощный (после Солнца) радиоисточник Солнечной системы в дециметровом — метровом диапазонах длин волн.

Сатурн

Планета названа в честь римского бога земледелия. В основном Сатурн состоит из водорода, с примесями гелия и следами воды, метана, аммиака и тяжёлых элементов. Внутренняя область представляет собой относительно небольшое ядро из железа, никеля и льда, покрытое тонким слоем металлического водорода и газообразным внешним слоем. Внешняя атмосфера планеты кажется из космоса спокойной и однородной, хотя иногда на ней появляются долговременные образования.

Экваториальный радиус планеты равен 60 300 км, полярный радиус — 54 400 км; из всех планет Солнечной системы Сатурн обладает наибольшим сжатием. Масса планеты в 95,2 раза превышает массу Земли, однако средняя плотность Сатурна составляет всего 0,687 г/см³, что делает его единственной планетой Солнечной системы, чья средняя плотность меньше плотности воды.

Скорость ветра на Сатурне может достигать местами 1800 км/ч, что значительно больше, чем на Юпитере. У Сатурна имеется планетарное магнитное поле, занимающее промежуточное положение по напряжённости между магнитным полем Земли и мощным полем Юпитера. Магнитное поле Сатурна простирается на 1 000 000 километров в направлении Солнца.

Сатурн обладает заметной системой колец, состоящей главным образом из частичек льда, меньшего количества тяжёлых элементов и пыли. Вокруг планеты обращается 82 известных на данный момент спутника.

Двигаясь со средней скоростью 9,69 км/с, Сатурн обращается вокруг Солнца примерно за 29,5 лет.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы. Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 2010 году, менее крупные ураганы образуются чаще.

На полюсах планеты обнаружили полярные сияния, подобные которым не наблюдались ещё ни разу в Солнечной системе. Полярные сияния представляют собой яркие непрерывные кольца овальной формы, окружающие полюс планеты.

Во время бурь и штормов на Сатурне наблюдаются мощные разряды молнии. Электромагнитная активность Сатурна, вызванная ими, колеблется с годами от почти полного отсутствия до очень сильных электрических бурь.

Уран

Самая холодная планета в Солнечной системе, вращающийся в обратную сторону, как бы «катаясь лёжа на боку».

Была открыта в 1781 году английским астрономом Уильямом Гершелем и названа в честь греческого бога неба Урана.

В отличие от газовых гигантов — Сатурна и Юпитера, состоящих в основном из водорода и гелия, в недрах Урана отсутствует металлический водород, но зато много льда в его высокотемпературных модификациях. По этой причине специалисты выделили отдельную категорию «ледяных гигантов». Основу атмосферы Урана составляют водород и гелий. Кроме того, в ней обнаружены следы метана и других углеводородов, а также облака изо льда, твёрдого аммиака и водорода. Это самая холодная планетарная атмосфера Солнечной системы с минимальной температурой в −224 °C.

Так же как у газовых гигантов Солнечной системы, у Урана имеется система колец и магнитосфера, а кроме того, 27 спутников. Ориентация Урана в пространстве отличается от остальных планет Солнечной системы — его ось вращения лежит как бы «на боку» относительно плоскости обращения этой планеты вокруг Солнца. Вследствие этого, планета бывает обращена к Солнцу попеременно то северным полюсом, то южным, то экватором, то средними широтами.

Период полного обращения Урана вокруг Солнца составляет 84 земных года. Период вращения Урана вокруг своей оси составляет 17 часов 14 минут. Однако, как и на других планетах-гигантах, в верхних слоях атмосферы Урана дуют очень сильные ветры в направлении вращения, достигающие скорости 240 м/c. Таким образом, вблизи 60 градусов южной широты некоторые видимые атмосферные детали делают оборот вокруг планеты всего за 14 часов.

В моменты солнцестояний один из полюсов планеты оказывается направленным на Солнце. Только узкая полоска около экватора испытывает быструю смену дня и ночи; при этом Солнце там расположено очень низко над горизонтом — как в земных полярных широтах. Через полгода (уранианского) ситуация меняется на противоположную: «полярный день» наступает в другом полушарии. Каждый полюс 42 земных года находится в темноте — и ещё 42 года под светом Солнца.

Экзопланета

Планета, находящаяся вне пределов Солнечной системы.

По состоянию на 21 июня 2021 года достоверно подтверждено существование 4768 экзопланет в 3527 планетных системах, из которых в 783 имеется более одной планеты.

Общее количество экзопланет в галактике Млечный Путь оценивается не менее чем в 100 миллиардов, из которых от 5 до 20 миллиардов, возможно, являются «землеподобными». Также, согласно текущим оценкам, около 34 % солнцеподобных звёзд имеют в обитаемой зоне планеты, сравнимые с Землёй.

Открытым экзопланетам в настоящее время присваиваются названия, состоящие из названия звезды, около которой обращается планета, и дополнительной строчной буквы латинского алфавита, начиная с буквы «b». Следующей планете присваивается буква «c», потом «d» и так далее по алфавиту.

Поначалу большинством открытых экзопланет были планеты-гиганты. Позже открыто множество планет с массами порядка массы Нептуна и ниже.

Подавляющее большинство открытых экзопланет обнаружено с использованием различных непрямых методик детектирования, а не визуального наблюдения. Большинство известных экзопланет — газовые гиганты и более походят на Юпитер, чем на Землю. Ближайшая к Земле экзопланета — Проксима Центавра b.

Открытие экзопланет позволило астрономам сделать вывод: планетные системы — явление в космосе чрезвычайно распространённое. До сих пор нет общепризнанной теории образования планет, но теперь, когда появилась возможность подвести статистику, ситуация в этой области меняется к лучшему. Большинство обнаруженных систем сильно отличается от солнечной — скорее всего, это объясняется селективностью применяемых методов.

Нептун

Самая далёкая и самая ветреная планета в Солнечной системе. Луч солнечного света долетает до неё за 4 часа.

Обнаруженный 23 сентября 1846 года, Нептун стал первой планетой, открытой благодаря математическим расчётам. Нептун по составу близок к Урану, и обе планеты помещают в отдельную категорию «ледяных гигантов». Атмосфера Нептуна, подобно атмосфере Юпитера и Сатурна, состоит в основном из водорода и гелия, наряду со следами углеводородов и, возможно, азота, однако содержит более высокую долю льдов: водного, аммиачного и метанового. Недра Нептуна и Урана состоят главным образом изо льдов и камня.

Его масса больше чем у Земли в 17,2 раза и является третьей среди планет Солнечной системы, а по экваториальному диаметру Нептун занимает четвёртое место, превосходя Землю в 3,9 раза по размеру. Планета названа в честь Нептуна — римского бога морей.

В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы; по некоторым оценкам, их скорости могут достигать 600 м/с.

Масса Нептуна в 17 раз превосходит земную. Экваториальный радиус Нептуна равен 24 764 км, что почти в 4 раза больше земного. Полный оборот вокруг Солнца у планеты занимает 164,79 года. Осевой наклон Нептуна — 28,32°, что похоже на наклон оси Земли и Марса. В результате этого планета испытывает схожие сезонные изменения. Однако из-за длинного орбитального периода Нептуна сезоны длятся около сорока лет каждый.

Период вращения Нептуна вокруг своей оси составляет около 16 часов.У Нептуна сильнее всех планет Солнечной системы выражено дифференциальное вращение. Период обращения на экваторе составляет около 18 часов, а у полюсов — 12 часов. Магнитное поле планеты делает оборот за 16 часов. Это приводит к сильному широтному сдвигу ветров.

Нептун — единственная планета-гигант, на которой видны тени от облаков, отбрасываемые на облачный слой ниже уровнем. Более высокие облака расположены на высоте 50-100 км над основным облачным слоем.

Плутон

Крупнейшая известная карликовая планета Солнечной системы, транснептуновый объект и десятое по массе (без учёта спутников) небесное тело, обращающееся вокруг Солнца.

Как и большинство тел пояса Койпера, Плутон состоит в основном из камня и льда и он относительно мал: его масса меньше массы Луны примерно в шесть раз, а объём — примерно в три раза. Площадь Плутона немного больше площади России. У орбиты Плутона большой эксцентриситет и большой наклон к плоскости эклиптики.

Плутон и его крупнейший спутник Харон, открытый в 1978 году, часто рассматриваются как двойная планета, поскольку барицентр их системы находится вне обоих объектов. У Плутона есть ещё четыре меньших спутника: Никта, Гидра, Кербер и Стикс.

Со дня своего открытия в 1930 и до 2006 года Плутон считался девятой планетой Солнечной системы. После переклассификации Плутон был добавлен к списку малых планет и получил номер 134340 по каталогу Центра малых планет.

Большой эксцентриситет орбиты приводит к тому, что часть её проходит ближе к Солнцу, чем Нептун. Последний раз такое положение Плутон занимал с 7 февраля 1979 по 11 февраля 1999 года. Из-за большого наклона орбиты Плутона к плоскости эклиптики она не пересекается с орбитой Нептуна. Период обращения Плутона равен 247,92 земного года, и Плутон делает два оборота, пока Нептун делает три.

Направление вращения вокруг своей оси у Плутона, как и у Венеры с Ураном, обратное, то есть противоположное направлению обращения планет вокруг Солнца. Сутки на Плутоне длятся 6,387 земных суток.

Созвездие

В современной астрономии участки, на которые разделена небесная сфера для удобства ориентирования на звёздном небе. В древности созвездиями назывались характерные фигуры, образуемые яркими звёздами.

Звёзды, видимые на небесной сфере на небольших угловых расстояниях друг от друга, в трёхмерном пространстве могут быть расположены очень далеко друг от друга. Таким образом, в одном созвездии могут быть и очень близкие, и очень далёкие от Земли звёзды, никак друг с другом не связанные.

Значение деления неба на созвездия для наблюдательной астрономии заключается в том, что характерные контуры, состоящие из наиболее ярких звёзд, легко запомнить, что позволяет, зная, в каком созвездии находится объект, быстрее найти его.

Международным астрономическим союзом официально признаны 88 созвездий, из них в России видно около 54.

12 созвездий — Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей, Рыбы — через которые проходит центр Солнца при годичном обороте по эклиптике, называют зодиакальными. Они известны с глубокой древности. В наше время (эпоха 2014 г.) с 30 ноября до 17 декабря Солнце находится в созвездии Змееносца, так что формально это созвездие тоже зодиакальное, но традиционно его к зодиакальным не причисляют.

Туманность

Гигантское облако из пыли и газа, находящееся в любой области Вселенной. Место, где начинают свою жизнь звёзды.

Участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Туманности состоят из пыли, газа и плазмы.

Первичный признак, используемый при классификации туманностей — поглощение, или же излучение либо рассеивание ими света, то есть по этому критерию туманности делятся на тёмные и светлые. Первые наблюдаются благодаря поглощению излучения расположенных за ними источников, вторые — благодаря собственному излучению или же отражению (рассеиванию) света расположенных рядом звёзд.

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами. Примером таких туманностей являются туманности вокруг ярких звёзд в скоплении Плеяды.

Разновидностью эмиссионных туманностей являются планетарные туманности, образованные верхними истекающими слоями атмосфер звёзд; обычно это оболочка, сброшенная звездой-гигантом. Туманность расширяется и светится в оптическом диапазоне. Первые планетарные туманности были открыты У. Гершелем около 1783 года и названы так за их внешнее сходство с дисками планет.

Разнообразие и многочисленность источников сверхзвукового движения вещества в межзвёздной среде приводят к большому количеству и разнообразию туманностей, созданных ударными волнами. Обычно такие туманности недолговечны, так как исчезают после исчерпания кинетической энергии движущегося газа.

Черная дыра

Самое таинственное и загадочное небесное тело, гравитационное притяжение которого настолько сильно, что не отпускает от себя даже свет.

Внутренняя часть черной дыры причинно не связана с остальной Вселенной; происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. Черная дыра окружена поверхностью со свойством однонаправленной мембраны: вещество и излучение свободно падает сквозь нее в черную дыру, но оттуда ничто не может выйти. Эту поверхность называют горизонтом событий.

Пока в недрах звезды происходят термоядерные реакции, они поддерживают высокую температуру и давление, препятствуя сжатию звезды под действием собственной гравитации. Однако со временем ядерное топливо истощается, и звезда начинает сжиматься. Расчеты показывают, что если масса звезды не превосходит трех масс Солнца, то она выиграет битву с гравитацией: ее гравитационный коллапс будет остановлен давлением вырожденного вещества, и звезда навсегда превратится в белый карлик или нейтронную звезду. Но если масса звезды более трех солнечных, то уже ничто не сможет остановить ее катастрофического коллапса и она быстро уйдет под горизонт событий, став черной дырой.

Одним из способов поиска черной дыры является поиск областей в открытом космосе, которые обладают большой массой и находятся в темном пространстве. При поиске подобных типов объектов астрономы обнаружили их в двух основных областях: в центрах галактик и в двойных звездных системах нашей Галактики.

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом.

Пульсар

Небесный объект — источник радио, оптического, рентгеновского и/или гамма-излучений, приходящих на Землю в виде периодических всплесков — импульсов.

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.

Пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара.

Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и — за счёт передачи орбитального момента системы во вращение пульсара падающим на него веществом — частота вращения, в то время, как радиопульсары, со временем, наоборот, замедляются. Обычный пульсар совершает оборот за время от нескольких секунд до нескольких десятых долей секунды, а рентгеновские пульсары делают сотни оборотов в секунду.

В 2015 году обнаружили первый гамма-пульсар, лежащий за пределами Млечного Пути. Пульсар PSR J0540-6919 расположен на окраине туманности Тарантул созвездия Золотая Рыба в Большом Магеллановом Облаке, расположенной в 163 тысячах световых лет от Млечного Пути.

Естественный спутник

Космическое тело естественного происхождения, обращающееся вокруг планеты под действием её притяжения.

Впервые понятие «спутник» употребил Иоганн Кеплер в 1611 году. В обиходе спутники иногда называют лунами.

Среди астрономов есть мнение, что спутником необходимо считать объект, вращающийся вокруг центрального тела так, что барицентр системы, состоящей из этого объекта и центрального тела, находится внутри центрального тела. Если барицентр находится вне центрального тела, объект не должен считаться спутником, а должен считаться компонентом системы, состоящей из двух или нескольких планет.

При открытии естественного спутника ему присваивается обозначение и номер, а позже также собственное имя. Согласно традиции, правом выбора этого имени обладает первооткрыватель спутника.

Большая часть названий спутников заимствована из греческой и римской мифологии; исключением выступают спутники Урана, названия которых заимствованы из пьес Шекспира и поэмы Александра Поупа «Похищение локона», а также нерегулярные спутники Сатурна, для которых используются имена (в основном гигантов) из инуитской, галльской и скандинавской мифологии.

Ваш вес в других мирах

Вы когда-нибудь задумывались, сколько бы вы могли весить на Марсе или Луне? Вот ваш шанс узнать.


Для этой страницы требуется браузер с поддержкой Javascript

СДЕЛАТЬ И УВЕДОМЛЕНИЕ:

  • Введите свой вес ниже в указанном месте. Вы можете ввести свой вес в любых единицах измерения.
  • Нажмите на кнопку «Рассчитать».
  • Обратите внимание, что веса в других мирах заполнятся автоматически. Обратите внимание, что ваш вес в разных мирах разный.
  • Вы можете нажать на изображения планет, чтобы получить больше информации о них на невероятном веб-сайте Билла Арнетта «Девять планет».

ВВЕДИТЕ СВОЙ ВЕС СЮДА →

Планеты

МЕРКУРИЙ

Ваш вес

ВЕНЕРА

Ваш вес

ЛУНА

Ваш вес

МАРС

Ваш вес

ЮПИТЕР

Ваш вес

САТУРН

Ваш вес

УРАН

Ваш вес

НЕПТУН

Ваш вес

ПЛУТОН

Ваш вес

Луны Юпитера

ИО

Ваш вес

ЕВРОПА

Ваш вес

ГАНИМЕД

Ваш вес

КАЛЛИСТО

Ваш вес

Несколько разных типов звезд

(лучше приземляться ночью, чтобы не обжечься!)

СОЛНЦЕ

Ваш вес

БЕЛЫЙ КАРЛИК

Ваш вес

НЕЙТРОННАЯ ЗВЕЗДА

Ваш вес

В ЧЕМ ДЕЛО?

Масса и вес

Прежде чем мы перейдем к теме гравитации и того, как она действует, важно понять разницу между масса и масса .

Мы часто используем термины «масса» и «вес» как синонимы в нашей повседневной речи, но для астронома или физика это совершенно разные вещи. Масса тела является мерой того, сколько материи оно содержит. Объект с массой имеет качество, называемое инерцией . Если вы потрясете в руке какой-либо предмет, например камень, вы заметите, что требуется толчок, чтобы заставить его двигаться, и еще один толчок, чтобы остановить его снова. Если камень покоится, он хочет оставаться в покое. Как только вы заставили его двигаться, он хочет продолжать двигаться. Это качество или «медлительность» материи есть ее инерция. Масса — это мера того, сколько инерции демонстрирует объект.

Вес — это совсем другое. Каждый объект во Вселенной с массой притягивает любой другой объект с массой. Величина притяжения зависит от размера масс и от того, насколько они удалены друг от друга. Для объектов повседневного размера это гравитационное притяжение исчезающе мало, но притяжение между очень большим объектом, таким как Земля, и другим объектом, таким как вы, можно легко измерить. Как? Все, что вам нужно сделать, это встать на весы! Весы измеряют силу притяжения между вами и Землей. Эта сила притяжения между вами и Землей (или любой другой планетой) называется вашим весом.

Если вы находитесь на космическом корабле далеко между звездами и подложите под себя весы, они будут показывать ноль. Ваш вес равен нулю. Вы невесомы. Рядом с вами плавает наковальня. Тоже невесомый. Вы или наковальня без массы? Точно нет. Если вы схватите наковальню и попытаетесь встряхнуть ее, вам придется толкнуть ее, чтобы она заработала, и потянуть, чтобы остановить. У него все еще есть инерция и, следовательно, масса, но он не имеет веса. Увидеть разницу?

Связь между гравитацией, массой и расстоянием

Как было сказано выше, ваш вес является мерой силы тяжести между вами и телом, на котором вы стоите. Эта сила тяжести зависит от нескольких вещей. Во-первых, это зависит от вашей массы и массы планеты, на которой вы стоите. Если вы удвоите свою массу, гравитация притянет вас вдвое сильнее. Если планета, на которой вы стоите, в два раза массивнее, гравитация притягивает вас в два раза сильнее. С другой стороны, чем дальше вы находитесь от центра планеты, тем слабее притяжение между планетой и вашим телом. Сила довольно быстро ослабевает. Если вы удвоите свое расстояние от планеты, сила составит одну четвертую. Если вы утроите свое расстояние, сила упадет до одной девятой. В десять раз больше расстояния, в одну сотую силы. Видишь узор? Сила падает с квадрат расстояния. Если мы представим это уравнением, оно будет выглядеть так:

Две буквы «М» сверху — это ваша масса и масса планеты. Буква «r» внизу — это расстояние от центра планеты. Массы находятся в числителе, потому что сила становится больше, если они становятся больше. Расстояние находится в знаменателе, потому что сила становится меньше, когда расстояние увеличивается. Обратите внимание, что сила никогда не становится равной нулю, независимо от того, как далеко вы путешествуете. Возможно, это послужило источником вдохновения для стихотворения Фрэнсиса Томпсона:

Все вещи
бессмертной силой
близко или далеко
друг с другом
скрыто связаны.
Что ты не можешь не шевельнуть цветка
, не потревожив звезды.

Исаак Ньютон

Это уравнение, впервые полученное сэром Исааком Ньютоном, говорит нам о многом. Например, вы можете подозревать, что, поскольку Юпитер в 318 раз массивнее Земли, вы должны весить в 318 раз больше, чем вы весите дома. Это было бы так, если бы Юпитер был такого же размера, как Земля. Но Юпитер в 11 раз больше радиуса Земли, поэтому вы в 11 раз дальше от центра. Это уменьшает тягу в 11 9 раз.0135 2 , в результате чего притяжение Земли к вам в 2,53 раза больше. Стоя на нейтронной звезде, вы невообразимо тяжелеете. Звезда не только очень массивна для начала (примерно такая же, как Солнце), но и невероятно мала (размером с Сан-Франциско), так что вы находитесь очень близко к центру, а r — очень маленькое число. Маленькие числа в знаменателе дроби приводят к очень большим результатам!

ССЫЛКИ

  • Ваш возраст в других мирах
  • Построить солнечную систему
  • «Обсерватория» Эксплораториума
  • Девять планет
  • Виды Солнечной системы
  • Солнечная система NSSDC, стр.
  • Лаборатория реактивного движения НАСА, Пасадена, Калифорния
  • Астрономическая картинка дня
Видео с вопросами

: расчет массы звезды с учетом периода обращения планеты и ее радиуса

Формула 𝑀 = 4𝜋²𝑟³/𝐺𝑇² может быть использована для расчета массы 𝑀 планеты или звезды с учетом периода обращения 𝑇 и радиуса орбиты 𝑟 объекта, который движется по круговой орбите вокруг него. Обнаружена планета, вращающаяся вокруг далекой звезды с периодом 105 дней и радиусом 0,480 а.е. Какова масса звезды? Используйте значение 6,67 × 10⁻¹¹ м³/кг ⋅ с² для универсальной гравитационной постоянной и 1,50 × 10¹¹ м для длины 1 а.е. Дайте ответ в экспоненциальном представлении с точностью до двух знаков после запятой.

Стенограмма видео

Формула 𝑀 равняется четырем 𝜋 квадрат 𝑟 в кубе разделить на 𝐺𝑇 в квадрате можно использовать для расчета массы 𝑀 планета или звезда с учетом периода обращения 𝑇 и радиуса обращения 𝑟 объекта который движется по круговой орбите вокруг него. Обнаружена планета, вращающаяся вокруг далекая звезда с периодом 105 дней и радиусом 0,480 а.е. Какова масса звезды? Используйте значение 6,67 умножить на 10 для минус 11 метров в кубе на килограмм-секунду в квадрате для всемирного гравитационного постоянной и 1,50 умножить на 10 на 11 метров на длину одной АС. Дайте ответ по научному обозначение до двух знаков после запятой.

Итак, у нас есть планета по кругу вращаться вокруг звезды. Это довольно круто, учитывая наши понимания физики и некоторой базовой математики, мы можем использовать информацию о орбите далекой планеты, чтобы узнать массу такого большого и далекого объекта, как звезда. Давайте подробнее рассмотрим формула, которую мы будем использовать. 𝑀 равно четырем 𝜋 в квадрате 𝑟 в кубе разделить на 𝐺𝑇 в квадрате. Теперь нам даны значения для все члены этой формулы. Но прежде чем мы сможем заменить их в, все они должны быть выражены в основных единицах СИ.

𝐺, универсальный гравитационный постоянная, уже записывается в метрах, килограммах и секундах. Так что хорошо идти. А теперь давайте посмотрим на орбитальный радиус 𝑟, который, как мы знаем, равен 0,480 а.е. И хотя астрономическая единица часто используется в астрономии, это не единица СИ. Итак, давайте превратим его в метров. Нам сказали, что одна AU равна 1,5 раза по 10 на 11 метров. Зная это, мы можем умножить 𝑟 на 1,50 умножить на 10 на 11 метров разделить на одну а.е., что как раз равно единице. Таким образом, мы можем отменить AU. Таким образом, мы обнаружили, что 𝑟 равняется 7200 умножить на 10 на 10 метров.

Далее мы рассмотрим период обращения, 𝑇, что равно 105 дням, а дни не являются единицей времени в системе СИ. Для этого нам нужно преобразовать в секунды. Напомним, что один день равен 24 часов, час равен 60 минутам, а минута равна 60 секундам. Мы можем использовать эти три равенства написать три коэффициента пересчета, каждый из которых равен единице. Теперь мы можем отменить единицы дней, часы и минуты, остались только секунды. А теперь умножаем на 105 умножить на 24 умножить на 60 умножить на 60 секунд дает нам значение периода обращения 𝑇 равно 90,072 раз 10 до шести секунд.

Итак, все наши значения установлены на рассчитать. Подставив их в формулу, у нас есть 𝑀 равно четырем 𝜋 в квадрате, умноженным на 7,200, умноженным на 10 до количества 10 метров. в кубе разделить на 6,67 умножить на 10 с минусом 11 метров в кубе на килограмм в секунду в квадрате умножить на 9,072 умножить на 10 до количества шести секунд в квадрате. Сейчас тут много юнитов, поэтому давайте удостоверимся, что все они работают, чтобы достичь конечного значения массы в единицах килограммов.

Во-первых, для наглядности давайте сгруппируйте единицы здесь, следя за правильным распределением показателей. Теперь давайте отменим единицы метров в кубе, а также секунды в квадрате в знаменателе, оставив только один больше килограмма в знаменателе или простых килограммах в числителе. Теперь вычисляем, имеем 𝑀 равно 2,684 умножить на 10 до 30 кг. И, наконец, округление до двух десятичных знаков, мы нашли, что масса звезды составляет 2,68 умножить на 10 в 30 килограммы.

Как рассчитать массу планеты? : Planets Education

Чтобы рассчитать массу планеты , нам нужно знать две информации о планете,

  1. Время, за которое объект обращается вокруг планеты,
  2. Расстояние между объектом и планетой.

Это две основные части информации, которые ученые используют для измерения массы планеты. Время, необходимое объекту для обращения вокруг любой планеты, зависит от того, что гравитационное притяжение планеты . Итак, если мы можем измерить гравитационное притяжение или ускорение, вызванное гравитацией любой планеты, мы можем измерить массу планеты.

Существуют и другие методы расчета массы планеты, но этот (упомянутый здесь) является наиболее точным и предпочтительным способом. Потому что другие методы дают приблизительное значение массы, а иногда и неверное значение.  

Хотя у большинства планет есть спутники, вращающиеся вокруг планеты. С помощью периода обращения Луны мы можем определить гравитационное притяжение планеты. Но у некоторых планет, таких как Меркурий и Венера, нет спутников. Таким образом, в этом случае ученые используют орбитальный период космического корабля вблизи планеты или любых других объектов, проходящих мимо, для определения гравитационного притяжения планеты.

Здесь, в этой статье, мы узнаем, как рассчитать массу планеты с надлежащим объяснением?

Самый точный способ измерить массу планеты — определить силу притяжения планеты к близлежащим объектам. И этими объектами может быть любая луна (естественный спутник), проходящий рядом космический корабль или любой другой объект, проходящий рядом с ним.

Здесь рассмотрим,

  • есть планета с массой «М» ,
  • Луна вращается вокруг планеты с массой «Мо» , и требуется время «Т» , чтобы совершить один оборот вокруг планеты,
  • расстояние между Луной и планетой равно «r» .

Теперь мы рассчитаем массу M планеты .

Согласно закону всемирного тяготения Ньютона, планета будет действовать как гравитационная сила (F g ) к своей орбитальной луне.

F G = G × M × MO /R 2

  • , где G -универсальная гравитационная постоянная и G = 6,67 × 10 -11 нм 2 /KG .

Для поддержания орбитального пути Луна также будет действовать центростремительной силой на планету. Согласно 2-му закону движения Ньютона :

Центростремительная сила, F c = Mo×A c

  • Где ‘ A c ’ — центростремительное ускорение .

A c = v 2 /r= w 2 × r

  • Где ‘w’ – угловая скорость .

And w= 2π/T

  • Где «T» — период обращения Луны вокруг этой планеты. (Т известен)

F c = Mo×w 2 ×r= Mo×r×4×π 2 /T 2

Таким образом, для поддержания орбитальной траектории гравитационная сила, действующая со стороны планеты, и центростремительная сила действие Луны должно быть равным.

  • Ф г = Ф с
  • G×M×Mo/r 2 = Mo×r×4×π 2 /T 2
  • M= 4×π 2 ×r 3 /G×T 2

Рассчитайте массу планеты

«Следовательно, из приведенного выше уравнения нам нужно только расстояние между планетой и луной «r» и период обращения луны «T» , чтобы вычислить массу планеты . Потому что значение «π» и «G» постоянно и известно».

Итак, ученые используют этот метод для определения массы планеты или массы любого другого планетоподобного объекта. Этот метод дает точное и точное значение массы астрономического объекта.

Как ученые измеряют массу планеты без Луны?

Теперь, когда мы знали, как измерять массу планеты, ученые использовали свои луны для таких планет, как Земля, Марс, Юпитер, Сатурн, Уран, Нептун, карликовая планета Плутон, а также для объектов, у которых есть луны. Но у таких планет, как Меркурий и Венера, нет спутников.

Космические зонды — один из способов определения гравитационного притяжения и, следовательно, массы планеты. Например, космические зонды NASA Voyager 1 и Voyager 2 использовались для измерения массы внешней планеты. Тогда как с помощью космического корабля НАСА MESSENGER ученые точно определили массу планеты Меркурий.

 Обязательно к прочтению: — Орбита Международной космической станции (МКС)

Все планеты действуют гравитационно друг на друга или на близлежащие объекты. Ученые также измеряют массу одной планеты, определяя гравитационное притяжение других планет, действующих на нее. Они используют этот метод гравитационного возмущения орбитального пути малых объектов, например, для измерения массы астероидов. Иногда приблизительная масса удаленных астрономических объектов (экзопланет) определяется видимым размером и формой объекта.

Какова масса каждой планеты?  

Масса всех планет Солнечной системы указана ниже.

  • Mercury- 3,30×10 23 кг
  • Venus- 4,86×10 24 кг
  • Земля- 5,97×10 24 кг
  • Mars– 6,41×10 23 кг
  • Юпитер- 1,89×10 27 кг
  • Сатурн– 5,68×10 26 кг
  • Уран- 8,68×10 25 кг
  • Нептун– 1,02×10 26 кг

Итак, порядок планет в нашей Солнечной системе по массе — это Юпитер, Сатурн, Нептун, Уран, Земля, Венера, Марс и Меркурий.


Должен прочитать Статьи по теме:- 

  • Сколько длится день и год на каждой планете
  • Ближайшее и самое дальнее расстояние каждой планеты
  • Насколько велики звезды? Сравните с Солнцем и Землей
  • .

Вычислите массу Земли | Научный проект

Научный проект

Масса — это мера того, сколько материи или материала состоит из объекта. Вес — это измерение того, как гравитация тела притягивает объект. Ваша масса везде одинакова, но ваш вес на Земле будет сильно отличаться от веса на Юпитере или на Луне.

G , гравитационная постоянная (также называемая универсальной гравитационной постоянной), равна

Скачать проект

G = 6,67 * 10 -11 Н ( м / кг ) 2

Где кг/м равна Н с 2 . Это используется для расчета силы тяжести между двумя телами. Его можно использовать для расчета массы любого из тел, если силы известны, или можно использовать для расчета скоростей или расстояний по орбитам.

Орбиты, как и орбиты Луны, имеют так называемый календарный период   , который для простоты является круглым числом. Примером этого может быть период обращения Земли вокруг Солнца 365 дней. Звездный период 90 183 90 184 — это число, используемое астрономами для более точного описания времени. Звездное время одного вращения Земли составляет 23 часа 56 минут, а не круглые 24 часа. Период времени орбиты, который вы будете использовать в своих расчетах в этом упражнении, окажет большое влияние на результат ваших ответов.

  • Калькулятор
  • Календарь
  • Интернет
  1. Воспользуйтесь календарем, чтобы определить, сколько времени требуется Луне, чтобы совершить оборот вокруг Земли. Поищите в интернете сидерический период луны.
  2. Используйте следующее уравнение для расчета средней скорости Луны

v = 2π r / T

Где v — средняя скорость Луны,

r — среднее расстояние между Луной и Землей, принятое как 3,844 x 10 8 м,

и T — период обращения в секундах.

  1. Рассчитайте массу Земли, используя как календарный период Луны, так и звездный период Луны. Почему они разные? Какой расчет точнее и почему?

М и = v 2 r / G

Где M e — масса Земли в килограммах,

v — средняя скорость Луны, Луна и Земля

и G — постоянная всемирного тяготения.

Звездный период Луны, который составляет 27,3 дня, позволит вам рассчитать массу Земли более точно, чем календарный период Луны. Масса Земли 5,97 х 10 24 кг.

То есть 5 973 600 000 000 000 000 000 000 кг!

Закон всемирного тяготения сэра Исаака Ньютона гласит, что все массы во Вселенной притягиваются друг к другу прямо пропорционально их массам. Постоянная всемирного тяготения дает соотношение между двумя массами и расстоянием между ними. Для большинства вещей массы настолько малы, что сила притяжения также очень мала. Вот почему гравитация ваших друзей не притягивает вас настолько, чтобы вы могли застрять в них!

Эти гравитационные силы чрезвычайно полезны, поскольку они удерживают растения на орбите вокруг Солнца и Луну на орбите вокруг Земли. Они также держат на орбите спутники , которые доставляют нам информацию из космоса и позволяют нам мгновенно общаться с людьми по всему миру.

В дальнейших проектах вы можете использовать те же идеи для расчета массы Солнца, центра нашей Солнечной системы, используя информацию для любой из планет или других объектов, которые постоянно вращаются вокруг Солнца (например, планетоид Плутон).

Заявление об отказе от ответственности и меры предосторожности

Education.com предоставляет идеи проекта научной ярмарки для информационных только цели. Education.com не дает никаких гарантий или заявлений относительно идей проекта научной ярмарки и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта научной ярмарки, вы отказываетесь и отказаться от любых претензий к Education.com, возникающих в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и проектным идеям научной ярмарки покрывается Политика конфиденциальности Education.com и Условия использования сайта, включая ограничения об ответственности Education.com.

Настоящим предупреждаем, что не все проектные идеи подходят для всех отдельных лиц или во всех обстоятельствах. Реализация любой идеи научного проекта следует проводить только в соответствующих условиях и с соответствующими родителями. или другой надзор. Чтение и соблюдение мер предосторожности всех материалы, используемые в проекте, является исключительной ответственностью каждого человека. За дополнительную информацию см. в справочнике по научной безопасности вашего штата.

Планета с наименьшей массой и обнаруженная атмосфера


Учреждение первого автора: Кильский университет (Великобритания)
Статус: Представлено, открытый доступ

В связи с открытием все большего количества экзопланет, которые граничат с потенциальной обитаемостью с точки зрения их размера и температуры, необходимость измерения их атмосфер для проверить, что обитаемость становится более настоятельной. Астрономы пытались измерить атмосферу экзопланет более десяти лет, но результаты были весьма неоднозначными. Почти все эти исследования были сосредоточены на горячих юпитерах (обычно 1000–2000 К), за исключением GJ 1214 b, более холодной планеты с меньшей массой (~ 550 К и 6,6 массы Земли) (и также со смешанными результатами). Это новое исследование, проведенное под руководством Джона Саутворта из Кильского университета, знаменует собой одну из самых амбициозных попыток измерения атмосферы экзопланеты: планета с массой всего в 1,6 раза больше земной при температуре всего 600 К.

The Observations

GJ 1132 — карликовая звезда класса M, звезда с наименьшей массой и самый распространенный вид звезд во Вселенной, а также одна из ближайших к Солнцу звезд, на расстоянии всего 39 световых лучей от Солнца. лет. В то время как М-карлики обычно слишком тусклые для значимого наблюдения за атмосферой, непосредственная близость GJ 1132 делает его главным кандидатом для наблюдения за атмосферой своей планеты. Поскольку планета GJ 1132 b проходит транзитом через свою звезду, ранее было измерено, что ее радиус лишь немного больше, чем у Земли (в 1,16 раза больше). Его масса также была измерена в 1,6 раза больше массы Земли с помощью доплеровского метода.

Транзиты планет позволяют астрономам измерить их атмосферу. Если у планеты есть атмосфера, которая блокирует свет только на определенных длинах волн, планета будет казаться больше на этих длинах волн. Итак, авторы этой статьи наблюдали GJ 1132 b за 9 прохождений в нескольких фотометрических полосах пропускания ( grizJHK ) от оптического до ближнего инфракрасного диапазона с помощью инструмента GROND на 2,2-метровом телескопе MPG в ESO Ла Силья, Чили, хотя некоторые наблюдения в ближнем инфракрасном диапазоне были удалены из-за их низкого качества. Измеренный радиус планеты в каждой полосе пропускания показан ниже на рисунке 1.

Рисунок 1: Спектр пропускания GJ 1132 b. Сплошные кружки — это измерения радиуса планеты в каждой полосе пропускания прибора GROND в Чили. Два незакрашенных круга — это измерения из более ранней статьи с помощью другого прибора. Глядя только на новые данные (сплошные точки), радиус планеты кажется больше в полосе z (на 4 стандартных отклонения), что подразумевает наличие чего-то в атмосфере, поглощающего свет в этой области. ( Полосы HK немного отличаются, но находятся в пределах двух стандартных отклонений от полос griJ .)

Шесть полос показывают постоянный радиус планеты, но одна полоса показывает гораздо больший радиус. Это указывает на то, что в атмосфере есть молекула, поглощающая именно эту область спектра. Полоса z представляет особый интерес, поскольку это единственная полоса из семи, в которой вода сильно поглощает. Затем авторы использовали компьютерную модель для оценки внутреннего состава и состава атмосферы планеты.

Состав планеты

Новая планетарная модель изменяет радиус поверхности планеты с ранее измеренного значения 1,16 радиуса Земли на 1,35 радиуса Земли, что значительно меняет плотность и, следовательно, предполагаемый состав планеты. Точная копия Земли (1/3 железа, 2/3 силикатов) в данных исключена. Однако каменистая планета с более высоким процентным содержанием силикатов по отношению к железу не исключена, но и маловероятна.

Более благоприятная интерпретация — это те, которые включают большую массу воды на планете. Это согласуется с предполагаемым присутствием водяного пара в атмосфере на основании измерений в полосе z . Поскольку моделирование основано почти исключительно на одной точке данных, авторы воздерживаются от исчерпывающего анализа состава атмосферы планеты, но проводят более поверхностный анализ, предполагающий, что 1-10% атмосферы состоит из водяного пара.

Будущее

Общеизвестно, что описание атмосферы экзопланеты с земли затруднено. Авторы предлагают использовать инструмент золотого стандарта, камеру WFC3 на борту космического телескопа Хаббл, для более тщательного изучения этой планеты в диапазоне z . Это может привести к подтверждению наличия воды в атмосфере, присутствия неизвестного поглотителя в атмосфере или даже, возможно, к обнаружению того, что измерения в полосе z этого исследования были ложными. Что невероятно, так это то, что характеристики атмосферы экзопланеты, когда-то царство только горячих юпитеров, превратились в планеты размером почти с Землю.

  • Об авторе

О Джозефе Шмитте
Я аспирант 5-го курса Йельского университета. Мои основные исследования связаны с открытием, характеристикой и статистикой экзопланет. Я также являюсь одним из научных руководителей гражданского научного проекта «Охотники за планетами» — веб-сайта, на котором широкая публика может присоединиться к поиску экзопланет.

Что делает одну планету земного типа более пригодной для жизни, чем другую?

Когда дело доходит до поиска подходящей планеты для поиска жизни в другом месте во Вселенной, размер планеты имеет значение.

Считается, что все планеты формируются в результате конкурентного каннибализма в диске материала вокруг зарождающейся звезды. Маленькие пылинки сталкиваются и растут, пожирая своих соседей. По мере того, как они становятся больше, их способность потреблять все вокруг них увеличивается, и их рост ускоряется.

Если планета увеличится более чем в десять раз по массе Земли до того, как загорится ядерная печь внутри ее носителя, она сможет аккрецировать огромное количество газа. Он вырастет и станет газовым гигантом, как Юпитер и Сатурн в нашей Солнечной системе. Такие планеты определенно не были бы хорошими местами для поиска жизни.

На другом конце спектра слишком маленький объект со слишком малой массой (например, Меркурий или земная луна) не будет иметь достаточной гравитации, чтобы удерживать атмосферу.

Как правило, чем массивнее планета, тем более массивную атмосферу она может приобрести и поддерживать.

Планеты бывают всех форм и размеров. Но идеальная планета для поиска жизни должна быть подходящего размера — не слишком большая и не слишком маленькая. НАСА/Лаборатория реактивного движения-Калифорнийский технологический институт

Это важно, потому что масса атмосферы планеты напрямую влияет на ее климат. Таким образом, расположение «обитаемой зоны» вокруг звезды будет зависеть от массы рассматриваемой планеты.

Более массивная планета с более массивной атмосферой, скорее всего, будет иметь более сильный парниковый эффект. Такая планета, скорее всего, была бы пригодна для жизни на таких расстояниях, которые привели бы к обледенению меньших планет.

Точно так же меньшая планета с более тонкой атмосферой, скорее всего, будет пригодна для жизни на расстояниях, на которых кипели бы океаны более массивного мира.

Магнитное поле

Хотя планета должна быть достаточно массивной, чтобы иметь достаточно плотную атмосферу для поддержания жизни, это еще не все.

Звезды, особенно в юности, являются жестокими хозяевами. Они выбрасывают материал в космос и постоянно бомбардируют свои планеты радиацией.

В какой-то степени это жизненно необходимо. Без энергии, которую Земля получает от Солнца, не было бы света, и наша планета была бы ледяным шаром.

Но с благословением света приходит и проклятие – ветер, дующий от звезды, может разорвать атмосферу планеты, сравняв ее с землей.

Представление художника о влиянии огромной звездной вспышки на атмосферу экзопланеты HD 189733b. Звездная активность может лишить планету атмосферы, сделав ее бесплодной и безжизненной. НАСА, ЕКА, L Calçada

К счастью для жизни на Земле, наша планета защищена от худших капризов солнечного ветра своим сильным магнитным полем.

Когда солнечный ветер сталкивается с магнитным полем Земли, он отклоняется, защищая планету внутри. Только самые сильные солнечные бури и самые энергичные частицы могут проникнуть сквозь эту защиту.

Каскады заряженных частиц, проникающих через магнитный щит Земли, стекают к полюсам, вызывая великолепные северные и австралийские сияния.

Северное сияние, изображенное здесь из северной Канады, является результатом столкновения заряженных частиц, выброшенных Солнцем в атмосферу Земли. Викимедиа/Kshitijr96, СС ПО

А что, если бы у Земли не было магнитного поля? Ситуация была бы серьезной. У нашего ближайшего планетарного соседа, Марса, отсутствует сильное магнитное поле, и, скорее всего, он был незащищен с момента ранней юности Солнечной системы. Это отсутствие защиты заставило планету заплатить ужасную цену — когда-то толстая атмосфера Марса была уничтожена почти до нуля.

Наличие магнитного поля особенно важно в молодости планеты, когда ее звезда-хозяин еще молода и возбудима и энергично сбрасывает материал в космос. По мере того, как звезды стареют, они обычно смягчаются, но сохраняют способность медленно сдирать с планет их газовые оболочки.

Таким образом, ясно, что для того, чтобы планета считалась перспективной целью для поиска жизни, она должна обладать сильным магнитным щитом, защищающим ее атмосферу. Но как такая планета, как Земля, поддерживает магнитное поле достаточно сильным и достаточно долго, чтобы обеспечить такую ​​защиту?

Тектоника плит

Магнитное поле Земли управляется колоссальным динамо, расположенным глубоко во внешнем ядре Земли. Считается, что это динамо приводится в действие конвекционными потоками в этой области недр нашей планеты. Но в этом и заключается проблема: как поддерживать конвекцию внутри планеты на протяжении миллиардов лет?

Магнитосфера Земли защищает нашу атмосферу от разрушительной силы солнечного ветра. Но без конвекции в ядре Земли этого поля не существовало бы. НАСА/GSFC

Недра Земли очень горячие, в первую очередь в результате распада радиоактивных элементов, попавших внутрь. Наша планета медленно отдает это тепло в космос через свою кору, в результате чего поверхностные слои внутренней части нашей планеты холоднее, чем те, что находятся вблизи ядра.

Для настройки и поддержания конвекции необходима большая разница температур между двумя точками. Таким образом, конвекционные потоки в мантии Земли являются результатом того факта, что часть мантии непосредственно под корой намного холоднее, чем рядом с ядром.

Но вот что странно. Если бы на Земле не было тектоники плит, верхние слои мантии не смогли бы охлаждаться так же эффективно. При более теплой верхней мантии разница температур между этим регионом и недрами Земли будет меньше, и конвекция в конце концов прекратится.

А без этой конвекции динамо Земли умерло бы, а ее магнитное поле ослабло бы и исчезло.

Считается, что именно это и произошло с Марсом. Поначалу красная планета вполне могла быть достаточно горячей внутри для возникновения определенной степени тектонической активности. Несомненно, кора Марса несет в себе следы древнего магнитного поля, вмороженного в породы.

Топография Марса, основанная на наблюдениях лазерного альтиметра Mars Orbiter. Несмотря на свои знаменитые вулканы, на Марсе нет тектоники плит, которая может быть связана с потерей его атмосферы за последние четыре миллиарда лет. НАСА/Лаборатория реактивного движения

Но Марс меньше Земли и поэтому отдает свое внутреннее тепло в космос намного быстрее. В конце концов, он достаточно остыл, чтобы не поддерживать конвекцию, и его магнитное поле исчезло.

В этот момент солнечный ветер начал сдирать атмосферу, в то же время химические процессы на поверхности тянули атмосферу вниз, в скалы. Без тектоники, перерабатывающей горные породы и управляющей магнитным полем, Марс постепенно стал тем миром, который мы видим сегодня.

Помимо поддержания магнитного поля нашей планеты, тектоника плит важна по многим другим причинам, особенно когда речь идет о создании атмосферы, которой мы дышим сегодня.

Без воды

Тектоническая активность явно важна для жизни на Земле и, безусловно, будет ключевым критерием при поиске жизни где-либо еще. Но некоторые исследователи предполагают, что история может оказаться еще более сложной, чем мы когда-то думали.

На протяжении многих лет ряд исследований предполагал, что без воды на Земле не было бы тектоники плит — теория, которая до сих пор активно обсуждается.

Общая идея заключается в том, что вода действует как смазка либо между сталкивающимися плитами (помогая им преодолевать трение между ними), либо внутри мантии Земли (увеличивая ее текучесть, помогая ей двигаться и ослабляя конвекционные потоки в ней).

Без воды планета должна быть несколько массивнее Земли, чтобы поддерживать тектонику плит. Если бы Земля образовалась намного суше, движение ее плит могло бы давно прекратиться, что привело бы к прекращению конвекции в мантии и очищению нашей атмосферы, как на Марсе.