Французы испытали ламинарное крыло

za / wikipedia.org

Французская компания Onera совместно с итальянской Leonardo провела испытания гладкого крыла, оптимизированного для ламинарного потока. Как пишет Aviation Week, испытания состоялись в трансзвуковой аэродинамической трубе S1MA французской компании. В настоящее время специалисты анализируют данные, полученные во время испытаний, однако, согласно предварительным результатам, гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

Объемы авиационных перевозок увеличиваются с каждым годом. Для того, чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете. Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей.

Еще одним способом уменьшить потребление топлива является снижение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию самолетов, используя новые легкие материалы и покрытия. Согласно планам разработчиков, новое ламинарное крыло должно отличаться существенно меньшим лобовым сопротивлением по сравнению со стандартным крылом самолета. Такое крыло должно иметь гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей площади.

Ламинарное крыло в аэродинамической трубе (слева) и тепловизионное изображение ламинарного потока на его верхней плоскости

Onera

В аэродинамической трубе испытания проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени. В результате выяснилось, что на верхней плоскости крыла площадь покрытия ламинарным потоком составила 70 процентов, а на нижней 30 процентов.

Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов — для нижней. На части крыла обязательно должно присутствовать турбулентное течение, повышающее его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки — завихрители потока, разрушающие ламинарный поток.

Тем не менее, считается, что в гражданской авиации, самолеты которых как правило не выполняют полетов на критических углах атаки, ламинарное удлиненное крыло может быть успешно использовано. При стабильном полете с без резких изменений углов атаки гладкое крыло может существенно снизить лобовое сопротивление, а значит потребление топлива в полете. Когда именно новое крыло может появиться на серийных самолетах, пока неизвестно.

Сегодня активными работами в области исследования гладкого крыла, оптимизированного для ламинарного обтекания, занимаются шведская компания Saab и британская GKN. Первая исследует композитное крыло, в котором передняя кромка и верхняя плоскость выполнены единой деталью, с пристыковкой остальных элементов и механизации с минимальными зазорами. В свою очередь GKN исследует обычное крыло, элементы которого плотнее обычного подогнаны друг к другу. Испытания обоих крыльев начнутся в текущем году.

Между тем, в феврале прошлого года GKN представила занялась исследованиями в области красок, которые позволят снизить лобовое сопротивление самолетов. Благодаря новым покрытиям разработчики рассчитывают снизить лобовое сопротивление на 25 процентов в крейсерском полете. Свои свойства новые краски должны будут сохранять на протяжении пяти лет, такой срок является стандартным требованием для внешних покрытий самолетов.

При нанесении на корпус самолета новые краски должны будут скрывать дефекты поверхности, обеспечивая тем самым ламинарное обтекание воздухом аэродинамических поверхностей, в первую очередь передних кромок, нередко имеющих неоднородную поверхность.

Василий Сычёв

nplus1.ru

Истребитель Як-3 c ламинарным крылом.

Истребитель Як-3 c ламинарным крылом.

Разработчик: КБ завода № 153
Страна: СССР
Первый полет: 1944 г.

Одним из путей улучшения аэродинамики Як-3, безусловно, стала разработка КБ завода № 153 в Новосибирске под руководством О.К.Антонова нового крыла с ламинарным профилем, с меньшим коэффициентом сопротивления.

Задание на постройку такой машины было выдано 20 января, а к разработке приступили в сентябре 1944 года. Причем на самолете сохранился старый каркас крыла (менялись лишь нервюры). Вооружение включало пушку НС-23 и два пулемета БС. Работа проводилась в шесть этапов.

Предполагалось, что в дальнейшем при сохранении прежней силовой установки это позволит уменьшить площадь крыла до 13,1 м2 при размахе 8,6 метра, а переход на электроприводы управления посадочными щитками и триммерами горизонтального оперения — дополнительно облегчит истребитель.

Однако позже нашлись другие технические решения, связанные с перекомпоновкой фюзеляжа, а точнее, с размещением масло- и водорадиатора в одной гондоле под фюзеляжем, с применением одностороннего (как на Як-1) всасывающего патрубка нагнетателя и изменением обводов капота мотора и подбором винта.

Чтобы компенсировать ухудшение характеристик на посадочных углах атаки, свойственное ламинарным крыльям, угол отклонения крыльевых щитков увеличили до 60°.

В ходе проектирования из-за отсутствия ряда комплектующих изделий пришлось отказаться от электрификации машины, и суммарный выигрыш в весе ее конструкции от использования других технических решений оказался невелик. Поэтому пришлось вернуться к исходному крылу. В связи с тем, что положение силовых элементов крыла, центра тяжести, а также кинематика и размер шасси должны были остаться неизменными, несущая поверхность приобрела форму двойной трапеции (с наплывом в передней корневой части крыла). Эта часть крыла набиралась из модифицированных профилей ЦАГИ 160545, переходивших к концу наплыва в профиль ЦАГИ 150545 и к середине полуразмаха — в профиль ЦАГИ 14151.

В процессе испытаний машины планировалась проверка возможности использования реакции выхлопа для увеличения максимальной скорости самолета, для чего изготовили второй комплект боковых капотов мотора с туннельными обтекателями выхлопных патрубков.

Машину изготовили, но сведений о ее полетах и дальнейшей судьбе пока не обнаружено.

Як-3 c ламинарным профилем крыла.

Як-3 c ламинарным профилем крыла и с туннельным выхлопным коллектором.

Як-3 c ламинарным профилем крыла. В кабине летчик-испытатель Расторгуев.

.

.
Список источников:
Война и мы. Авиаколлекция. Н.В.Якубович. Як-3. Истребитель «Победа».
Н.В.Якубович. Неизвестный Яковлев. «Железный» авиаконструктор.
Антология Як. (Airfield.narod.ru).

xn--80aafy5bs.xn--p1ai

Европейский лайнер с ламинарным крылом совершил первый полет

A340-300

Airbus

Модифицированный пассажирский самолет Airbus A340-300 с гладким крылом, оптимизированным для ламинарного потока, совершил первый полет. Согласно сообщению европейского авиастроительного концерна Airbus, испытания состоялись 26 сентября 2017 года в Тарбе на юге Франции. Первый полет лайнера признали успешным. В общей сложности самолет провел в воздухе три часа 38 минут.

С каждым годом объемы авиационных перевозок увеличиваются. Чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете, что также должно уменьшить загрязнение окружающей среды.

Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей. Еще одним способом снизить потребление топлива является уменьшение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию лайнеров, используя новые легкие материалы и покрытия.

Предполагается, что новое ламинарное крыло, создаваемое в рамках проекта BLADE (Breakthrough Laminar Aircraft Demonstrator in Europe, демонстратор европейского прорывного ламинарного летательного аппарата), будет иметь на 50 процентов меньшее лобовое сопротивление по сравнению со стандартным. Это позволит снизить потребление топлива самолетом в полете и уменьшить выбросы CO2 на пять процентов.

Ламинарное крыло должно иметь очень гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей своей площади. Для создания гладкого крыла планируется использовать несколько технологий.

A340-300. Гладкими выполнены крайние секции крыла самолета

Airbus

Так, в 2015 году шведская компания Saab, участвующая в проекте BLADE, собрала правую консоль гладкого крыла из углепластика. Она получила углепластиковые переднюю кромку и верхнюю плоскость, выполненные единой деталью с композиционным крепежом с внутренней стороны. Благодаря этому консоль получилось практически без стыков между панелями.

Тогда же британская компания GKN, еще один участник проекта BLADE, представила гладкую левую консоль крыла. Это обычная консоль крыла лайнера A340-300, в которой все элементы плотнее подогнаны друг к другу. Кроме того, консоль покрыта специальной краской, скрывающей неоднородные дефекты аэродинамической поверхности.

Правая консоль крыла от Saab и левая от GKN и установлены на лайнер A340-300, совершивший первый полет во Франции. Целью первого полета была общая проверка лайнера, его управляемости и всех его бортовых систем. Самолет должен совершить еще несколько испытательных полетов, после чего начнет участвовать непосредственно в исследовательских полетах.

Во время исследовательских полетов разработчики намерены проверить эффективность одной из двух технологий обеспечения гладкости крыла, а также оценить аэродинамические характеристики крыла и его влияние на характеристики пассажирского самолета в целом.

Следует отметить, что на опытовом лайнере A340-300 гладким выполнено не все крыло целиком, а только крайние его секции слева от первого двигателя и справа от четвертого. Это сделано для существенного сокращения программы начальных летных испытаний; установка полностью гладкого крыла потребовала бы расширенных и долгих по времени проверок самолета.

В феврале текущего года французская компания Onera совместно с итальянской Leonardo провела испытания собственной версии гладкого крыла. Испытания проводились в трансзвуковой аэродинамической трубе S1MA французской компании. Во время проверок гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

В аэродинамической трубе проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени.

Во время испытаний выяснилось, что на верхней плоскости крыла площадь покрытия консоли ламинарным потоком составила 70 процентов, а на нижней 30 процентов. Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов — для нижней.

Конструкция обычного крыла предполагает обязательное присутствие турбулентного течения, повышающего его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки — завихрители потока, разрушающие ламинарный поток.

Василий Сычёв

nplus1.ru

Истребители Второй Мировой: лучшие из лучших. Взгляд инженера (начало): alternathistory — LiveJournal

Константин КОСМИНКОВ / «Самолёты мира» №№ 1, 2/1995

(Памяти К.Ю. Косминкова посвящается…)

Во второй мировой войне авиация была одним из основных родов войск и играла очень большую роль в ходе боевых действий. Не случайно каждая из воевавших сторон стремилась обеспечить постоянное повышение боеспособности своей авиации путем наращивания выпуска самолетов и непрерывного их совершенствования и обновления. Как никогда раньше широко в военную сферу был вовлечен научный и инженерный потенциал, работало множество научно-исследовательских институтов и лабораторий, конструкторских бюро и испытательных центров, усилиями которых создавалась новейшая боевая техника. Это было время необычайно бурного прогресса самолетостроения. Одновременно как бы завершалась эпоха эволюции самолетов с поршневыми двигателями, безраздельно господствовавшими в авиации с момента ее зарождения. Боевые самолеты конца второй мировой войны являли собой наиболее совершенные образцы авиационной техники, созданной на базе поршневых моторов.


Существенное различие мирного и военного периодов развития боевой авиации заключалось в том, что во время войны эффективность техники определялась непосредственно опытным путем. Если в мирное время военные специалисты и авиаконструкторы, заказывая и создавая новые образцы самолетов, опирались лишь на умозрительные представления о характере будущей войны или же руководствовались ограниченным опытом локальных конфликтов, то широкомасштабные военные действия резко изменили ситуацию. Практика воздушных боев стала не только мощным катализатором в ускорении прогресса авиации, но и единственным критерием при сравнении качества самолетов и выборе главных направлений дальнейшего развития. Каждая из сторон совершенствовала свои самолеты, исходя из собственного опыта ведения боевых действий, наличия ресурсов, возможностей технологии и авиа-промышленности в целом.

В годы войны в Англии, СССР, США, Германии и Японии было создано большое число самолетов, сыгравших заметную роль в ходе вооруженной борьбы. Среди них немало выдающихся образцов. Интерес вызывает сравнение этих машин, равно как и сопоставление тех инженерных и научных идей, которые использовались при их создании. Конечно, среди многочисленных типов самолетов, принимавших участие в войне и представлявших собой разные школы самолетостроения, трудно выделить бесспорно лучшие. Поэтому выбор машин в какой-то мере носит условный характер.

Истребители являлись главным средством завоевания господства в воздухе в борьбе с противником. От эффективности их действий во многом зависел успех боевых операций наземных войск и других родов авиации, безопасность тыловых объектов. Не случайно, что именно класс истребителей развивался наиболее интенсивно. Лучшими из них традиционно называют самолеты Як-3 и Ла-7 (СССР), Норт-Америкен Р-51 «Мустанг» («Mustang», США), Супермарин «Спитфайр» («Spitfire», Англия) и Мессершмитт Bf 109 (Германия). Среди многих модификаций западных истребителей для сравнения выбраны Р-51D, «Спитфайр» XIV и Bf 109G-10 и К-4, то есть те самолеты, которые строились серийно и поступали на вооружение военно-воздушных сил на завершающем этапе войны. Все они создавались в 1943 — начале 1944 г. В этих машинах нашел отражение богатейший боевой опыт, уже накопленный к тому времени воюющими странами. Они стали как бы символами боевой авиационной техники своего времени.

Прежде чем сопоставлять разные типы истребителей, стоит немного сказать об основных принципах сравнения. Главное, здесь необходимо иметь в виду те условия боевого применения, под которые они создавались. Война на Востоке пока-зала, что при наличии линии фронта, где основной силой вооруженной борьбы являются наземные войска, от авиации требовались сравнительно небольшие высоты полета. Опыт воздушных боев на советско-германском фронте свидетельствует, что подавляющее большинство их велось на высотах до 4,5 км вне зависимости от высотности самолета. Советские конструкторы, совершенствуя истребители и мо-торы для них, не могли не учитывать этого обстоятельства. В то же время английские «Спитфайры» и американские «Мустанги» отличались большей высотностью, поскольку характер действий, на которые они рассчитывались, был совсем иной. Кроме того, Р-51D обладал намного большей дальностью полета, необходимой для сопровождения тяжелых бомбардировщиков, и поэтому был значительно тяжелее, чем «Спитфайры», немецкие Bf 109 и советские истребители. Таким образом, поскольку английские, американские и советские истребители создавались под разные боевые условия, то теряет смысл вопрос, какая из машин в целом являлась наиболее эффективной. Сравнивать целесообразно только основные технические решения и особенности машин.

Иначе обстоит дело с немецкими истребителями. Они предназначались для борьбы в воздухе как на Восточном, так и на Западном фронтах. Поэтому их вполне обоснованно можно сопоставлять со все-ми истребителями союзников.

Так чем же выделялись лучшие истребители второй мировой войны? В чем состояло принципиальное их отличие друг от друга? Начнем с главного — с технической идеологии, закладывавшейся конструкторами в проекты этих самолетов.

Самыми необычными в плане концепции создания были, пожалуй, «Спитфайр» и «Мустанг».

«Это не просто хороший самолет, это «Спитфайр!» — такая оценка английского летчика-испытателя Г. Пауэлла, бесспорно, относится и к одному из последних воевавших вариантов истребителя этого семейства — «Спитфайр» XIV, лучшему истребителю британских воздушных сил периода войны. Именно на «Спитфайр» XIV в воздушном бою был сбит немецкий реактивный истребитель Ме 262.

Создавая «Спитфайр» в середине 30-х годов, проектировщики попытались совместить, казалось бы, несовместимые вещи: высокую скорость, свойственную входящим тогда в жизнь скоростным истребителям-монопланам, с прекрасными маневренными, высотными и взлетно-по-садочными характеристиками, присущи-ми бипланам. Цель, в основном, была достигнута. Как и многие другие скоростные истребители, «Спитфайр» имел схему свободнонесущего моноплана хорошо обтекаемых форм. Но это было только внешнее сходство. Для своего веса «Спит-файр» имел крыло сравнительно больших размеров, что давало малую нагрузку на единицу несущей поверхности, намного меньшую, чем у других истребителей-монопланов. Отсюда отличная маневренность в горизонтальной плоскости, высокий потолок и хорошие взлетно-посадочные свойства. Такой подход не был чем-то исключительным: подобным образом поступали, например, японские конструкторы. Но создатели «Спитфайра» пошли дальше. Из-за большого аэродинамического сопротивления крыла столь значительных размеров нельзя было рассчитывать на достижение высокой максимальной скорости полета — одного из важнейших показателей качества истребителей тех лет. Чтобы уменьшить сопротивление, применили профили намного меньшей относительной толщины, чем у других истребителей, и придали крылу эллиптическую форму в плане. Это дополнительно снизило аэродинамическое сопротивление при полете на большой высоте и на режимах маневра.

Фирме удалось создать незаурядный боевой самолет. Это не означает, что «Спитфайр» был лишен каких-либо недостатков. Они были. Например, из-за малой нагрузки на крыло он уступал многим истребителям по разгонным свойствам на пикировании, Медленнее, чем немецкие, американские и тем более советские истребители, реагировал по крену на действия летчика. Однако эти недостатки не носили принципиального характера, и в целом «Спитфайр» бесспорно был одним из сильнейших истребителей воздушного боя, который в деле продемонстрировал отличные качества.

Среди многих вариантов истребителя «Мустанг» наибольший успех выпал на долю самолетов, оснащавшихся английскими моторами «Мерлин». Это были Р—51В, С и, конечно же, Р-51D — лучший и самый известный американский истребитель второй мировой войны. Как раз эти самолеты с 1944 г. обеспечивали безопасность тяжелых американских бомбардировщиков В-17 и В-24 от атак немецких истребителей и в бою продемонстрировали свое превосходство.

Главной отличительной чертой «Мустанга» в плане аэродинамики было ламинарное крыло, впервые в мировой практике авиастроения установленное на боевом самолете. Об этой «изюминке» самолета, родившейся в лаборатории американского научно-исследовательского центра NACA накануне войны, следует сказать особо. Дело в том, что мнение специалистов по поводу целесообразности применения ламинарного крыла на истребителях того периода неоднозначно. Если перед войной на ламинарные крылья возлагали большие надежды, поскольку при определенных условиях они обладали меньшим аэродинамическим сопротивлением по сравнению с обычными, то опыт работы с «Мустангом» поубавил первоначальный оптимизм. Оказалось, что при реальной эксплуатации такое крыло недостаточно эффективно. Причина заключалась в том, что для реализации ламинарного течения на части такого крыла требовалась весьма тщательная отдел-ка поверхности и высокая точность в выдерживании профилировки. Из-за шероховатости, возникавшей при нанесении защитной окраски на самолет, и даже небольшой неточности в профилировке, неизбежно появлявшейся в серийном производстве (небольшая волнообразность тонкой металлической обшивки), эффект ламинаризации на крыле Р-51 сильно снижался. По своим несущим свойствам ламинарные профили уступали обычным, что вызывало трудности в обеспечении хороших маневренных и взлетно-посадочных свойств.

 

При небольших углах атаки ламинарные профили крыла (иногда их называли ламинизированными) имеют меньшее аэродинамическое сопротивление, чем профили обычного типа.

Кроме пониженного сопротивления ламинарные профили имели лучшие скоростные качества — при равной относи-тельной толщине эффекты сжимаемости воздуха (волновой кризис) проявлялись у них при больших скоростях, чем на профилях обычного типа. С этим уже тогда приходилось считаться. В пикировании, особенно на больших высотах, где скорость звука существенно меньше, чем у земли, самолеты стали достигать скоростей, при которых уже проявлялись особенности, связанные с приближением к скорости звука. Повысить так называемую критическую скорость можно было, либо применяя более скоростные профили, каковыми оказались ламинарные, либо уменьшая относительную толщину профиля, мирясь при этом с неизбежным увеличением веса конструкции и сокращением объемов крыла, часто используемых (в том числе и на Р-51D) для размещения бензобаков и оружия. Интересно, что благодаря намного меньшей относительной толщине профилей, волновой кризис на крыле «Спитфайра» возникал на большей скорости, чем на крыле «Мустанга».

 

Исследования в английском авиационном научном центре RAE показали, что благодаря существенно меньшей относительной толщине профилей крыла истребитель «Спитфайр» на больших скоростях имел меньший коэффициент аэродинамического сопротивления, чем «Мустанг». Это объяснялось более поздним проявлением волнового кризиса обтекания и более «мягким» его характером.

Если воздушные бои велись на относительно небольших высотах, кризисные явления сжимаемости воздуха почти не проявлялись, поэтому необходимость в специальном скоростном крыле остро не ощущалась.

Весьма необычным оказался путь со-здания советских самолетов Як-3 и Ла-7. По существу, они представляли собой глубокие модификации истребителей Як-1 и ЛаГГ-3, разработанных в 1940 г. и выпускавшихся серийно.

 

В советских ВВС на завершающем этапе войны не было истребителя более популярного, чем Як-3. В то время это был самый легкий истребитель. Французские летчики полка «Нормандия-Неман», воевавшие на Як-3, так отзывались о его боевых возможностях: «Як-3 дает вам полное превосходство над немцами. На Як-3 вдвоем можно драться против четверых, а вчетвером — против шестнадцати!»

Коренная переработка конструкции Яка была предпринята в 1943 г. с целью рез-кого улучшения летных характеристик при весьма скромной мощности силовых установок. Решающим направлением в этой работе стало облегчение самолета (в том числе и за счет уменьшения площади крыла) и существенное улучшение его аэродинамики. Пожалуй, это была единственная возможность качественно продвинуть самолет, так как новых более мощных моторов, подходящих для уста-новки на Як-1, советская промышленность серийно еще не выпускала.

Подобный, исключительно трудный в реализации, путь развития авиационной техники являлся неординарным. Обычный способ совершенствования комплекса летных данных самолетов состоял тогда в улучшении аэродинамики без заметных изменений габаритов планера, а также в установке более мощных моторов. Почти всегда это сопровождалось заметным увеличением веса.

Конструкторы Як-3 с этой многотрудной задачей справились блестяще. Вряд ли в истории авиации периода второй мировой войны можно найти другой пример аналогичной и столь результативно выполненной работы.

Як-3 по сравнению с Як-1 был намного легче, имел меньшие относительную толщину профиля и площадь крыла и обладал прекрасными аэродинамическими свойствами. Энерговооруженность самолета существенно возросла, что резко улучшило его скороподъемность, разгонные характеристики и вертикальную маневренность. В то же время такой важнейший для горизонтальной маневренности, взлета и посадки параметр, как удельная нагрузка на крыло, изменился мало. На войне Як-3 оказался одним из самых простых в пилотировании истребителей. Конечно, в тактическом плане Як-3 отнюдь не заменял собой самолеты, отличавшиеся более сильным вооружением и большей продолжительностью боевого полета, но прекрасно дополнял их, воплощая в себе идею легкой, скоростной и маневренной машины воздушного боя, предназначенной в первую очередь для борьбы с истребителями противника.

 

Один из немногих, если не единственный истребитель с мотором воздушного охлаждения, который с полным основанием можно отнести к лучшим истребителям воздушного боя второй мировой войны. На Ла-7 известный советский ас И. Н. Кожедуб сбил 17 немецких самолетов (в том числе и реактивный истребитель Ме-262) из 62 уничтоженных им на истребителях марки Ла.

История создания Ла-7 также необычна. В начале 1942 г. на базе истребителя ЛаГГ-3, оказавшегося довольно посредственной боевой машиной, был разработан истребитель Ла-5, отличавшийся от предшественника только силовой установкой (мотор жидкостного охлаждения заменили на гораздо более мощную двухрядную «звезду»). В ходе дальнейшего развития Ла-5 конструкторы основное внимание уделили его аэродинамическому совершенствованию. В период 1942-1943 гг. истребители марки «Ла» были наиболее частыми «гостями» в натурных аэродинамических трубах ведущего советского авиационного научно-исследовательского центра ЦАГИ. Главной целью таких испытаний было выявление основных источников аэродинамических потерь и определение конструктивных мероприятий, способствующих снижению аэродинамического сопротивления. Важная особенность этой работы состояла в том, что предлагаемые изменения конструкции не требовали больших переделок самолета и изменения процесса производства и могли быть сравнительно легко выполнены серийными заводами. Это была поистине «ювелирная» работа, когда, казалось бы, из сущих мелочей получался довольно впечатляющий результат.

Плодом такой работы стал появившийся в начале 1943 г. Ла-5ФН — один из сильнейших советских истребителей того времени, а затем и Ла-7 — самолет, по праву занявший место среди лучших истребителей второй мировой войны. Если при переходе от Ла-5 к Ла-5ФН повышение летных данных было достигнуто не только за счет лучшей аэродинамики, но и благодаря более мощному мотору, то улучшения характеристик Ла-7 добились исключительно средствами аэродинамики и снижением веса конструкции. Этот самолет имел скорость на 80 км/ч больше, чем Ла-5, из них 75% (то есть 60 км/ч) дала аэродинамика. Такой прирост скорости равносилен увеличению мощности мотора более чем на треть, причем без увеличения веса и габаритов самолета.

Лучшие черты истребителя воздушного боя воплотились в Ла-7: высокая скорость, отличная маневренность и скороподъемность. Кроме того, по сравнению с остальными истребителями, о которых здесь идет речь, он обладал большей живучестью, так как только этот самолет имел мотор воздушного охлаждения. Как известно, такие моторы не только более жизнеспособны, чем двигатели жидкостного охлаждения, но и служат своеобразной защитой летчика от огня с передней полусферы, поскольку имеют большие габариты поперечного сечения.

Немецкий истребитель Мессершмитт Bf 109 создавался примерно в то же время, что и «Спитфайр». Как и английский самолет, Bf 109 стал одним из наиболее удачных образцов боевой машины периода войны и прошел большой путь эволюции: его оснащали все более мощными моторами, улучшали аэродинамику, эксплуатационные и пилотажные характеристики. В плане аэродинамики наиболее крупные изменения последний раз были осуществлены в 1941 г., когда появился Bf 109F. Дальнейшее совершенствование летных данных шло, главным образом, за счет установки новых моторов. Внешне последние модификации этого истребителя – Bf 109G-10 и К-4 мало отличались от гораздо более раннего Bf 109F, хотя и имели ряд аэродинамических улучшений. (ghjljk;tybt)

(продолжение)


Если вам или вашей компании требуется доставка грузов из Италии. То, лучше всего с этой задачей справится компания «ЕВРО КАРГО». Ссылку на сайт которой я выложил выше.

alternathistory.livejournal.com

Airbus протестировал ламинарное крыло — AEX.RU

27 сентября 2017 г., AEX.RU –  Испытательный самолет Airbus A340, оснащенный  крылом с ламинарным профилем BLADE, совершил первый успешный полет в Тулузе. Самолет вылетел из аэропорта города Тарб на юге Франции в 11:00 по местному времени и приземлился в аэропорту Тулузы спустя 3 часа 38 минут. Об этом сообщает Airbus.

Данные испытания проводятся Airbus в рамках Европейской программы по изучению перспективных авиационных технологий Clean Sky. В ближайшие месяцы этот самолёт-лаборатория должен налетать более 150 часов.

«Проект BLADE (Breakthrough Laminar Aircraft Demonstrator in Europe), который расшифровывается как “Перспективный ламинарный авиационный демонстратор в Европе”, направлен на изучение возможностей применения данной технологии в коммерческой авиации. По мнению специалистов компании Airbus, ламинарное крыло позволит улучшить экологические показатели воздушных судов, снизив в общей сложности сопротивление воздуха на 50% и уменьшив выбросы CO2 на 5%. Испытательный А340 стал первым в мире испытательным бортом, на котором околозвуковой ламинарный профиль крыла интегрирован в существующую конструкцию воздушного судна», — рассказали в Airbus. 

Для проведения данных испытаний на самолете-лаборатории А340 были частично демонтированы части оригинального крыла и вместо них установлено крыло с ламинарным профилем. Крыло было установлено таким образом, чтобы оно в точности воспроизводило реальные условия полета. Внутри салона А340 было установлено разнообразное контрольно-измерительное оборудование, которое обрабатывает и анализирует всю информацию, поступающую в ходе полета. Все подготовительные работы заняли в общей сложности 16 месяцев. 

“Во время первого полета мы оценивали общее поведение самолета. При достижении проектной скорости полета на необходимой высоте все системы самолета  функционировали хорошо. Кроме того, мы проверяли настройки контрольно-измерительного оборудования”, – отметил Филипп Сев, инженер-испытатель  Airbus.

На поверхности крыла установлены сотни датчиков, которые проводят замеры волнообразности поверхности крыла и оценивают ее влияние на ламинарное обтекание. Внутри гондол двигателей также были установлены инфракрасные камеры, которые измеряют температуру поверхности крыла, а также звуковые датчики, которые измеряют влияние акустических волн на ламинарное обтекание. Кроме того, на самолете также установлена система рефлектометрии, которая позволяет отслеживать деформации воздушного обтекания крыла в режиме реального времени.

www.aex.ru

Французы испытали ламинарное крыло

za / wikipedia.org

Французская компания Onera совместно с итальянской Leonardo провела испытания гладкого крыла, оптимизированного для ламинарного потока. Как пишет Aviation Week, испытания состоялись в трансзвуковой аэродинамической трубе S1MA французской компании. В настоящее время специалисты анализируют данные, полученные во время испытаний, однако, согласно предварительным результатам, гладкое крыло показало несколько меньшее лобовое сопротивление по сравнению с обычным крылом самолета.

Объемы авиационных перевозок увеличиваются с каждым годом. Для того, чтобы удовлетворить спрос, снизив при этом стоимость авиаперевозок и не повлияв на доходы авиакомпаний, разработчики постоянно исследуют новые технологии улучшения самолетов. В частности, активные работы ведутся в области снижения потребления топлива самолетом в полете. Эту задачу можно решить несколькими способами. Например, снизить потребление топлива на несколько процентов можно улучшив конструкцию двигателей.

Еще одним способом уменьшить потребление топлива является снижение лобового сопротивления самолета. Этого можно добиться пересмотрев конструкцию самолетов, используя новые легкие материалы и покрытия. Согласно планам разработчиков, новое ламинарное крыло должно отличаться существенно меньшим лобовым сопротивлением по сравнению со стандартным крылом самолета. Такое крыло должно иметь гладкую поверхность и невысокий профиль, чтобы обеспечить ламинарный воздушный поток на как можно большей площади. 

Ламинарное крыло в аэродинамической трубе (слева) и тепловизионное изображение ламинарного потока на его верхней плоскости   Onera

В аэродинамической трубе испытания проходили испытания левой консоли ламинарного крыла самолета длиной 5,2 метра. Продувочные испытания проводились на скорости воздушного потока 0,74 числа Маха (913,7 километра в час). Для изучения обтекающего крыло воздушного потока использовались высокоточные тепловизоры, замерявшие температуру на крыле в режиме реального времени. В результате выяснилось, что на верхней плоскости крыла площадь покрытия ламинарным потоком составила 70 процентов, а на нижней 30 процентов. 

Для современного обычного самолетного крыла площадь покрытия ламинарным потоком в зависимости от конструкции составляет от 30 до 50 процентов для верхней плоскости и до 30 процентов — для нижней. На части крыла обязательно должно присутствовать турбулентное течение, повышающее его несущую способность. Для этого на современных самолетах на верхней плоскости крыла устанавливаются небольшие пластинки — завихрители потока, разрушающие ламинарный поток.

Тем не менее, считается, что в гражданской авиации, самолеты которых как правило не выполняют полетов на критических углах атаки, ламинарное удлиненное крыло может быть успешно использовано. При стабильном полете с без резких изменений углов атаки гладкое крыло может существенно снизить лобовое сопротивление, а значит потребление топлива в полете. Когда именно новое крыло может появиться на серийных самолетах, пока неизвестно.

Сегодня активными работами в области исследования гладкого крыла, оптимизированного для ламинарного обтекания, занимаются шведская компания Saab и британская GKN. Первая исследует композитное крыло, в котором передняя кромка и верхняя плоскость выполнены единой деталью, с пристыковкой остальных элементов и механизации с минимальными зазорами. В свою очередь GKN исследует обычное крыло, элементы которого плотнее обычного подогнаны друг к другу. Испытания обоих крыльев начнутся в текущем году.

Между тем, в феврале прошлого года GKN представила занялась исследованиями в области красок, которые позволят снизить лобовое сопротивление самолетов. Благодаря новым покрытиям разработчики рассчитывают снизить лобовое сопротивление на 25 процентов в крейсерском полете. Свои свойства новые краски должны будут сохранять на протяжении пяти лет, такой срок является стандартным требованием для внешних покрытий самолетов.

При нанесении на корпус самолета новые краски должны будут скрывать дефекты поверхности, обеспечивая тем самым ламинарное обтекание воздухом аэродинамических поверхностей, в первую очередь передних кромок, нередко имеющих неоднородную поверхность.

Василий Сычёв

https://nplus1.ru/news/2017/02/06/laminar

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

aviator.guru

КАКОЙ ПОДОБРАТЬ ПРОФИЛЬ ДЛЯ АВИАМОДЕЛИ — Паркфлаер

Правильный подбор профиля для свободнолетающей авиамодели — важнейший фактор достижения хороших летных качеств крылатого аппарата. Исходя из многолетнего опыта работы кружка краевой станции юных техников, предлагаем для воспроизведения целый ряд испытанных и отлично зарекомендовавших себя сечений для спортивных планеров-парителей.

Вариант № 1 подходит для условий тихой безветренной погоды и для моделей площадью 32—34 дм2 при удлинении крыла 13—15. При силе ветра 3—5 м/с и удлинении крыла 11—13 рекомендуются профили № 2 и 3. Варианты № 4 и 5 специально предназначены для тренировочных аппаратов с малым удлинением или же для условий сильно порывистого ветра.

Для небольших планеров, имеющих несущую площадь 17—19 дм2 (школьного подкласса), хорошо подходят профили № 6—9. При этом вариант № 6 в основном применяется для учебно-тренировочных моделей, а остальные — для чисто спортивных. Стабилизаторы же всех планеров делаются по схемам №10-12.

(Автор: В. ПЕТРОВ, Хабаровск)

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ

Genese №16 Clark-Y

Genese №16 Этот профиль был разработан специально для применения на авиамоделях при обтекании с малыми числами Рей-нольдса. Испытан сотрудниками редакции журнала на ряде авиамоделей (в частности, на модели самолета «Ностромо-35»). Обладает хорошими срывными характеристиками.

Позволяет сохранить небольшое значение посадочной скорости (приемлемое для пилота квалификации ниже средней) даже при удельной нагрузке на крыло 75-100 г/дм2. В целом не чувствителен к искажению формы, но жесткая обшивка лобика крыла все же предпочтительна. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах. Clark-Y

Без всякой натяжки можно назвать профилем всех времен и народов. Первые достоверные результаты продувки были получены в лаборатории LMAL-NACA в 1924 году. До сих пор считается одним из лучших для учебно-тренировочных моделей. При применении на планерах по совокупности данных почти не уступает современным ламинарным профилям. Не чувствителен к искажению формы при использовании мягкой обшивки. Плоская нижняя поверхность облегчает сборку конструкции. Может быть рекомендован для применения на учебных моделях, копиях и планерах.

Имеет следующие характеристики: Су mах = 1,373, Cx min= 0,0106, См0=0,08, (Су/Сх)mах=22,4. На диаграмме нанесены кривые: поляра Су= f(Cx) с отметками углов атаки, кривая Су= f(α), кривая СмА= f(Cy), кривая Су/ Сх = f(α), кривая Сy= (1/πλ)Cy2.

ГРАФИК ОСНОВНЫХ ХАРАКТЕРИСТИК ПРОФИЛЯ CLARK-Y

АВИАМОДЕЛЬНЫЕ ПРОФИЛИ
Е-385 и Е-387

Профили крыла авиамоделей. Е-385 и Е-387 рекомендуются для планеров парящего типа. Профиль Е-387 (кстати, он наиболее популярен) при чуть меньших значениях подъемной силы имеет явно лучшие характеристики в зоне нулевой подъемной силы. Значит, планер, крылья которого оборудованы данным профилем, окажется, способен на полет с высокой скоростью при сохранении весьма высоких парящих качеств.

Е-385 больше подходит для чистокровных парителей, где проблема потенциальной быстроходности модели не так важна, как коэффициент мощности крыла. Имейте в виду, что для Е-385 СМО=-0,168, а для Е-387 Смо=-0,081 (практически в два раза меньше). Это означает, что балансировочные потери во втором случае будут меньше (можно закладывать в проект планера горизонтальное оперение уменьшенной эффективности).

Также более низкий уровень окажется и у крутильных нагрузок (этот фактор весьма важен при создании легких крыльев высокого удлинения). У упомянутых профилей отличаются и углы нулевой подъемной силы. Для Е-385 α0=-6,64°, а для Е-387 α0=-1,17°. Нижней границей допустимых чисел Рейнольдса для обоих профилей можно принять величину 100 000.

Достаточная относительная толщина профилей обеспечивает возможность постройки легких крыльев большого удлинения с традиционной силовой схемой. Хотя Е-385 и Е-387 относятся к ламиниризированным, на практике оказалось, что крылья моделей могут иметь широкую зону с мягкой обшивкой. Конечно, при этом лобик крыла шириной примерно в треть хорды должен иметь жесткую обшивку.

Кроме того, обводы этой части крыла желательно воспроизвести с максимальной точностью. На сегодняшний день в мире создано множество планеров, снабженных упомянутыми профилями. И существенной разницы между вариантами с полной жесткой обшивкой крыла и с частично мягкой не отмечалось нигде. Поэтому, если перед вами стоит проблема жесточайшей экономии веса модели, смело проектируйте крыло с пленочной обшивкой задней части.


ПРОФИЛЬ ДЛЯ СТАБИЛИЗАТОРА
HS3, NACA 0009, G-795

Профили для стабилизаторов HS3. В последнее время профилировка стабилизаторов стала весьма «стилизованной». Тем не менее, работы по поиску оптимальных решений не прекращаются. Так, можно вспомнить дипломную работу М. Хамма из института аэродинамики при техническом университете Штутгарта. Будущий инженер на рубеже 90-х годов разработал серию симметричных профилей HS1, HS2 и HS3.

Продувки показали, что при практически одинаковых координатах профилей HS2 и HS3 последний имеет уменьшенное сопротивление в диапазоне реальных летных углов атаки (отличие профилей только в том, что носик HS3 очень острый, совершенно без радиуса). При симметричной профилировке стабилизатора классическим решением можно признать выбор NACA 0009, а при плосковыпуклой профиль типа Clare-Y 8% или тот же G-795. Подборку профилей подготовил

(Источник журнал Моделизм спорт и хобби)


АВИАМОДЕЛЬНЫЙ ПРОФИЛЬ ЕБ-380

Несмотря на то, что практически все применяемые на авиамоделях современные профили имеют более чем «высокое происхождение» (создаются они настоящими учеными-аэродинамиками с привлечением сложных специализированных компьютерных программ и, как правило, потом проходят ряд испытаний в особых малотурбулентных аэродинамических трубах), изредка бывают исключения из этого правила.

Примером может служить профиль, полученный чехом Томашем Бартовским путем «скрещивания» двух весьма популярных профилей профессора Эп-плера — Е-387 и Е-374. К сожалению, в статье, опубликованной в чешском «Моделярже» в 1980, году не упоминалось, по какой методике шел поиск «золотой середины».

Однако было ясно, что Томаша не устраивала явная кривизна Е-387 и связанная с этим невозможность его применения на больших скоростях (при выходе на малые значения коэффициента подъемной силы Су для Е-387 характерен значительный рост коэффициента сопротивления Сх), а также недостаточная относительная толщина Е-374, не позволяющая изготавливать жесткие крылья большей длины, и слабый достигаемый им максимальный Су (что, в общем, характерно для таких профилей).

Новый профиль, названный автором ЕБ-380, имеет весьма важную технологическую особенность. На большей части образующая его нижняя полудужка совершенно ровная, что значительно упрощает создание несущих плоскостей с подобной профилировкой. Интересна дальнейшая история ЕБ-380. Сначала этот профиль был использован Бартовским на крыле планера с частично жесткой обшивкой, обтянутом материалом — аналогом нашей длинноволокнистой микалентной бумаги.

Результаты испытаний оказались, по крайней мере, ниже среднего. Естественно, Томаш после этого отказался от своего детища и строил модели, используя такие профили, как Фх60-126, Е-178, Е-193 и другие. Через некоторое время он все же вернулся к ЕБ-380 и рискнул еще раз испытать его на планере. Правда, теперь крыло имело цельнобальзовую обшивку с лакированной, отшлифованной и полированной поверхностью. Результаты полетов превзошли все ожидания.

По мнению Томаша, новый профиль был намного лучше, чем все ранее используемые им на моделях, и обладал к тому же очень широким диапазоном режимов. ЕБ-380 предлагался автором как весьма подходящий для планеров класса ФЗБ (в условиях восьмидесятых годов!). Рекомендовалось также при изготовлении крыльев строго соблюдать точность теоретических обводов и технологий, обеспечивающих высокое качество и гладкость поверхности.

Насколько было ясно из статьи в «Моделярже», поляра ЕБ-380 носила лишь ознакомительный характер и являлась плодом чисто умозрительных размышлений автора. Интересно отметить, что приведенные в чешском журнале изображения профиля не соответствовали помещенной тут же таблице координат, хотя и предназначались для прямого «перекалывания» без промежуточных построений (даны натурные профили с хордой 160, 180, 205, 230 и 250 мм). На изображениях отсутствовало поджатие верхней задней части полудужки, четко проявляющееся при точном построении.

Судя по всему, оно было спрямлено либо самим автором, либо художником, выполнявшим рисунки. Поэтому здесь правомерно вести речь только о модифицированном ЕБ-380, который в дальнейшем мы будем именовать ЕБ-380м. Длительное время о профиле Бартовского не было ничего слышно. И вдруг совсем недавно появился целый ряд успешных разработок метательных радиопланеров, крылья которых снабжены ЕБ-380м.

Спортсмены довольны этим профилем, хвалят его характеристики и особо — универсальность. Он позволяет летать как в режиме чистого тихоходного парения, так и в скоростном, без потери аэродинамических свойств. На кроссовых планерах ЕБ-380 не «прижился» даже в свое время (сейчас там совершенно иные профили), зато на «металках», которые завоевывают все большую популярность во всем мире, он взял свое.

Причем именно в нёрекомендованном автором исполнении — на крыльях с частичной и полной мягкой обшивкой, да еще и на весьма малых числах Рейнольдса. Последнее, возможно, оправдано довольно острой «турбулизирующей» передней частью профиля и дополнительной турбулизацией воздуха за счет сравнительно шероховатой бумажной обшивки. Если вы занимаетесь созданием «металок» или легких планеров-парителей, может, имеет смысл попробовать применить именно ЕБ-380 или ЕБ-380м? Подумайте…

Рис. 1. Точные обводы профиля ЕБ-380. (Хорда равна 100 мм.) Вверху показан профиль ЕБ-380м, приведенный на страницах чешского журнала «Моделярж» в качестве точных шаблонов профиля ЕБ-380.

Источник : http://masteraero.ru

www.parkflyer.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *