Содержание

Нейтронная звезда

Остаток сверхновой Корма-А, в центре которой находится нейтронная звезда

Нейтронные звезды являются остатками массивных звезд, которые достигли конца своего эволюционного пути во времени и пространстве.

Общие сведения

Общая схема внутреннего строения

Эти интересные объекты, рождаются от некогда массивных гигантов, которые в четыре-восемь раз больше нашего Солнца. Происходит это во вспышке сверхновой.

Материалы по теме

После такого взрыва внешние слои выбрасываются в космос, ядро остается, но она больше не в состоянии поддерживать ядерный синтез. Без внешнего давления от вышележащих слоев, она коллапсирует и катастрофически сжимается.

Несмотря на свой малый диаметр — около 20 км, нейтронные звезды могут похвастаться в 1,5 раза большей массой нежели чем у нашего Солнца. Таким образом, они являются невероятно плотными.

Маленькая ложка вещества звезды на Земле будет весить около ста миллионов тонн. В ней протоны и электроны объединяются в нейтроны – этот процесс называется нейтронизацией.

Состав

Состав их неизвестен, предполагают, что они могут состоять из сверхтекучей нейтронной жидкости. Они обладают чрезвычайно сильным гравитационным притяжением, гораздо больше, чем у Земли и даже у Солнца. Это гравитационные силы особенно впечатляют, поскольку она имеет небольшой размер.

Все они вращаются вокруг оси. При сжатии, угловой момент вращения сохраняется, а из-за уменьшения размеров, скорость вращения возрастает.

Нейтронные звезды в одной картинке

Из-за огромной скорости вращения, внешняя поверхность, представляющая собой твердую «кору» периодически трескается и происходят «звездотрясения», которые замедляют скорость вращения и сбрасывают «излишки» энергии в космос.

Ошеломляющее давление, которое существуют в ядре, может быть похоже на то, которое существовало в момент большого взрыва, но к сожалению, его нельзя смоделировать на Земле. Поэтому эти объекты являются идеальными природными лабораториями, где мы можем наблюдать энергии недоступные на Земле.

Радиопульсары

Радиоульсары были открыты в конце 1967 г. аспирантом Jocelyn Bell Burnell как радиоисточники, которые пульсируют на постоянной частоте.
Радиация, испускаемая звездой, видна как пульсирующий источник излучения или пульсар.

Схематическое изображение вращения нейтронной звезды

Радиопульсары (или просто пульсар) — это вращающиеся нейтронные звезды, струи частиц которых, движутся почти со скоростью света, как вращающийся луч маяка.

После непрерывного вращения, в течение нескольких миллионов лет, пульсары теряют свою энергию и становятся нормальными нейтронными звездами. На сегодня известно только около 1000 пульсаров, хотя их могут быть сотни в галактике.

Радиопульсар в Крабовидной туманности

Некоторые нейтронные звезды испускают рентгеновское излучение. Знаменитая Крабовидная туманность — хороший пример такого объекта, образовавшейся во время взрыва сверхновой. Эта вспышка сверхновой наблюдалась в 1054 году нашей эры.

Ветер от Пульсара, видео телескопа Чандра

Радиопульсар в Крабовидной туманности, сфотографированный с помощью космического телескопа Хаббла через фильтр 547nm (зеленый свет) с 7 августа 2000 года по 17 апреля 2001 года.

Пульсар в Крабовидной туманности

Магнетары

Нейтронные звезды имеют магнитное поле в миллионы раз сильнее, чем самое сильное магнитное поле, производимое на Земле. Они также известны как магнетары.

Магнетар в представлении художника

Планеты у нейтронных звезд

На сегодня известно, что у четырех есть планеты. Когда она находится в двойной системе, то возможно измерить ее массу. Из числа таких двоичных систем в радио или рентгеновском диапазоне, измеренные массы нейтронных звезд были примерно в 1.4 раза больше массы Солнца.

Двойные системы

Аккрецирующая нейтронная звезда, схема

Совсем иной тип пульсаров виден в некоторых рентгеновских двойных системах. В этих случаях, нейтронная звезда и обычная образуют двойную систему. Сильное гравитационное поле тянет материал из обычной звезды. Материал, падающий на нее в процессе аккреции, нагревается так сильно, что производит рентгеновские лучи. Импульсные рентгеновские лучи видны, когда горячие пятна на вращающемся пульсаре проходят через луч зрения с Земли.

Для бинарных систем, содержащих неизвестный объект, эта информация помогает отличить: является ли он нейтронной звездой, или например черной дырой, потому что черные дыры куда более массивные.


comments powered by HyperComments

spacegid.com

Нейтронная звезда - это... Что такое Нейтронная звезда?

Строение нейтронной звезды.

Нейтро́нная звезда́ — астрономический объект, являющийся одним из конечных продуктов эволюции звёзд, состоящий из нейтронной сердцевины и сравнительно тонкой (∼1 км) коры вырожденного вещества, содержащей тяжёлые атомные ядра. Масса нейтронной звезды практически такая же, как и у Солнца, но радиус составляет около 10 км. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м³). Считается, что нейтронные звезды рождаются во время вспышек сверхновых.

Столкновение

Общие сведения

Массы большинства известных нейтронных звёзд близки к 1,44 массы Солнца, что равно значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 1,4 до примерно 2,5 солнечных масс, однако эти значения в настоящее время известны весьма неточно. Самые массивные нейтронные звёзды из открытых — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %)

[1] и PSR J1614-2230 (англ.) (с оценкой массы 1,97±0,04 солнечных)[2][3][4]. Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера — Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки того, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.[5]

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше. Такие поля (превышающие «критическое» значение 4,414·10

13 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec²) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

История открытия

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды — одни из немногих астрономических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронные звёзды могут образовываться в результате взрыва сверхновой. Теоретические расчеты того времени показали, что излучение нейтронных звёзд слишком слабо, и их невозможно обнаружить. О нейтронных звёздах на время забыли. В 1967 году Джоселин Белл, аспирантка Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён как узко направленный радиолуч от быстро вращающегося объекта — своеобразный «космический маяк». Но обычные звёзды разрушились бы от столь высокой скорости вращения. На роль таких маяков могли подходить только нейтронные звезды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Классификация нейтронных звёзд

Существует два параметра, характеризующих взаимодействие нейтронных звёзд с окружающим веществом и как следствие их наблюдательные проявления: период вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её период вращения увеличивается. Магнитное поле тоже ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения.[6]

Эжектор (радиопульсар)

Сильные магнитные поля и малый период вращения. Магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и сама нейтронная звезда. На определённом радиусе линейная скорость вращения поля начинает превосходить скорость света. Этот радиус называется радиусом светового цилиндра. За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать на бесконечность. Нейтронная звезда данного типа

эжектирует (от фр. éjecter — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Для наблюдателя эжекторы выглядят как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдательных проявлений, и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов нейтронной звезды, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала, и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм срабатывает в магнитосфере Земли, из-за чего данный тип и получил своё название.

В литературе

См. также

Примечания

Литература

Ссылки

dic.academic.ru

"Сверхтяжелая" нейтронная звезда отрицает теорию "свободных" кварков

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.

ria.ru

Нейтронная звезда — Википедия. Что такое Нейтронная звезда

Строение нейтронной звезды.

Нейтро́нная звезда́ — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, — до нескольких сотен оборотов в секунду. Нейтронные звёзды возникают в результате вспышек сверхновых звёзд.

Общие сведения

Нейтронная звезда в разрезе.

Среди нейтронных звёзд с надёжно измеренными массами большинство попадает в интервал от 1,3 до 1,5 масс Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,16[1] солнечных масс. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %)[2], PSR J1614–2230ruen (с оценкой массы 1,97±0,04 солнечных)[3][4][5], и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звёзд в кварковые[6].

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013Гс (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. C 1990-х годов некоторые нейтронные звёзды отождествлены как магнетары — звёзды, обладающие магнитными полями порядка 1014 Гс и выше.

Магнитные поля, превышающие «критическое» значение 4,414·1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec², привносят качественно новое в физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2015 году открыто более 2500 нейтронных звёзд. Порядка 90 % из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака, нейтронная звезда может быть в этой ситуации видна с Земли в разных спектральных диапазонах, включая оптический, на который приходится около 0,003 % излучаемой энергии (соответствует 10 звёздной величине)[7].

Строение

В нейтронной звезде можно выделить пять слоёв: атмосфера, внешняя кора, внутренняя кора, внешнее ядро и внутреннее ядро.

Атмосфера нейтронной звезды — очень тонкий слой плазмы (от десятков сантиметров у горячих звёзд до миллиметров у холодных), в ней формируется тепловое излучение нейтронной звезды[8].

Внешняя кора состоит из ионов и электронов, её толщина достигает нескольких сотен метров. Тонкий (не более нескольких метров) приповерхностный слой горячей нейтронной звезды содержит невырожденный электронный газ, более глубокие слои — вырожденный электронный газ, с увеличением глубины он становится релятивистским и ультрарелятивистским[8].

Внутренняя кора состоит из электронов, свободных нейтронов и нейтронно-избыточных атомных ядер. С ростом глубины доля свободных нейтронов увеличивается, а атомных ядер — уменьшается. Толщина внутренней коры может достигать нескольких километров[8].

Внешнее ядро состоит из нейтронов с небольшой примесью (несколько процентов) протонов и электронов. В маломассивных нейтронных звёздах внешнее ядро может простираться до центра звезды[8].

В массивных нейтронных звёздах есть и внутреннее ядро. Его радиус может достигать нескольких километров, плотность в 10-15 раз превышает плотность атомных ядер. Состав и уравнение состояния внутреннего ядра достоверно неизвестны: существует несколько гипотез, но в настоящее время невозможно подтвердить или опровергнуть какую-либо из них[8].

Остывание нейтронных звёзд

В момент рождения нейтронной звезды (в результате вспышки сверхновой), её температура очень высока — порядка 1011 K (то есть на 4 порядка выше температуры в центре Солнца), но она очень быстро падает за счёт нейтринного охлаждения. Всего за несколько минут температура падает с 1011 до 109 K, за сто лет — до 108 K. Затем нейтринная светимость резко снижается (она очень сильно зависит от температуры), и охлаждение происходит гораздо медленнее за счёт фотонного (теплового) излучения поверхности. Температура поверхности известных нейтронных звёзд, у которых её удалось измерить, составляет порядка 105—106 K (хотя ядро, видимо, гораздо горячее)[8].

История открытия

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды — один из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

Впервые мысль о существовании звёзд с увеличенной плотностью ещё до открытия нейтрона, сделанного Чедвиком в начале февраля 1932 года, высказал известный советский учёный Лев Ландау. Так, в своей статье «О теории звёзд», написанной в феврале 1931 года и по неизвестным причинам запоздало опубликованной 29 февраля 1932 года (более чем через год), он пишет: «Мы ожидаем, что всё это [нарушение законов квантовой механики] должно проявляться, когда плотность материи станет столь большой, что атомные ядра придут в тесный контакт, образовав одно гигантское ядро».

В декабре 1933 года на съезде Американского физического общества (15—16 декабря 1933 года) астрономы Вальтер Бааде и Фриц Цвикки сделали первое строгое предсказание существования нейтронных звёзд. В частности, они выдвинули обоснованную точку зрения о том, что нейтронная звезда может образоваться в результате взрыва сверхновой. Теоретические расчёты показали, что излучение нейтронной звезды слишком слабое, чтобы её можно было обнаружить при помощи астрономических инструментов того времени. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирантка Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический радиомаяк». Но любая обычная звезда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Классификация нейтронных звёзд

Взаимодействие нейтронной звезды с окружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В. М. Липунова[9]. Поскольку теория магнитосфер пульсаров всё ещё в состоянии развития, существуют альтернативные теоретические модели (см. недавний обзор[10] и ссылки там).

Эжектор (радиопульсар)

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе RL=c/ω{\displaystyle R_{L}=c/\omega } линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвёздное пространство. Нейтронная звезда данного типа «эжектирует» (от англ. eject — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

«Пропеллер»

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается настолько, что веществу теперь ничего не препятствует падать на такую нейтронную звезду. Падая, вещество, уже будучи в состоянии плазмы, движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе её полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, поэтому наблюдаются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм работает в магнитосфере Земли, из-за чего данный тип нейтронных звёзд и получил своё название.

Примечания

Литература

  • Шапиро С. Л., Тьюколски С. А. Чёрные дыры, белые карлики и нейтронные звёзды / Пер. с англ. под ред. Я. А. Смородинского. — М.: Мир, 1985. — Т. 1—2. — 656 с.
  • С. Б. Попов, М. Е. Прохоров. Астрофизика одиночных нейтронных звёзд: радиотихие нейтронные звёзды и магнитары. — ГАИШ МГУ, 2002.
  • Haensel P., Potekhin A.Y., Yakovlev D.G. Neutron Stars. — N. Y.: Springer, 2007. — Т. 1. — 619 с. — ISBN 978-0-387-33543-8.
  • Д. Г. Яковлев, К. П. Левенфиш, Ю. А. Шибанов. Остывание нейтронных звёзд и сверхтекучесть в их ядрах (рус.) // УФН. — 1999. — Т. 169, № 8. — С. 825–868. — DOI:10.3367/UFNr.0169.199908a.0825.
  • А. Ю. Потехин. Физика нейтронных звёзд (рус.) // УФН. — 2010. — Т. 180. — С. 1279—1304.
  • Коккедэ Я. Теория кварков. — М.: Мир, 1971. — С. 27. — 341 с.
  • Попов С. Б. Суперобъекты. Звёзды размером с город. — М.: Литагент «Альпина», 2016.

Ссылки

wiki.sc

Нейтронная звезда

Нейтронная звезда
Neutron star

    Нейтронная звезда – сверхплотная звезда, образующаяся в результате взрыва Сверхновой. Вещество нейтронной звезды состоит в основном из нейтронов.
    Нейтронная звезда имеет ядерную плотность (1014-1015 г/см3) и типичный радиус 10-20 км. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов. Это давление вырожденного существенно более плотного нейтронного газа в состоянии удерживать от гравитационного коллапса массы вплоть до 3M. Таким образом, масса нейтронной звезды меняется в пределах (1.4-3)M.


Рис. 1. Сечение нейтронной звезды массой 1.5M и радиусом R = 16 км. Указана плотность ρ в г/см3 в различных частях звезды.

    Нейтрино, образующиеся в момент коллапса сверхновой, быстро охлаждают нейтронную звезду. Её температура по оценкам падает с 1011 до 109 К за время около 100 с. Дальше темп остывания уменьшается. Однако он высок по космическим масштабам. Уменьшение температуры с 109 до 108 К происходит за 100 лет и до 106 К – за миллион лет.
    Известно ≈ 1200 объектов, которые относят к нейтронным звёздам. Около 1000 из них расположены в пределах нашей галактики. Структура нейтронной звезды массой 1.5M и радиусом 16 км показана на рис. 1: I – тонкий внешний слой из плотно упакованных атомов. Область II представляет собой кристаллическую решётку атомных ядер и вырожденных электронов. Область III – твёрдый слой из атомных ядер, перенасыщенных нейтронами. IV – жидкое ядро, состоящее в основном из вырожденных нейтронов. Область V образует адронную сердцевину нейтронной звезды. Она, помимо нуклонов, может содержать пионы и гипероны. В этой части нейтронной звезды возможен переход нейтронной жидкости в твёрдое кристаллическое состояние, появление пионного конденсата, образование кварк-глюонной и гиперонной плазмы. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
    Обнаружить нейтронные звёзды оптическими методами сложно из-за малого размера и низкой светимости. В 1967 г. Э. Хьюиш и Дж. Белл (Кембриджский университет) открыли космические источники периодического радиоизлучения – пульсары. Периоды повторения радиоимпульсов пульсаров строго постоянны и для большинства пульсаров лежат в интервале от 10-2 до нескольких секунд. Пульсары – это вращающиеся нейтронные звёзды. Только компактные объекты, имеющие свойства нейтронных звёзд, могут сохранять форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при коллапсе сверхновой и образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с очень сильным магнитным полем 1010–1014 Гс. Магнитное поле вращается вместе с нейтронной звездой, однако, ось этого поля не совпадает с осью вращения звезды. При таком вращении радиоизлучение звезды скользит по Земле как луч маяка. Каждый раз, когда луч пересекает Землю и попадает на земного наблюдателя, радиотелескоп фиксирует короткий импульс радиоизлучения. Частота его повторения соответствует периоду вращения нейтронной звезды. Излучение нейтронной звезды возникает за счёт того, что заряженные частицы (электроны) с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Таков механизм радиоизлучения пульсара, впервые предложенный Т. Голдом (рис. 2).


Рис. 2. Модель пульсара

    Образование нейтронных звёзд не всегда является следствием вспышки сверхновой. Возможен и другой механизм: в ходе эволюции белых карликов в тесных двойных звёздных системах. Перетекание вещества звезды-компаньона на белого карлика постепенно увеличивает массу белого карлика и по достижении критической массы белый карлик превращается в нейтронную звезду.


Рис. 3. Крабовидная туманность с нейтронной звездой в центре


См. также

nuclphys.sinp.msu.ru

Мягкая или твёрдая? Спор о том, что находится внутри нейтронной звезды / Habr

Ядро нейтронной звезды находится в таком экстремальном состоянии, что физики не могут договориться о том, что происходит внутри неё. Но новый космический эксперимент — и несколько сталкивающихся нейтронных звёзд — должны показать, могут ли ломаться нейтроны


Предупреждения начали приходить рано утром 17 августа. Гравитационные волны, порождённые столкновением двух нейтронных звёзд — плотных ядер умерших звёзд — омывали Землю. Более 1000 физиков обсерватории aLIGO (Advanced Laser Interferometer Gravitational-Wave Observatory — лазерно-интерферометрическая гравитационно-волновая обсерватория) поспешили расшифровать вибрации пространства-времени, прокатившиеся по детекторам подобно долгому раскату грома. Тысячи астрономов боролись за право стать свидетелями послесвечения. Однако официально весь этот переполох держался в секрете. Нужно было собирать данные и писать научные работы. Внешний мир не должен был узнать об этом ещё два месяца.

Этот строгий запрет поставил Джоселин Рид и Катерино Чатциоаноу, двух членов коллаборации LIGO, в неловкое положение. Днём 17 числа они должны были вести конференцию, посвящённую вопросу о том, что происходит в невообразимых условиях внутренностей нейтронной звезды. А их темой как раз было то, как должно происходить слияние двух нейтронных звёзд. «Мы вышли на перерыв, сели и уставились друг на друга, — говорит Рид, профессор Калифорнийского университета в Фуллертоне. — Так как же мы это сделаем?»

Десятилетиями физики спорили о том, содержат или нет нейтронные звёзды в себе новые виды материи, появляющиеся, когда звезда ломает привычный мир протонов и нейтронов и создаёт новые взаимодействия между кварками или другими экзотическими частицами. Ответ на этот вопрос также пролил бы свет на астрономические загадки, окружающие сверхновые и появление тяжёлых элементов, вроде золота.

Кроме наблюдения за столкновениями при помощи LIGO, астрофизики разрабатывали творческие методы зондирования нейтронной звезды. Задача состоит в том, чтобы узнать какие-либо свойства её внутренних слоёв. Но сигнал, пришедший на LIGO, и подобные ему — испускаемые двумя нейтронными звёздами, обращающимися вокруг общего центра масс, притягивающимися друг к другу, и, наконец, врезающимися — предлагает совершенно новый подход к проблеме.

Странная материя


Нейтронная звезда — это сжатое ядро массивной звезды, очень плотные угли, оставшиеся после сверхновой. Её масса сравнима с солнечной, но сжата она до размеров города. Таким образом, нейтронные звёзды служат плотнейшими резервуарами материи во Вселенной — «последнее вещество на рубеже чёрной дыры», как говорит Марк Алфорд, физик из Вашингтонского университета в Сент-Луисе.

Пробурив такую звезду, мы бы приблизились к переднему краю науки. Пара сантиметров нормальных атомов — в основном, железо и кремний — лежат на поверхности, будто ярко-красное покрытие самых плотных сосательных конфет Вселенной. Затем атомы так сильно сжимаются, что теряют электроны, попадающие в общее море. Ещё глубже протоны начинают превращаться в нейтроны, находящиеся так близко, что они начинают перекрывать друг на друга.


Необыкновенное ядро нейтронной звезды. Физики пока ещё обсуждают, что именно находится внутри неё. Вот несколько основных идей.

Традиционная теория


Атмосфера — лёгкие элементы вроде водорода и гелия
Внешняя оболочка — ионы железа
Внутренняя оболочка — решётка ионов
Внешнее ядро — богатые нейтронами ионы в море свободных нейтронов

А что внутри?


  • В кварковом ядре нейтроны разваливаются на верхние и нижние кварки.
  • В гиперонном существуют нейтроны, состоящие из странных кварков.
  • В каонном — двухкварковые частицы с одним странным кварком.

Теоретики спорят о том, что происходит дальше, когда плотность в 2-3 раза начинает превышать плотность нормального атомного ядра. С точки зрения ядерной физики нейтронные звёзды могут просто состоять из протонов и нейтронов, то есть, нуклонов. «Всё можно объяснить вариациями нуклонов», — говорит Джеймс Латтимер, астрофизик из Университета в Стони-Брук.

Другие астрофизики считают иначе. Нуклоны — не элементарные частицы. Они состоят из трёх кварков [на самом деле, нет — прим. перев.]. Под невероятно сильным давлением кварки могут сформировать новое состояние — кварковую материю. «Нуклоны — это не бильярдные шары», — говорит Дэвид Блашке, физик из Вроцлавского университета в Польше. «Они больше похожи на вишенки. Их можно немного сжимать, но в какой-то момент вы их раздавите».

Но некоторые считают джем из кварков слишком простым вариантом. Теоретики давно думают о том, что внутри нейтронной звезды могут появляться слои из более странных частиц. Энергия сжимаемых вместе нейтронов может перейти в создание более тяжёлых частиц, содержащих не только верхние и нижние кварки, из которых состоят протоны и нейтроны, но и более тяжёлые и экзотические странные кварки.

К примеру, нейтроны могут уступать место гиперонам, трёхкварковым частицам, в которые входит по меньшей мере один странный кварк. В лабораторных экспериментах гипероны получались, но они практически сразу исчезали. Внутри нейтронных звёзд они могут стабильно существовать миллионы лет.

Как вариант, скрытые глубины нейтронных звёзд могут быть заполнены каонами — также состоящими из странных кварков — собирающимися в один кусок материи, находящийся в едином квантовом состоянии.

Но несколько десятилетий поле этих исследований было в тупике. Теоретики изобретали идеи по поводу того, что может происходить внутри нейтронных звёзд, но это окружение настолько экстремальное и малознакомое, что эксперименты на Земле не могут воссоздать нужных условий. В Брукхейвенской национальной лаборатории и в ЦЕРН физики сталкивают друг с другом тяжёлые ядра, например, золота и свинца. Это создаёт состояние материи, напоминающее суп частиц, в котором присутствуют свободные кварки, известное, как кварк-глюонная плазма. Но это вещество получается разреженным, не плотным, а его температура в миллиарды или триллионы градусов оказывается гораздо выше, чем у внутренностей нейтронной звезды, внутри которой царят относительно прохладные температуры в миллионы градусов.

Даже теория возрастом в несколько десятилетий, описывающая кварки и ядра, "квантовая хромодинамика" или КХД, не может дать ответов на эти вопросы. Вычисления, требующиеся для изучения КХД в относительно холодных и плотных средах до такой степени ужасно сложные, что их нельзя провести даже на компьютере. Исследователям остаётся довольствоваться чрезмерными упрощениями и разными трюками.

Единственный вариант — изучать сами нейтронные звёзды. К несчастью, они очень далеки, тусклы, и очень сложно измерить у них что-либо кроме самых основных свойств. Что ещё хуже, самая интересная физика происходит под их поверхностью. «Ситуация напоминает лабораторию, в которой происходит что-то удивительное, — говорит Алфорд, — в то время, как вы можете видеть только свет из её окон».

Но с новым поколением экспериментов теоретики могут, наконец, вскоре взглянуть на это как следует.



Инструмент NICER прямо перед запуском на МКС. Он отслеживает рентгеновское излучение нейтронных звёзд

Мягкое или твёрдое?


Что бы ни находилось в ядре нейтронной звезды — свободные кварки, конденсат каонов, гипероны или старые, добрые нуклоны — этот материал должен держаться против сокрушительной гравитации, превышающей солнечную. Иначе звезда схлопнулась бы в чёрную дыру. Но разные материалы могут сжиматься гравитацией в разной степени, что определяет максимально возможный вес звезды для заданного физического размера.

Астрономы, вынужденные оставаться снаружи, распутывают эту цепочку, пытаясь понять, из чего состоят нейтронные звёзды. А для этого очень хорошо было бы знать, насколько они мягкие или жёсткие на сжатие. Чтобы узнать это, астрономам необходимо измерить массы и радиусы различных нейтронных звёзд.

Среди нейтронных звёзд легче всего взвешивать пульсары: быстро вращающиеся нейтронные звёзды, радиолуч которых проходит сквозь Землю с каждым их поворотом. Порядка 10% из 2500 известных пульсаров относятся к двойным системам. В процессе движения этих пульсаров те их импульсы, что должны с равными промежутками достигать Земли, варьируются, выдавая движение пульсаров и их положение на орбитах. А зная орбиты, астрономы могут, воспользовавшись законами Кеплера и дополнительными поправками Эйнштейна и ОТО, находить массы этих парочек.

Пока что крупнейшим прорывом стало открытие неожиданно здоровых нейтронных звёзд. В 2010 году команда под руководством Скотта Рэнсома в Национальной радиоастрономической обсерватории Виргинии объявила, что измерила массу пульсара и нашла её равной двум солнечным — что гораздо больше ранее виденного. Некоторые даже сомневались в возможности существования таких нейтронных звёзд; это приводит к серьёзным последствиям для нашего представления о поведении ядер атомов. «Сейчас это одна из самых часто цитируемых работ по наблюдению за пульсарами, и всё благодаря физикам-ядерщикам», — говорит Рэнсом.

В соответствии с некоторыми моделями нейтронных звёзд, утверждающих, что гравитация должна их сильно сжимать, объект такой массы должен схлопнуться в чёрную дыру. Каонные конденсаты в таком случае пострадают, поскольку они достаточно мягкие, а также это не очень хорошо для некоторых вариантов квантовой материи и гиперонов, которые тоже сжались бы слишком сильно. Измерение было подтверждено открытием ещё одной нейтронной звезды, имеющей массу в две солнечных, в 2013 году.


Ферьял Озель, астрофизик из Аризонского университета, провела измерения, из которых следует, что в ядрах нейтронных звёзд содержится экзотическая материя

С радиусами всё немного сложнее. Астрофизики, например, Ферьял Озель из Аризонского университета, разработала различные приёмы для подсчёта физического размера нейтронных звёзд при помощи наблюдения за рентгеновскими лучами, исходящими с их поверхности. Вот один способ: можно измерить общее рентгеновское излучение, использовать его для оценки температуры поверхности, и затем рассчитать размер нейтронной звезды, способной излучать такие волны (внося поправки на то, как они изгибаются из-за гравитации). Также можно искать горячие точки на поверхности нейтронной звезды, постоянно появляющиеся и исчезающие из поля зрения. Сильное гравитационное поле звезды будет изменять световые импульсы в зависимости от этих горячих точек. Разобравшись в гравитационном поле звезды, можно воссоздать её массу и радиус.

Если верить этим расчётам Озел, получается, что хотя нейтронные звёзды и бывают довольно тяжёлыми, их размер находится в пределах 20-22 км в диаметре.

Принятие того факта, что нейтронные звёзды маленькие и массивные «загоняет вас в рамки, в хорошем смысле», — говорит Озел. Она говорит, что так должны выглядеть нейтронные звёзды, набитые взаимодействующими кварками, а у нейтронных звёзд, состоящих только из нуклонов, радиус должен был быть большим.


Джеймс Латтимер, астрофизик из Университета в Стони-Брук, утверждает, что в ядрах нейтронных звёзд нейтроны остаются нетронутыми

Но у Латтимера, среди прочих критиков, есть сомнения по поводу предположений, используемых при рентгеновских измерениях — он считает, что они ошибочные. Он думает, что они могут неоправданно уменьшить радиус звёзд.

Обе соперничающие стороны считают, что их спор вскоре разрешится. В прошлом июне 11-я миссия SpaceX доставила на МКС ящик весом 372 кг, содержащий рентгеновский телескоп Найсер (англ. Neutron star Interior Composition Explorer, NICER). Найсер, в данное время собирающий данные, создан для определения размеров нейтронных звёзд через изучение горячих точек на их поверхности. Эксперимент должен выдать лучшие измерения радиусов нейтронных звёзд, считая пульсары, массы которых измерены.

«Мы все очень ждём результатов», — говорит Блашке. Точно измеренные масса и радиус даже одной нейтронной звезды сразу отметут множество вероятных теорий, описывающих их внутреннюю структуру, и оставит только те, что выдают определённое соотношение размера и веса.

А теперь к экспериментам подключился ещё и LIGO.

Сначала сигнал, который Рид обсуждала за кофе 17 августа, обрабатывали как результат столкновения чёрных дыр, а не нейтронных звёзд. И это имело смысл. Все предыдущие сигналы с LIGO были получены от чёрных дыр, более сговорчивых объектов с вычислительной точки зрения. Но в порождении этого сигнала участвовали более лёгкие объекты, а продолжался он гораздо дольше, чем происходит объединение чёрных дыр. «Совершенно очевидно, что это оказалась не такая система, на которых мы тренировались», — сказала Рид.

Когда две ЧД сближаются по спирали, они излучают орбитальную энергию в пространство время в виде гравитационных волны. Но в последнюю секунду нового 90-секундного сигнала, полученного LIGO, каждый объект испытал то, чего не испытывают ЧД: он деформировался. Пара объектов стала растягивать и сжимать материю друг друга, создавая волны, изымающие энергию их орбит. Это заставило их столкнуться быстрее, чем было бы в ином случае.

После нескольких месяцев неистовой работы с компьютерными симуляциями, группа Рид в LIGO выпустила своё первое измерение эффектов, оказываемых этими волнами на сигнал. Пока у команды есть только верхний предел — что означает, что эффект, оказываемый волнами, слаб или даже просто незаметен. А это значит, что нейтронные звёзды физически малы, и их материя удерживается вокруг центра в очень плотном состоянии, что препятствует её приливному растяжению. «Думаю, что первое измерение через гравитационные волны вроде бы подтверждает то, о чём говорили рентгеновские наблюдения», — говорит Рид. Но это ещё не конец. Она ожидает, что более сложное моделирование того же сигнала выдаст более точную оценку.

Найсер и LIGO предоставляют новые способы изучения нейтронных звёзд, и многие эксперты с оптимизмом ждут, что в следующие несколько лет появятся недвусмысленные ответы на вопрос сопротивления материала гравитации. Но теоретики, например, Альфорд, предупреждают, что простое измерение мягкости материи нейтронной звезды не даст полной информации о ней.

Возможно, другие признаки скажут больше. К примеру, идущие наблюдения за скоростью охлаждения нейтронных звёзд должны позволить астрофизикам рассуждать о присутствующих внутри них частицах и их способности излучать энергию. Или же изучение замедления их вращения может помочь определить вязкость их внутренностей.

Но, в любом случае, просто знать, в какой момент происходит фазовый переход материи и во что она превращается — это достойная задача, считает Альфорд. «Изучение свойств материи, существующей в разных условиях — это, в общем, и есть физика», — говорит он.

habr.com

Нейтронная звезда

Нейтронные звезды

Содержание статьи:

Нейтронная звезда — малая звезда с большой плотностью, которая состоит из нейтронов. Это последняя стадия эволюции многих звезд. Нейтронная звезда образуется, когда массивная звезда вспыхивает в качестве Сверхновой звезды, взрывая свои внешние оболочки и сжимая ядро так, что содержащиеся в нем протоны и электроны превращаются в нейтроны. Эти звезды наблюдают как пульсары.

Плотность нейтронных звезд близка к плотности атомного ядра, т. е. в 100 млн. раз больше плотности обычного вещества. Масса этих звезд может быть сравнимой с массой Солнца, но, диаметр в среднем равен только лишь 10-20 км, а средняя плотность равняется 1015 г/см3. Максимальная масса нейтронных звезд составляет примерно три солнечных массы. При большей массе звезда превращается в Черную дыру. Обнаруживаются по импульсному радиоизлучению.


Образование нейтронной звезды

Звезда, масса которой в полтора, три раза больше, чем у Солнца не сможет в конце жизни остановить свое сжатие на стадии белого карлика. В результате гравитационного коллапса звезда сжимается до до такой плотности, при которой произойдет “нейтрализация” вещества: взаимодействие электронов с протонами приводит к тому, что почти вся звездная масса будет заключена в нейтронах. Образуются нейтронные звезды.

Самые большие и массивные звезды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остается нейтронная звезда или черная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая в последствии становится материалом для новых звезд.

Первые предположения

Концепция нейтронных звезд не является новой: впервые предположение о возможном их существования сделано талантливыми астрономами Фрицем Цвикки и Вальтером Баарде из Калифорнии в 1934 году (несколько ранее в 1932 году возможность существования нейтронных звезд была предсказана знаменитым советским ученым Л.Д. Ландау.) В конце 1930-х годов она стала предметом исследований других американских ученых Оппенгеймера и Волкова. Интерес физиков к этой проблеме был вызван стремлением определить конечную стадию эволюции массивной сжимающейся звезды. Так как роль и значение сверхновых вскрылись приблизительно в то же время, было предположено, что нейтронные звезды могут оказаться остатком взрыва сверхновых.

С нейтронной звездой связывают небесные объекты двух разных типов:

Пульсар (радиопульсар)

Этот объект строго регулярно излучает импульсы радиоволн. Механизмы излучений до конца не ясены, но считается, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Потому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.

Отличие пульсаров от нейтронных звезд

По сути пульсары – это быстро вращающиеся нейтронные звезды. Нейтронная звезда – это сильноуплотненное ядро мертвой звезды, которое осталось после взрыва сверхновой. У этой нейтронной звезды очень мощное магнитное поле. Пульсар, который излучает мощные гамма-лучи, известен как пульсар гамма-лучей.

Рентгеновские двойные

С нейтронными звездами, которые входят в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромных скоростей. Во время удара о поверхность нейтронной звезды газ выделяет 10-30 % своей энергии покоя, тогда как при ядерных реакциях этот показатель не доходит и до 1%. Нагретая до высоких температур поверхность нейтронной звезды становится источником рентгеновского излучения. Но падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Потому сильно нагреваются лишь районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, потому как радиоволны поглощаются в окружающем ее газе.

Состав

Плотность нейтронной звезды возрастает с глубиной. Под слоем атмосферы толщиной лишь в несколько сантиметров находится жидкая металлическая оболочка толщиной в несколько метров, а ниже — твердая кора километровой толщины. Вещество коры напоминает обыкновенный металл, но значительно плотнее. В наружной части коры это в основном железо; с глубиной в его составе растет доля нейтронов. Там, где плотность достигает ок. 4*10 11 г/см3, доля нейтронов увеличивается до такой степени, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на «море» из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2*10 14 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная «жидкость» с примесью протонов и электронов. Может быть, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронных звездах образуются наиболее необычные формы вещества. Возможно, нейтроны и протоны распадаются на еще более мелкие частицы — кварки; вероятно также, что рождается много пи-мезонов, образующих так называемый пионный конденсат.

 

 


 

ред. shtorm777.ru

ПОХОЖИЕ ЗАПИСИ

shtorm777.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о