Содержание

Гиперзвуковой Полет — Что Это Такое, Сложности и История Разработки Технологии, Существующие Летательные Аппараты и Ракеты

30.04.2019

Так может выглядеть летательный аппарат будущего, способный развивать более пяти скоростей звука

1 марта 2019 года Владимир Путин выступил с очередным посланием к Государственной думе. Центральной частью доклада стала демонстрация новейших видов вооружения, которые, по словам президента, уже в ближайшее время получит российская армия. Значительная часть (2 из 6) представленных новинок – это так называемые гиперзвуковые летательные аппараты, главной особенностью которых является способность к полету на скорости, значительно превосходящей скорость звука.

Работы над созданием гиперзвуковых ЛА активно велись в 60-е и 70-е годы прошлого века, но затем «мода» на них несколько утихла. Возрождение интереса произошло только в начале нынешнего века, когда развитие технологий позволило строить совершенные прямоточные реактивные двигатели. Сегодня интерес к полетам на гиперзвуке проявляют ученые, инженеры, авиаперевозчики. Но первыми в очереди стоят, конечно же, военные.

Что же такое гиперзвуковое оружие? Какими преимуществами оно обладает по сравнению с обычными боевыми системами? И кто находится впереди в гонке за гиперзвук?

Что такое гиперзвук, и каким он бывает?

Гиперзвуковой называют скорость, значительно — в пять и более раз — превосходящую скорость распространения звука в атмосфере. Соответственно, гиперзвуковые летательные аппараты (ГЗЛА) способны перемещаться с такой скоростью и совершать маневры, используя аэродинамические силы.

Пять скоростей звука или пять чисел Маха (5 М) – это приблизительно от 5380 км/ч до 6120 км/ч в зависимости от высоты полета. Деление летательных аппаратов на до-, сверх, и гиперзвуковые четко отражает природу явлений, возникающих при взаимодействии ЛА с набегающим воздушным потоком. Такая градация особенно важна для работы силовой установки самолета или ракеты: обыкновенный ТРД просто не может функционировать на гиперзвуке, необходим прямоточный или ракетный движок. Обычная высота полета для ГЗЛА – это диапазон от 25 до 100 км, ниже, у поверхности Земли, гиперзвуковые аппараты не используются из-за слишком большого сопротивления воздуха.

Американская гиперзвуковая КР Boeing X-51 WaveRider

Сегодня перед конструкторами стоит другая задача: создать летательные аппараты, для которых полет на гиперзвуковой скорости был бы штатным режимом, способные маневрировать, тормозить и производить посадку. Это различные космопланы (американские «Спейс Шаттлы» и советский «Буран»), гиперзвуковые самолеты (Х-15, SpaceShipOne), БПЛА (Boeing X-43). К ГЗЛА также относятся боевые управляемые блоки МБР («Авангард») и гиперзвуковые ракеты (X-51 Waverider и «Кинжал»).

Из истории данного вопроса

Первый гиперзвуковой полет совершила немецкая баллистическая ракета Фау-2. Важнейшей вехой на пути «приручения гиперзвука» стало создание в США ракетоплана Х-15, который в 1967 году смог достичь скорости 6,72 М. Этот летательный аппарат стартовал из-под крыла бомбардировщика В-52, после чего включался его собственный двигатель. Х-15 смог подниматься до высоты 107 км, то есть пересечь так называемую линию Кармана – официальную границу земной атмосферы и космического пространства. Полеты ракетоплана были прекращены в 1970 году.

Гитлеровская Фау-2. Она впервые преодолела гипезвуковой барьер

В период Холодной войны существовало много проектов, связанных с гиперзвуком, правда, практически все они так и остались на бумаге:

  • Dyna-Soar – американская программа по созданию пилотируемого космического аппарата Х-20, способного выполнять разведывательные и боевые задачи. Работы над  ним продолжались с 1957 по 1963 год;
  • Rockwell X-30 – американский проект гиперзвукового космоплана, который создавался 80-е годы. Он должен был стать недорогим и надежным средством вывода на орбиту людей и грузов. После окончания Холодной войны проект закрыли;
  • «Спираль». Советский гиперзвуковой самолет, который планировали выводить в космос с помощью специального разгонщика. В начале 70-х годов разработки были прекращены.

Гиперзвуковые проекты последних десятилетий

В 80-е и 90-е годы интерес к данной теме несколько поутих. Только в 2001 году в воздух впервые поднялся американский ГЗЛА Х-43, оснащенный прямоточным реактивным двигателем. В 2014 году ему удалось поставить рекорд, разогнавшись на высоте 33,5 тыс. метров до скорости в 11,2 тыс. км/ч (9,6 М). В 2009 году начались испытания еще одного гиперзвукового аппарата Boeing X-51A Waverider. Через несколько лет он смог достичь скорости 5,1 М на высоте 21 тыс. метров. Были и неудачи. Например, американский ГЗЛА Falcon HTV-2 сумел разогнаться до немыслимых 23 Махов, но все аппараты, построенные в рамках данного проекта, просто сгорели в атмосфере.

В разных странах реализовывались и другие программы, связанные с гиперзвуком: Россия («Холод» и «Игла»), Германия (SHEFEX), Китай (WU-14), Великобритания (Skylon), Австралия (ScramSpace). Из последних отечественных разработок также можно вспомнить космопланы МАКС и «Клипер», работы над ними также были прекращены. Сегодня к созданию гиперзвуковых летательных аппаратов все активнее подключаются частные компании. Наиболее известные примеры – SpaceShipOne и SpaceShipTwo, суборбитальные ракетопланы, предназначенные для туристических полетов.

Основные трудности, стоящие перед конструкторами

Более полувека прошло с момента первого полета ракетоплана Х-15, а серийных гиперзвуковых аппаратов как не было, так и нет. Причина этому – ряд сложнейших технических проблем, с которыми пришлось столкнуться конструкторам.

Первая и, вероятно, главная из них – это запредельный нагрев корпуса, возникающий при гиперзвуковых скоростях. Для изготовления планера и двигателей используется титан, самые совершенные сплавы, керамика, наноматериалы. Но пока это не слишком помогает: именно из-за высокого нагрева время работы большинства ГЗЛА исчисляется минутами.

Американский ракетоплан Х-15

Еще одной серьезнейшей проблемой гиперзвукового полета является двигатель. Обычный ТРД не способен работать на таких скоростях, нужны другие решения. Конечно, можно использовать ракетный движок – как на Х-15 – но он слишком сложен, дорог и неэкономен. Более всего для ГЗЛА подходит прямоточный гиперзвуковой двигатель, проблема только в том, что на скорости ниже 5 Махов он просто не запустится. Поэтому некоторые ГЗЛА оснащаются дополнительными разгонными блоками.

Конструкторы пытаются решить эту проблему, соединив в конструкции аппарата сразу несколько двигателей.

А что у нас?

Каких успехов добилась наша страна в данной области? Какое оно гиперзвуковое оружие России?

Советский Союз активно занимался исследованиями в этом направлении, но после его развала практически работы были прекращены или приостановлены. Наверстать упущенное удалось только к середине нынешнего десятилетия.

«Авангард». В апреле 2016 года в СМИ появились сообщения об успешном испытании гиперзвукового боевого блока для баллистических ракет. В Министерстве обороны РФ эту информацию комментировать отказались, и только через несколько месяцев в военном ведомстве признали наличие данного проекта. 1 марта 2019 года Путин подтвердил существование нового гиперзвукового управляемого боевого блока (УББ), который в настоящее время проходит испытания. Ему присвоено обозначение «Авангард».

Боевой блок «Авангард». Таким он показан в видеоролике Министерства обороны

По понятным причинам информации об этой системе очень мало. Известно, что она является продолжением проекта УББ 15Ф178, разработка которого началась еще в 1987 году. Боевой блок имеет биконическую конструкцию, для маневрирования по тангажу и крену используются рули и стабилизаторы. Скорость УББ на баллистической части траектории составляет 20 М. Американским аналогом российского «Авангарда» являются УББ AHW и Falcon HTV-2.

Гиперзвуковая ракета «Кинжал». Это еще одна новинка, о которой Путин рассказал во время своего выступления. Она представляет собой авиационную модификацию оперативно-тактической ракеты «Искандер», работы над которой также начались еще в советский период. Испытания «Кинжала» завершились в конце минувшего года, и сейчас этот комплекс находится на опытно-боевом дежурстве, полноценная эксплуатация начнется в 2020 году. Пока единственным носителем для данной ракеты являются истребители-перехватчики МиГ-31, а в будущем ими также планируют оснастить модернизированные ракетоносцы Ту-22М3М. Масса боевой части «Кинжала» составляет 500 кг, максимальная скорость – около 10 М.

Аэробаллистическая ракета «Кинжал» и ее носитель — истребитель МиГ-31

Противокорабельный «Циркон». Не имея возможности на равных противостоять военно-морским силам США и блока НАТО, в СССР большое внимание уделялось созданию противокорабельных ракет. Поэтому России в этой области достался огромный задел. В 2016 году в американском издании National Interest появилась информация о начале испытаний российской гиперзвуковой противокорабельной ракеты «Циркон», причем в статье подчеркивалось, что ничего подобного у США нет. Планируется, что этот боевой комплекс будет принят на вооружение уже в этом году. Дальность полета «Циркона» составляет 400 км, масса боевой части – около 400 кг, а его максимальная скорость достигает 8 Махов. Маршевый участок полета проходит на высоте 30-40 км, где меньше сопротивление воздуха.

В будущем этими ракетами планируют оснастить боевые корабли проекта «Орлан», подводные лодки «Ясень» и «Антей», а также авианесущий крейсер «Адмирал Кузнецов».

Несмотря на небывалый ажиотаж последних лет, достижения в области создания гиперзвукового оружия и транспортных средств пока очень посредственны. Вероятно, что действующий ГЗЛА мы увидим не ранее середины следующего десятилетия. России придется вкладывать серьезные ресурсы в «гиперзвуковую гонку», так как в противном случае есть риск потерять слишком много.

Если вам надоела реклама на этом сайте — скачайте наше мобильное приложение тут: https://play.google.com/store/apps/details?id=com.news.android.military или ниже, кликнув на логотип Google Play. Там мы уменьшили кол-во рекламных блоков специально для нашей постоянной аудитории.
Также в приложении:
— еще больше новостей
— обновление 24 часа в сутки
— уведомления о главных событиях

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С друзьями поделились:

militaryarms.ru

Удачи и провалы гиперзвуковых летательных аппаратов » Военное обозрение

Постоянные работы по увеличению скорости летательных аппаратов уже в начале шестидесятых годов прошлого века довели авиацию до гиперзвуковых скоростей. Экспериментальный ракетоплан North American X-15 совершил почти двести полетов, в большей части которых разгонялся до скорости, в пять раз превышающей скорость звука. Подобные скорости сулили летательным аппаратам большие перспективы, в первую очередь боевые. Однако ряд особенностей гиперзвукового полета очень сильно затруднял создание новых ракетопланов или подобных им аппаратов, пригодных для практического использования.

Наиболее ярким примером трудности создания подобных конструкций стали советский и американский проекты «Спираль» и Boeing X-20 Dyna-Soar. В ходе этих проектов обе страны провели массу исследований, построили несколько экспериментальных летательных аппаратов и потратили много сил и времени. Тем не менее, «Спираль» и X-20 так и не полетели. Сложность, дороговизна и не вполне ясные перспективы в итоге привели к закрытию обоих проектов и изменению приоритетов потенциальных заказчиков. Для боле полного понимания той ситуации стоит немного подробнее рассмотреть «Спираль», X-20 и другие проекты более позднего времени.


Американский «истребитель»

В 1957 году США начали программу X-20 Dyna-Soar, целью которой было создание многофункционального пилотируемого орбитального самолета. В зависимости от тактической необходимости аппарат X-20 должен был проводить разведку объектов противника, наносить по ним удары или уничтожать вражеские орбитальные аппараты, в том числе и подобные ему самолеты. Вне зависимости от тактической задачи Dyna-Soar имел большое преимущество перед традиционной авиацией: существующие и перспективные зенитные системы по определению не могли сбить его. Таким образом, противнику оставалось бы только наблюдать за полетом X-20 при помощи радаров и осознавать свою беспомощность.

Уже в начале работ по проекту X-20 сформировалось две методики его возможного применения. Первая, под названием boost-glide (разгон и планирование) подразумевала вывод орбитального самолета на высоту порядка 150-160 километров над землей, после чего он переходил в планирующий полет. Поскольку во время полета по методу boost-glide скорость аппарата не должна была превышать первую космическую, он все время оставался бы на необходимом расстоянии от поверхности планеты, но при этом не рисковал улететь в космос. После вывода на нужную высоту при помощи ракеты-носителя ускорителя аппарат должен был выйти в район цели и совершить снижение до высоты около 50-60 километров. В нижней части траектории Dyna-Soar должен был проводить фотосъемку объектов или сбрасывать боевую нагрузку. Далее, имея высокую скорость самолет возвращался бы на большую высоту, хотя и меньшую в сравнении с начальной. При помощи постоянных «ныряний» в атмосферу X-20, по расчетам специалистов компании Boeing, в течение нескольких часов мог бы совершить виток вокруг Земли и сесть на аэродроме рядом с местом старта. Примечательно, что X-20 в конфигурации для полета boost-glide не планировалось оснащать двигателями. Все маневры аппарат должен был совершать исключительно за счет «обмена» высоты на скорость и обратно.

Второй вариант применения X-20 предназначался для перехвата спутников или других космических аппаратов. В таком случае после вывода на орбиту с аппаратом оставался состыкован специальный разгонный блок, позволявший ему маневрировать. Такая конфигурация давала бы Dyna-Soar возможность находиться на орбите в течение нескольких суток, маневрировать, обнаруживать и уничтожать космические аппараты противника. По окончании дежурства разгонный блок должен был давать тормозной импульс и переводить X-20 на траекторию спуска. Перехватчик на базе X-20 предполагалось оснащать радиолокационной станцией обнаружения объектов противника, а также ракетным вооружением для их уничтожения.

Изначально в конкурсе на разработку космического аппарата Dyna-Soar претендовало несколько компаний, но в итоге была выбрана фирма Boeing. В ее версии перспективный космоплан выглядел следующим образом. Аппарат длиной почти 11 метров имел треугольное крыло размахом 6,2 м. Крыло большой стреловидности располагалось непосредственно под фюзеляжем и на определенных этапах полета должно было выполнять функцию аэродинамического тормоза. Управление аппаратом во время посадки должно было осуществляться при помощи элевонов на задней кромке крыла и двух килей с рулями направления, расположенных на законцовках консолей. Интересным образом был скомпонован фюзеляж. В передней его части располагались электроника и газодинамические рули. За аппаратурным отсеком располагалась кабина пилота. Один «космолетчик» мог полностью управлять всеми системами орбитального самолета. Органы управления X-20 предлагалось делать по аналогии с обычными самолетами: ручка управления по крену и тангажу, а также педали. Управление разгонным блоков в варианте космического перехватчика планировалось осуществлять при помощи отдельной панели управления. Для спасения пилота предлагалось применять катапультируемое кресло с твердотопливным двигателем. Однако, как ни старались инженеры «Боинга», им так и не удалось обеспечить спасение на высоких скоростях, начиная с М=1,5-2. Сразу за кабиной располагался грузоотсек, в котором можно было разместить вооружение общим весом до тысячи фунтов (около 450 кг). Наконец, кормовая часть фюзеляжа отдавалась под агрегаты стыковки с разгонным блоком или ракетой-носителем.

Ввиду огромных расчетных скоростей – при полетах в атмосфере X-20 должен был разгоняться до 7-7,5 километров в секунду – конструкция планера состояла исключительно из тугоплавких металлов и сплавов. Примечательно, что защита конструкции от перегрева должна была осуществляться исключительно сбросом тепловой энергии в виде излучения. Теплопоглощающие или постепенно сгорающие материалы не предусматривались. Остекление кабины почти на всем протяжении полета закрывалось специальным обтекателем. Таким образом, пилот мог осматривать окружающую обстановку через стекла только во время посадки, когда обтекатель сбрасывался. Для посадки X-20 планировалось оснастить трехстоечным лыжным шасси.

Первый полет аппарата X-20 должен был состояться в 1964 году. Менее чем через год планировалось запустить в космос первый Dyna-Soar с пилотом на борту. Авторы проекта успели построить несколько макетов различных систем, выбрать шесть летчиков-испытателей и начать подготовку к строительству прототипа. Однако после нескольких лет споров американские военные перестали видеть необходимость в аппарате X-20. По их мнению, запуск подобного самолета был слишком сложным и дорогим. Поэтому больший приоритет получил проект орбитальной станции MOL, а затем и Skylab. Программу X-20 закрыли за бесперспективностью. Часть технологий впоследствии была использована при разработке новых многоразовых космических аппаратов.

Советская «Спираль»

Примерно одновременно с закрытием проекта Dyna-Soar на другой стороне планеты только-только начались активные работы по похожему проекту. В то же время, советские конструкторы из ОКБ А.И. Микояна под руководством Г.Е. Лозино-Лозинского избрали немного другой путь доставки боевого орбитального самолета на рабочую высоту. Вместо ракеты-носителя, дорогой в производстве, одноразовой и требующей сравнительно сложные стартовые сооружения, было предложено использовать специальный самолет-разгонщик. Он должен был поднимать орбитальный аппарат на определенную высоту, разгонять его до гиперзвуковой скорости и сбрасывать. Далее орбитальный самолет при помощи дополнительного ракетного ускорителя выводился на рабочую высоту, где мог выполнять свою задачу. Таким образом, из всей системы «Спираль» одноразовым был лишь ускоритель орбитального аппарата. Все остальные элементы комплекса в целости и сохранности возвращались обратно и могли использоваться снова.

Несмотря на то, что главной частью комплекса «Спираль» был орбитальный самолет, наибольший интерес представляет именно самолет-разгонщик. Он должен был совершать гиперзвуковой полет в земной атмосфере, что и является главной его «изюминкой». Гиперзвуковой самолет-разгонщик (ГСР), также известный под индексом «50-50» должен был обеспечивать подъем на высоту около 30 километров и предварительный разгон орбитального самолета с его ускорителем. Конструктивно «50-50» представлял собой бесхвостку длиной 38 метров с треугольным крылом переменной стреловидности размахом 16,5 м и шайбами килей на концах консолей. Для правильного обтекания крыло имело развитые наплывы, доходившие до самого носа фюзеляжа и имевшие стреловидность порядка 80°. Примерно на двух третях от длины самолета этот параметр резко менялся и далее передняя кромка крыла имела стреловидность в 60°. Заостренный в носовой части фюзеляж постепенно расширялся и в хвостовой части представлял собой конструкцию с сечением, близким к прямоугольному. В хвостовой части фюзеляжа планировалось разместить блок из четырех двигателей, воздухозаборники которых располагались на нижней поверхности несущего фюзеляжа, немного позади точки изменения стреловидности.

Особого внимания стоят двигатели ГСР. Для оснащения самолета конструкторскому бюро А.М. Люльки была заказана разработка новых турбореактивных двигателей, работающих на жидком водороде. Такое топливо было выбрано по причине возможности дополнительного охлаждения лопаток двигателя. Благодаря такой особенности, ТРД традиционной схемы мог работать на больших скоростях и выдавать большую мощность без риска повредить конструкцию. Кроме того, для оптимизации скорости воздуха на входе в заборное устройство нижняя поверхность фюзеляжа была специальным образом спрофилирована. В результате всех этих мер перспективные двигатели должны были выдавать по 17,5-18 тонн тяги каждый и обеспечивать комплексу «Спираль» в сборе скорость полета порядка 6М.

К сожалению, создание новых водородных двигателей сильно затянулось. В итоге на определенном этапе программы «Спираль» началось создание керосинового ТРД с приемлемыми параметрами тяги и расхода топлива. Однако в «керосиновой» конфигурации самолет «50-50» уже не мог бы разгоняться до скорости, в шесть раз превышающей скорость звука. Без использования водородного топлива его скорость падала почти в полтора раза. Стоит отметить, по расчетам конструкторов, имевшиеся на то время материалы и технологии могли обеспечить полет на обеих скоростях, поэтому основной проблемой в создании полноценного гиперзвукового самолета оставались именно двигатели.

Строительство прототипа ГСР изначально планировалось на начало семидесятых. Однако ряд нерешенных проблем технологического и конструкционного характера сначала привел к пересмотру сроков, а затем и к закрытию проекта. До конца семидесятых продолжались работы по различным элементам проекта «Спираль». В первую очередь особого внимания удостоился сам орбитальный самолет, для отработки технологий и конструкции которого было создано и испытано несколько экспериментальных аппаратов. Тем не менее, проблемы с гиперзвуковым самолетом-разгонщиком, а затем и изменение приоритетов в развитии многоразовых космических систем привело к закрытию всей программы.

Время успехов

Похоже, все усилия, вложенные сверхдержавами в проекты гиперзвуковых летательных аппаратов, со временем начали приносить первые плоды. Так, в восьмидесятых годах КБ «Факел» и ЦИАМ совместно работали над прямоточным реактивным двигателем для перспективных гиперзвуковых летательных аппаратов. Полноценные испытания такого двигателя на земле были просто невозможны, поэтому пришлось создавать летающую лабораторию «Холод». Основой этой системы стали зенитные ракеты 5В28, взятые с ЗРК С-200В и подходившие по скорости полета. При изготовлении летающей лаборатории с исходной ракеты демонтировалась боевая часть, а на ее место устанавливался блок системы «Холод». Кроме того, в состав комплекса пришлось включить специально разработанную машину-топливозаправщик, предназначенную для работы с жидким водородом.

В состав блока входил топливный бак для жидкого водорода, топливопроводы, система управления и гиперзвуковой прямоточный двигатель Э-57. Из-за особенностей конструкции этот двигатель мог работать только на высотах не менее 15 километров и на скоростях в пределах М=3,5-6,5. Модуль «Холод» нес в себе сравнительно небольшое количество топлива, рассчитанное на 60-80 секунд полета, в зависимости от режима. Все испытательные полеты «Холода» проходили по одной и той же схеме: производился запуск ракеты, которая разгоняла модуль до скорости включения прямоточного двигателя, после чего, в зависимости от программы полета, происходил его запуск. С 1991 по 1999 год было проведено в общей сложности семь пробных полетов, в трех из которых прямоточный двигатель работал в соответствии с заложенной программой. Максимальная продолжительность полета с включенным двигателем составила 77 секунд, причем после анализа данных телеметрии стало ясно, что двигатель сохранял работоспособность и после выработки всего запаса топлива.

Еще одним, возможно, успешным отечественным проектом стала тема ГЭЛА (Гиперзвуковой экспериментальный летательный аппарат) или Х-90. Известно, что этот проект создавался в МКБ «Радуга» в конце восьмидесятых и после неоднократно демонстрировался на различных авиационных выставках. При этом имеются данные о прекращении работ по проекту еще в 1992 году, т.е. до первого показа широкой публике. Аппарат ГЭЛА представлял собой крылатую ракету с раскладным треугольным крылом и фюзеляжем, почти полностью отданным под прямоточный двигатель. По-видимому, для обеспечения требуемого течения воздуха на входе в воздухозаборник ракету оснастили специфическим клиновидным носовым обтекателем. При стартовой массе около 15 тонн ракета Х-90, вероятно, могла бы разгоняться до скорости не менее М=4,5. До сих пор нет никаких достоверных сведений о результатах проекта ГЭЛА. Согласно некоторым источникам, опытная крылатая ракета еще в конце восьмидесятых впервые была сброшена с самолета, а немного позже совершила свой первый гиперзвуковой полет. Тем не менее, пока нет проверенного и достойного внимания подтверждения этому.

За рубежом создание новых гиперзвуковых летательных аппаратов шло примерно с тем же темпом, что и в нашей стране, причем особых успехов до определенного времени не было. «Переломным» стал проект Boeing X-43. Внешне этот летательный аппарат в некотором роде напоминал российский ГЭЛА. По причине использования прямоточного воздушно-реактивного двигателя снова понадобилось применить носовой обтекатель, оптимизирующий поток перед воздухозаборником. В хвостовой части X-43 имел два небольших крыла-стабилизатора и два киля. В июне 2001 году этот гиперзвуковой беспилотник совершил свой первый полет, оказавшийся неудачным. Из-за проблем с системой управления аппарат был уничтожен по команде с земли. Второй полет прошел штатно, а в третьем, в ноябре 2004-го года, беспилотник установил рекорд, разогнавшись до скорости порядка 11200 километров в час – около М=9,5-9,6.

Boeing X-43


Boeing X-51

Развитием проекта X-43 стала ракета X-51. Она создается с заделом на будущее и в перспективе должна стать одним из основных вооружений американской стратегической авиации. Эта крылатая ракета повторяет часть элементов облика предыдущих гиперзвуковых летательных аппаратов, однако имеет менее широкий фюзеляж. По официальным данным, ракета X-51 должна иметь возможность полета со скоростью порядка М=6-7. Такие скорости требуются для возможного использования в системе т.н. быстрого глобального удара. В конце мая 2010 года X-51 впервые отправилась в полет. Почти вся программа полета была выполнена успешно, однако в конце испытателям пришлось отдать команду на самоуничтожение из-за неполадок в некоторых системах ракеты. Второй и третий запуски – весной 2011-го и летом 2012-го – вообще не увенчались успехом. Прямо сейчас, в начале 2013 года, сотрудники Boeing готовят четвертый испытательный пуск, который станет решающим в дальнейшей судьбе программы. Если ракета выполнит, как минимум, часть запланированной программы, то работы продолжатся. В случае неудачного запуска проект, вероятно, закроют.

Секрет их неудачи

Как видим, после легендарного X-15 количество успешных проектов гиперзвуковых летательных аппаратов можно пересчитать по пальцам одной руки. При этом со времени суборбитальных полетов американского ракетоплана прошло уже полвека. Попробуем разобраться с имеющимися проблемами и их причинами.

Прежде всего необходимо вспомнить вопрос стоимости. Достижение новых вершин, которыми в данном случае являются гиперзвуковые скорости, всегда требует вложений сил времени и – главное – денег. Именно в финансирование в итоге упираются все передовые разработки, в том числе и в гиперзвуковой отрасли. Кроме того, с финансированием прямо связаны почти все другие проблемы развития подобной техники.

Второй вопрос, пожалуй, самый объемный и сложный. Это – технологии. Главной проблемой при создании ракетоплана X-15 и всех последующих гиперзвуковых аппаратов было создание и освоение производства новых термостойких сплавов. К примеру, некоторые участки внешней поверхности X-15 во время этапов прогревались до 600-650 градусов. Соответственно, летающая с еще большими скоростями ракета X-51 должна иметь более стойкие к нагреву элементы конструкции. На примере проекта «50-50» также можно увидеть сложность создания силовой установки для гиперзвукового самолета. Первоначально предполагалось оснастить этот самолет ТРД на водородном топливе, но сложность создания такого двигателя, тем более предназначенного для работы на гиперзвуковых скоростях, в итоге заставила отказаться от него и вернуться к привычной «керосиновой» системе. После такого перехода максимальная скорость ГСР значительно упала, что соответствующим образом должно было сказаться на всех характеристиках комплекса «Спираль».

Отдельно от технологий в целом стоит остановиться на электронике. Вполне очевидно, что человеческая реакция попросту недостаточна для эффективного управления гиперзвуковым летательным аппаратом, летящим на крейсерской скорости. Поэтому большая часть задач, например, стабилизация в полете, должна быть возложена на автоматику, которая сможет одновременно анализировать массу параметров и выдавать команды системе управления. Необходимо отметить, что в нынешней ситуации с бурным развитием цифровых технологий подобная система автоматического управления летательным аппаратом уже не представляет собой сверхсложную задачу. Кроме того, в будущем возможно создание полностью автономных систем, которые смогут не только выполнять поставленную заранее задачу, но и адаптировать свои действия под текущую обстановку.

Прямым следствием создания таких систем может стать выведение из комплекса самой хрупкой и ненадежной ее части – человека. В то же время, появления полностью автономных систем ждут не только ученые, занимающиеся созданием гиперзвуковых летательных аппаратов. Искусственный интеллект уже не первое десятилетие является мечтой множества людей, но пока отдельные подвижки в этой области не позволяют надеяться на скорейшее создание полностью автономного компьютера, способного заменить человека. Что касается управления с удаленного пульта, то такой способ убрать человека с борта аппарата выглядит не слишком реалистичным. При полете на гиперзвуковых скоростях воздух вокруг аппарата может разогреваться до состояния плазмы и экранировать все радиосигналы. Таким образом, беспилотник на крейсерском режиме не сможет получать команды оператора или отправлять ему какую-либо информацию. В результате управление возможно только двумя способами: человек на борту или полностью автономная система, возможности которой полностью соответствуют предъявляемым задачам. Нужно ли говорить, что в настоящее время наибольшим потенциалом по адаптации к обстановке обладает человек и электроника пока не может соревноваться с ним на равных?

Наконец, инфраструктура. Летательный аппарат проекта X-20 требовал создания специального космодрома, с которого он мог бы взлетать при помощи ракеты-носителя. Конечно, для него можно было бы выделить отдельную стартовую площадку, но возможное военное применение имело бы совершенно непотребный вид. Во-первых, для обеспечения должного уровня защиты от космических аппаратов противника потребовалось бы держать на дежурстве несколько Dyno-Soar одновременно. Это достаточно дорого и небезопасно из-за того, что заправленные ракеты-носители будут стоять на стартовой площадке, открытые всем ветрам и прочим неприятным метеорологическим явлениям. Во-вторых, дабы не наносить ущерб другим космическим программам, не получится просто выделить одну-две стартовые площадки из существующих. Придется строить новые сооружения, достаточно уязвимые для ударных средств противника. Наконец, в ряде случаев, например при противоракетной обороне, «космические истребители» могут не успеть выйти на рубеж перехвата и пропустить несколько боевых блоков вражеских ракет. К этим всем проблемам также стоит прибавить дороговизну самой программы, строительства аппаратов и инфраструктуры для них, а также высокую стоимость постоянного дежурства.

Советский разгонный самолет «50-50» в этом плане был бы немного более удобным. При использовании керосина он не требовал бы какого-то особого топливного оборудования аэродрома. Однако водородный вариант самолета-разгонщика уже не смог бы функционировать без наличия на аэродроме соответствующей заправочной техники, топливного комплекса и т.п. систем, предназначенных для работы со сжиженным водородом. Проекты наподобие американских X-43 и X-51, насколько известно, менее требовательны к специальному оборудованию. Во всяком случае, пока они были на стадиях испытаний, аэродромы, на которых проводилась подготовка к пробным пускам, серьезно не модернизировались. В то же время, реальное использование серийной ракеты на базе X-51 может потребовать определенных изменений в инфраструктуре военных баз, но пока нельзя сказать, какими они будут.

В общем, быстрому развитию гиперзвуковых летательных аппаратов мешают объективные причины. Прогресс, сложный сам по себе, затрудняется рядом характерных для этого вида техники проблем. Поэтому в ближайшие годы точно не стоит ждать появления гиперзвукового летательного аппарата, полностью пригодного к практическому применению. В последнее время ходят слухи, что в середине текущего 2013 года российские военные и инженеры начнут испытания некоего нового летательного аппарата, способного перемещаться с гиперзвуковыми скоростями. Какие-либо подробные сведения об этом проекте, равно как и сам факт его существования, пока официально не оглашались. Если же эти слухи соответствуют действительности, то все равно в течение нескольких следующих лет проект будет сугубо научным и экспериментальным. Появление первых серийных гиперзвуковых летательных аппаратов, имеющих практически применимые возможности, стоит отнести к периоду после 2020 года или даже позже.

По материалам сайтов:
http://astronautix.com/
http://ntrs.nasa.gov/
http://buran.ru/
http://testpilot.ru/
http://aviationweek.com/
http://globalsecurity.org/
http://airwar.ru/

topwar.ru

Гиперзвуковые летательные аппараты – рывок в космос

Гиперзвуковые летательные аппараты, которые в ближайшем будущем достигнут технической зрелости, возможно, радикально изменят всю сферу ракетных вооружений. И в эту гонку России придется включаться, иначе возникнет риск потерять слишком много. Ведь речь идет ни много ни мало о научно-технической революции. О гонке вооружений в данной сфере говорить пока рано — на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы.

Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).

Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы — это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты — вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук — штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.

Стремительный разведчик: SR-72 — перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 — сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника — отсутствие пилота в кабине и гиперзвуковая скорость.

Воспользуйтесь нашими услугами

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах — маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего, имеются в виду следующие характеристики: скорость полета — 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот — 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов — это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов.

Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива — водороде для больших скоростей полета и керосине для меньших.

Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота«Петр Великий». Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км.

Разработчик ПКР «Циркон» — НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».

Крылатый удар: беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.

Элемент планера гиперзвукового оружия, которое так и осталось проектом. Длина самолета должна была составить 8 м, размах крыльев — 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.

SR-71: сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М.

Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.

Космическая «спираль»: гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя — он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 — в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

По материалам popmech.ru

Воспользуйтесь нашими услугами

Понравилась статья? Тогда поддержите нас, поделитесь с друзьями и заглядывайте по рекламным ссылкам!

integral-russia.ru

техническая революция? » Военное обозрение

О гонке вооружений в данной сфере говорить пока рано — на сегодняшний день это гонка технологий. Гиперзвуковые проекты еще не вышли за рамки ОКР: пока в полет отправляются в основном демонстраторы. Их уровни технологической готовности по шкале DARPA находятся в основном на четвертой-шестой позиции (по десятибалльной шкале).


Впрочем, говорить о гиперзвуке как о некой технической новинке не приходится. Боевые блоки МБР входят в атмосферу на гиперзвуке, спускаемые аппараты с космонавтами, космические шаттлы — это тоже гиперзвук. Но полет на гиперзвуковых скоростях при схождении с орбиты — вынужденная необходимость, и длится он недолго. Мы же будем говорить о летательных аппаратах, для которых гиперзвук — штатный режим применения, и без него они не смогут проявить свое превосходство и показать свои возможности и мощь.
Стремительный разведчик
SR-72 — перспективный американский летательный аппарат, который может стать функциональным аналогом легендарного SR-71 — сверхзвукового и сверхманевренного разведчика. Главное отличие от предшественника — отсутствие пилота в кабине и гиперзвуковая скорость.

Удар с орбиты

Речь пойдет о гиперзвуковых маневрирующих управляемых объектах — маневрирующих боевых головках МБР, гиперзвуковых крылатых ракетах, гиперзвуковых БПЛА. Что, собственно, мы понимаем под гиперзвуковыми летательными аппаратами? Прежде всего имеются в виду следующие характеристики: скорость полета — 5−10 М (6150−12 300 км/ч) и выше, охватываемый рабочий диапазон высот — 25−140 км. Одно из самых привлекательных качеств гиперзвуковых аппаратов — это невозможность надежного слежения средствами ПВО, поскольку объект летит в плазменном облаке, непрозрачном для радиолокаторов. Стоит отметить также высокие маневренные возможности и минимальное время реакции на поражение. Например, гиперзвуковому аппарату требуется всего час после схода с орбиты ожидания для поражения выбранной цели.

Проекты гиперзвуковых аппаратов не раз разрабатывались и продолжают разрабатываться в нашей стране. Можно вспомнить Ту-130 (6 М), самолет «Аякс» (8−10 М), проекты высотно-скоростных гиперзвуковых самолетов ОКБ им. Микояна на углеводородном топливе в разных вариантах применения и гиперзвукового самолета (6 М) на двух видах топлива — водороде для больших скоростей полета и керосине для меньших.


Разрабатываемая в США гиперзвуковая ракета Boeing X-51A Waverider

Оставил свой след в истории инженерной мысли проект ОКБ им. Микояна «Спираль», в котором возвращаемый воздушно-космический гиперзвуковой самолет выводился на орбиту ИСЗ гиперзвуковым самолетом-разгонщиком, а после выполнения боевых задач на орбите возвращался в атмосферу, выполнял в ней маневры также на гиперзвуковых скоростях. Наработки по проекту «Спираль» были использованы в проектах БОР и космического челнока «Буран». Есть официально не подтвержденные сведения о созданном в США гиперзвуковом самолете «Аврора». Все о нем слышали, но никто его ни разу не видел.

«Циркон» для флота

17 марта 2016 года стало известно, что Россия официально приступила к испытаниям гиперзвуковой противокорабельной крылатой ракеты (ПКР) «Циркон». Новейшим снарядом будут вооружены АПЛ пятого поколения («Хаски»), также ее получат надводные корабли и, конечно, флагман российского флота «Петр Великий». Скорость 5−6 М и дальность действия не менее 400 км (это расстояние ракета преодолеет за четыре минуты) существенно осложнят применение мер противодействия. Известно, что ракета будет использовать новое топливо Децилин-М, которое увеличивает дальность полета на 300 км. Разработчик ПКР «Циркон» — НПО Машиностроения, входящее в состав «Корпорации «Тактическое ракетное вооружение»». Появления серийной ракеты можно ожидать к 2020 году. При этом стоит учесть, что Россия имеет богатый опыт в создании высокоскоростных противокорабельных крылатых ракет, таких как серийная ПКР П-700 «Гранит» (2,5 М), серийная ПКР П-270 «Москит» (2,8 М), на смену которым и поступит новая ПКР «Циркон».


Крылатый удар
Беспилотный гиперзвуковой планирующий самолет, разрабатывавшийся в КБ Туполева в конце 1950-х годов, должен был представлять собой последнюю ступень ракетной ударной системы.

Хитроумная боеголовка

Первая информация о запуске изделия Ю-71 (так оно обозначено на Западе) на околоземную орбиту ракетой РС-18 «Стилет» и его возвращении в атмосферу появилась в феврале 2015 года. Запуск был произведен с позиционного района Домбровского соединения 13-й ракетной дивизией РВСН (Оренбургская область). Сообщается также, что к 2025 году дивизия получит 24 изделия Ю-71 для оснащения уже новых ракет «Сармат». Изделие Ю-71 в рамках проекта 4202 создавалось также НПО Машиностроения с 2009 года.

Изделие представляет собой сверхманевренную боеголовку ракеты, совершающую планирующий полет на скорости 11000 км/ч. Она может выходить в ближний космос и оттуда поражать цели, а также нести ядерный заряд и быть оснащенной системой РЭБ. В момент входа «нырком» в атмосферу скорость может составлять 5000 м/с (18000 км/ч) и по этой причине Ю-71 имеет защиту от перегрева и перегрузок, причем может легко менять направление полета и при этом не разрушается.


Элемент планера гиперзвукового оружия, которое так и осталось проектом
Длина самолета должна была составить 8 м, размах крыльев — 2,8 м.

Изделие Ю-71, обладая высокой маневренностью на гиперзвуковой скорости по высоте и по курсу и летая не по баллистической траектории, становится недостижимым для любой системы ПВО. К тому же боеголовка является управляемой, благодаря чему имеет очень высокую точность поражения: это позволит использовать ее также в неядерном высокоточном варианте. Известно, что в течение 2011−2015 годов было произведено несколько запусков. На вооружение изделие Ю-71, как полагают, будет принято в 2025 году, и им будет оснащаться МБР «Сармат».

Подняться ввысь

Из проектов прошлого можно отметить ракету Х-90, которая была разработана МКБ «Радуга». Проект ведет свое начало с 1971 года, он был закрыт в тяжелом для страны 1992 году, хотя проведенные испытания показали хорошие результаты. Ракета неоднократно демонстрировалась на авиакосмическом салоне МАКС. Несколько лет спустя проект реанимировали: ракета получила скорость 4−5 М и дальность действия 3500 км с запуском с носителя Ту-160. Демонстрационный полет состоялся в 2004 году. Предполагалось вооружить ракету двумя отделяемыми боеголовками, размещенными по бокам фюзеляжа, однако на вооружение снаряд так и не поступил.

Гиперзвуковая ракета РВВ-БД была разработана ОКБ «Вымпел» им И.И. Торопова. Она продолжает линию ракет К-37, К-37М, находящихся на вооружении МиГ-31 и МиГ-31БМ. Ракетой РВВ-БД будут также вооружаться гиперзвуковые перехватчики проекта ПАК ДП. По заявлению руководителя КТРВ Бориса Викторовича Обносова, сделанному на МАКСе 2015 года, ракета начала выпускаться серийно и первые ее партии сойдут с конвейера уже в 2016 году. Ракета весит 510 кг, имеет осколочно-фугасную боевую часть и будет в широком диапазоне высот поражать цели на дальностях 200 км. Двухрежимный РДТТ позволяет ей развивать гиперзвуковую скорость 6 М.


SR-71
Сегодня этот самолет, давно снятый с вооружения, занимает заметное место в истории авиации. На смену ему идет гиперзвук.

Гиперзвук Поднебесной

Осенью 2015 года Пентагон сообщил, и это было подтверждено Пекином, что Китай успешно провел испытания гиперзвукового маневрирующего ЛА DF-ZF Ю-14 (WU-14), который был запущен с полигона Учжай. Ю-14 отделился от носителя «на краю атмосферы», а затем планировал на цель, расположенную в нескольких тысячах километров на западе Китая. За полетом DF-ZF следили американские разведывательные службы, и по их данным аппарат маневрировал со скоростью 5 М, хотя потенциально его скорость может достигать и 10 М. Китай заявил, что он решил проблему гиперзвукового ВРД для подобных аппаратов и создал новые легкие композитные материалы для защиты от кинетического нагрева. Представители КНР также сообщили, что Ю-14 способен прорвать систему ПВО США и нанести глобальный ядерный удар.

Проекты Америки

В настоящее время «в работе» в США находятся различные гиперзвуковые летательные аппараты, которые проходят летные испытания с той или иной долей успеха. Начало работ по ним было положено еще в начале 2000-х, и на сегодня они находятся на разных уровнях технологической готовности. Недавно разработчик гиперзвукового аппарата Х-51А компания «Боинг» заявила, что Х-51А будет принят на вооружение уже в 2017 году.

Среди реализуемых проектов у США имеются: проект гиперзвуковой маневрирующей боеголовки AHW (Advanced Hypersonic Weapon), гиперзвуковой ЛА Falcon HTV-2 (Hyper-Sonic Technology Vehicle), запускаемый с помощью МБР, гиперзвуковой ЛА Х-43 Hyper-X, прототип гиперзвуковой крылатой ракеты Х-51А Waverider компании «Боинг», снабженный гиперзвуковым ПВРД с сверхзвуковым горением. Также известно, что в США ведутся работы по гиперзвуковому БЛА SR-72 компании Lockheed Martin, которая только в марте 2016 года заявила официально о своих работах по этому изделию.


Космическая «спираль»
Гиперзвуковой самолет-разгонщик, разрабатывавшийся по проекту «Спираль». Также предполагалось, что в систему будет входить военный орбитальный самолет с ракетным ускорителем.

Первое упоминание о беспилотнике SR-72 относится к 2013 году, когда Lockheed Martin сообщила, что на смену разведчику SR-71 будет разрабатывать гиперзвуковой БЛА SR-72. Он полетит со скоростью 6400 км/ч на рабочих высотах 50−80 км вплоть до суборбитальных, будет иметь двухконтурную двигательную установку с общим воздухозаборником и сопловым аппаратом на основе ТРД для разгона со скорости 3 М и гиперзвукового ПВРД со сверхзвуковым горением для полета со скоростями более 3 М. SR-72 будет выполнять разведывательные задачи, а также наносить удары высокоточным оружием «воздух-поверхность» в виде легких ракет без двигателя — он им и не потребуется, так как хорошая стартовая гиперзвуковая скорость уже имеется.

К проблемным вопросам SR-72 специалисты относят выбор материалов и конструкции обшивки, способных выдержать большие тепловые нагрузки от кинетического нагрева при температурах 2000 °C и выше. Также потребуется решить проблему отделения оружия из внутренних отсеков при гиперзвуковой скорости полета 5−6 М и исключить случаи потери связи, которые неоднократно наблюдались при испытаниях объекта HTV-2. Корпорация Lockheed Martin заявила, что размерность SR-72 будет сопоставима с размерностью SR-71 — в частности, длина SR-72 составит 30 м. На вооружение, как предполагается, SR-72 поступит в 2030 году.

topwar.ru

Американские экспериментальные гиперзвуковые летательные аппараты. Часть 1

Развитие противовоздушной и противоракетной обороны вынуждает конструкторов искать новые возможности преодоления данных систем. Разрабатываются различные виды нового вооружения, среди которых и гиперзвуковые летательные аппараты (ГЛА). Наибольшую работу на сегодняшний день провели американские военные специалисты. Гиперзвуковые летательные аппараты призваны поражать стационарные и мобильные цели, включая сильно защищенные или заглубленные объекты, например, подземные КП. В США существует несколько различных программ по разработке ГЛА.
Одним из направлений развития ГЛА является разработка гиперзвуковых ракет.

Основными преимуществами проектов гиперзвуковых летательных аппаратов с осесимметричным корпусом, учитывая перспективы создания на их базе боевой ракеты, является возможности использования ракетных технологий. Это значительно снижает стоимость изделий и позволяет компактно размещать изделия во внутренних объемах носителей, и использовать имеющиеся стартовые системы. Осесимметричный корпус дает возможность осуществлять пуск из внутренних отсеков самолетов и внешних пилонов, из контейнеров на подводных лодках и кораблях, при помощи систем вертикального старта.

Одной из компаний, занимающейся разработкой гиперзвуковой ракеты, является «Boeing». С 1997 года компания «Boeing» совместно с фирмой «Аэроджет» по контракту с DARPA разрабатывала проект гиперзвуковой ракеты ARRMD. По тактико-техническим требованиям пуск ракеты должен был осуществляться запускаться за пределами зоны действия ПВО, дальность до 1000 км, расчетная крейсерская скорость М=6, стартовая масса 1000 кг при массе боевой части 110 кг. Предусматривалось использование инерциальной системы наведения и спутниковая коррекция. Ракета при выходе на цель начинала круто пикировать, поэтому скорость в момент удара составляла 1200 м/с — высокая кинетическая энергия ракеты усиливает поражающее воздействие. В 2001 году программу DARPA приостановили, поскольку силовая установка не была готова. Однако результаты научно-исследовательских и опытно-конструкторских работ по ARRMD в 2002 году легли в основу принятой центром ONR ВМС США и DARPA программы HyFly. В проекте участвуют NASA, центр NAW военно-морских сил и лаборатория прикладной физики APL университета Гопкинса.

Boeing HyFly является программой разработки и оценки гиперзвуковых технологий, которые в дальнейшем могут быть использованы при серийном производстве относительно недорогой гиперзвуковой ракеты, предназначенной для поражения мобильных и стационарных целей, включая заглубленные и сильно защищенные объекты. Фирме «Boeing» было выделено на НИОКР около 116 млн. долларов. Простота компоновки, конструкция и технология производства, унаследованные от ARRMD, позволяют разработчикам утверждать, что экспериментальный образец будет быстро превращена в боевую ракету нового поколения, оснащенную проникающей боевой частью и универсальным базированием.

Поскольку все ракеты одноразового применения, технические требования к ней ослаблены: допускается деградация материала, отсутствует система охлаждения конструкции, применяются исключительно композиты на керамической основе. Следует учесть и относительно небольшую стоимость ракеты и силовой установки. Конструкция состоит из 20 деталей. Особенностями концепции являются две системы воздухозаборников и столько же камер сгорания.

В рамках программы разрабатывался и испытывался двигатель DCR. На первом этапе испытаний двигатель был испытан на стендах и в аэродинамических трубах. Они окончились успешно. Однако летные испытания успехом не увенчались, во всех трех запусках двигатель не достигал заданных характеристик или попросту не запускался. Если бы эффективность и надежность двигателя DCR в летных испытаниях были подтверждены, то это существенно приблизило бы реализацию проектов гиперзвуковых управляемых ракет класса «воздух — земля». Результаты работ по программе HyFly используются в проекте HyStrike — боевой гиперзвуковой ракеты «корабль — земля» и «воздух — земля» для американских ВМС.

Еще одной подобной программой является RATTLRS («Revolutionary Approach to Time-critical Long-Range Strike»), осуществляемая фирмой «Lockheed Martin» под руководством ONR при участии ВВС и специалистов NASA. Главные задачи программы: создание турбореактивного двигателя, способного разогнать летательный аппарат до скорости более М=3 без использования вспомогательных устройств, и создание двигателя ТВСС для гиперзвукового летательного аппарата многоразового применения. Ракета RATTLRS, оснащенная силовой установкой нового типа, рассчитана на полет со скоростью М > 4, минимум в течение 5 мин, а в дальнейшем — до 15 мин. Дальность полета составит 1000 км. Боевой летательный аппарат, превосходя крылатую ракету по скорости приблизительно в три раза, может достигать цели за 5-10 минут, следуя на высоте 21 тыс. м в крейсерском режиме. Скорость пикирование на цель должна была составлять М=4, а глубина проникновения под землю — 9-15 м. Также гиперзвуковой летательный аппарат будет способен рассеять суббоеприпасы со сверхзвуковой или дозвуковой скоростью.

Сегодня в ракетах такого класса используется двухступенчатая схема. Первая ступень дает развить скорость, которая необходима для включения второй ступени. Переход к одноступенчатой схеме позволит сократить размеры гиперзвуковой ракеты. Но существенно повышаются рабочие температуры камеры сгорания и турбины; необходимы новое системы целеуказания и БРЭО. За основу ТВСС для RATTLRS приняли опытный образец двигателя Роллс-Ройс/Аллисон YJ102R, разработанный отделением «Либерти Уокс» компании «Rolls Royce». Удельная тяга в шесть раз превосходит Pratt & Whitney J58. Это ускоритель, а не просто маршевый двигатель.

По заявлению изготовителя, новая силовая установка отличается качественным матобеспечением системы регулирования и современной аэродинамикой. В конструкции использован новейший материал LamiUoy, разработанный «Rolls Royce». В состав навигационной системы RATTLRS войдет ИНС с коррекцией траектории по информации КРНС NAVSTAR. Ракета будет оснащаться проникающей боевой частью или боевой частью, состоящей из самонаводящихся боевых элементов. «Lockheed Martin» и «Rolls Royce» получили 120-миллионный контракт на создание демонстрационного образца гиперзвуковой крылатой ракеты RATTLRS универсального базирования (масса около 900 кг). Ракета в варианте авиационного базирования должна быть совместима с F/A-18E/F, F/A-22 и F-35.

topwar.ru

Гиперзвуковой зуд, или Что могут летательные аппараты на гиперзвуке


Последнее время, что ни день, натыкаешься на сообщения по гиперзвуку: «Головные части ракет маневрируют, летят на гиперзвуке и на межконтинентальную дальность…» «В России идут испытания гиперзвукового прямоточного воздушно-реактивного двигателя!» И так далее, и тому подобное.

Перед глазами простого обывателя сразу встает фантастическая картина — гиперзвуковые самолеты взлетают и поражают своими ракетами, опять же на гиперзвуке, межконтинентальные цели… И сами самолеты и их ГПВРД ракеты — невидимы и не перехватываемы.

Так ли это? Посмотрим.

Снова на глаза попалась статья «Гиперзвуковой, прямоточный, летает» в «Технике — молодежи» от 1991 года.

В статье пишется: «ГПВРД или, как говорят, «гиперзвуковая прямоточка», позволит долететь из Москвы в Нью-Йорк за 2-3 часа, уходить крылатой машине из атмосферы в космос. Воздушно-космическому самолету не понадобится ни самолет-разгонщик, как для «Зенгера», ни ракета-носитель, как для «шаттлов» и «Бурана», — доставка грузов на орбиту обойдется чуть ли не вдесятеро дешевле». Статью писали Юрий ШИХМАН и Вячеслав СЕМЕНОВ, научные сотрудники ЦИАМ.

Конечно с обеими я был хорошо знаком, так как участвовал с ними во многих работах по тематике института. В том числе и по тематике ГПВРД. Хотя к основным и главным моя часть работы не относилась, тем не менее, была необходимой и важной. К этой работе меня подключили в ещё в году 84-м, ещё молодым специалистом и м.н.с. Тогда ещё ведущим над всеми работами по теме «Холод» в ЦИАМ был Рувим Исаевич Курзинер.

Опытный ГПВРД по теме «Холод», или изделие 057, в составе гиперзвуковой летающей лаборатории (ГЛЛ) представлял собой исследовательский объект, главная задача которого — демонстрация возможности горения топливовоздушной смеси при сверхзвуковой скорости истечения рабочего тела в контуре камеры сгорания. На земле смоделировать все режимы горения не представлялось возможным, поэтому такую задачу было решено исследовать в реальных условиях полета.



В качестве носителя, разгонщика и моделирующего режимы полета для исследования была использована зенитная ракета 5В28 комплекса С-200В (SA-5). Вместо головной части которой стыковался ГЛЛ с ГПВРД с топливным баком и системами управления и обслуживания.
Первый полет ГЛЛ с ГПВРД был осуществлен 28 ноября 1991 года. В первом летном испытании ГПВРД максимальное число М составило 5,8, двигатель суммарно проработал 28 с, в процессе полета он дважды включался автоматически. Таким образом, впервые в мире в условиях летного испытания была доказана работоспособность гиперзвукового ПВРД ( журнал «Двигатель» №6 от 2006 года).
За 1991-98 годы было произведено около 8 пусков (с учетом бросковых). В исследованиях экспериментального ГПВРД кроме российских специалистов приняли участие французы — в 1992 и 1995 годах по контрактам с Национальным научным центром Франции (ONERA), а в 1997 и 1998 годах — американцы, по контракту с Национальным космическим агентством США (NASA).

Итак, прошло больше 20 лет. Что мы имеем?

Есть ли летательные аппараты на гиперзвуке, то есть ли летающие на гиперскоростях (М>5)? Есть!

Во-первых, были орбитальные корабли «Буран» и шаттл.
Возвращающийся с орбиты «Буран», например, примерно полчаса планирует на гиперзвуке на дальность порядка 8000 км с высоты 100 км и до 20.

Тактико-технические характеристики ОК «Буран» в режиме спуска на гиперзвуковых скоростях:
• Стартовая масса — 105 тонн
• Дальность до посадочной полосы — 8270км
• Скорость на траектории спуска — 7,592…0,520 км/сек (27.330-1.872 км/час) ок. 27-1,8Мах
• Диапазон высоты спуска — 100…20 км

Проведем «мысленный эксперимент». А можно ли весь этот посадочный профиль «гиперзвукового орбитального корабля» «Буран» провернуть назад?
Можно!
Только для этого нужна ракета-носитель «Энергия».

«А если на ГПРД?» — спросит читатель. Можно. Но для этого придется для обеспечения выхода ГПРД на режим сначала «толкнуть» всю систему чем-то подобным ПРД, т.е. разгонным «пороховичком». А потом довывести до круговой орбиты, «подпитывая» двигатели запасенным кислородом или на чистом ЖРД. В итоге «экономия» на окислителе, при использовании кислорода атмосферы на ГПВРД, составит ну что-то примерно 20%. Но зато столько сложностей, что не приведи господи!

А задумывали ли инженеры такого рода «экономные системы», использующие забортный воздух? Да сколько угодно! Те же «Зенгер» и «Хотол».

И… скромно скажем — ранние версии, всемирно известного теперь МБР «Тополь». Да, действительно так! Вся эта система называлась «Гном»

«Гном» — трехступенчатая межконтинентальная баллистическая ракета, оснащенная прямоточным твердотопливным маршевым двигателем первой ступени, твердотопливными двигателями второй и третьей ступеней и ускорителем. Проектирование велась с начала 60-х годов в КБ машиностроения (г. Коломна) под руководством Бориса Шавырина.


Максимальная дальность стрельбы, км 11000
Стартовая масса, т 29
Масса полезной нагрузки, кг 470
Длина ракеты, м 16,14
Количество ступеней 3

В дальнейшем конструктор МИТ А.Д. Надирадзе, опираясь на имеющийся уже у него опыт создания мобильной ОТР «Темп», предложил проект МБР на обычных твердотопливных двигателях. Его поддержало руководство Миноборонпрома, и в результате мы получили 45-тонный мобильный грунтовой межконтинентальный «Темп-2С». Далее, его модернизации и усовершенствования — «Пионеры» (РСД) и «Тополя» (МБР)… Многие в этом видят его коварство (45 тонн вместо обещанных 29). Тем не менее, и с «Гномом» могло получиться то же самое. Одно дело расчеты — совсем другое практическая реализация!

Сверхзвуковая межконтинентальная крылатая ракета «Буря» («изделие 351»), ближе всех стоящая к требуемым параметрам ЛА с ГПВРД.


Длина, м — 20,396
Размах крыла, м — 7,746
Высота, м — 6,642
Площадь крыла, м2 — 44,6
Стартовая масса, кг — 98.280
Масса начальная маршевой ступени, кг — 33.522
Масса головной части, кг — 3403
Скорость маршевая, км/ч — 3300
Высота полета, км — 18 — 25,5
Дальность, км — 7830

Чисто теоретически, эту систему, используя современные материалы, топлива, твердотопливные «разгонники», можно ускорить, вероятно, и до 5 махов. Только вот в чем вопрос: а будут ли у него суперпревосходства относительно существующих МБР?

Время подлета к цели на максимальную дальность составит примерно 1,5 часа (МБР — 30 минут).

Некоторые преимущества будут — например, запаздывание с обнаружением.
МБР обнаруживается довольно быстро, во-первых — начальный факел, во-вторых — большая восходящая высота баллистической траектории (до 1600км).

Хотя наши последние «Тополя-М» и «Ярсы» и иже с ними того же семейства, говорят, могут летать и по другим, например, квазинастильным круговым трассам (100-200 км), потому-то у них энерговооруженность и масса существенно отличаются от худосочных «Минитменов», оптимизированных под баллистические траектории.

Мне в связи с этим вспоминаются язвительные восторги инженера-ракетчика НАСА (или Пентагона) — «де, русские не умеют делать ракеты, у них даже современные тяжелее и габаритнее наших, разработки 70-х годов». Возгласы, правда, быстро утихли. Видимо, более квалифицированные товарищи ему объяснили, в чем тут дело…

Так вот, главный вопрос с гиперзвуковыми самолетами-ракетами, — нужны ли они, или воздержимся пока?

Как мы видели — ракеты и орбитальные корабли уже давно были реализованы, правда не на ГПВРД.

А насчет самолетов…

Военные уже свыше 20 лет держатся на цифре М<3,5 (SR-71, «Сотка», Миг-31). Дальнейшее увеличение скорости не предполагает получения дополнительных преимуществ, все равно зенитные ракеты на твердотопливных двигателях достанут, если уж перехватывают головки МБР и спутники на 1-й космической.

Насчет гражданских лайнеров…

Думается мне, такие быстроходные самолеты-лайнеры были нужны до эпохи Интернета. Почему, спросите вы? А потому, что теперь уже бизнесменам-коммерсантам да и чиновникам разных мастей не нужно столь стремительно мчаться по континентам-материкам: быстрее электронной подписи и видеоконференций всё равно не получится.

А если всё же кому-то приспичило — увидеть новорожденного сына или запустить план его рождения, — придется умерить прыть. И медленно «тошнить», как говорят мои друзья, самовлюбленные эгоисты марки BMW, вечерней лошадью в виде магистрального или межконтинентального «арбуза» или «Боинга» со средней скоростью 900 км/час, чай, не на тот свет опаздываем…

А вот гиперзвуковых двигателей — ГПВРД, главный отличительный признак которых — сверхзвуковое истечение рабочего тела через камеру сгорания, пока не создали.
Может быть, у кого-то и получится. Причем у разработчиков, которых не предупредили, что это невозможно, а они, того не зная, взяли и реализовали фантастический проект. Такие примеры история науки и техники тоже знает…

—————————————————————————
* В двигателестроении различают два вида неустойчивой работы реактивных двигателей — «помпаж» и «зуд» на входе. «Зуд» — высокочастотная пульсация воздуха в области сверхкритических режимов работы входного диффузора двигателя, воспринимается как характерный зудящий звук. В отличие от него, «помпаж» — более низкочастотные колебания. Причиной «зуда» служат срывы потока в канале за горлом диффузора.

topwar.ru

Гиперзвуковой летательный аппарат — Википедия

Полёт ракетоплана X-15 — первого в истории ГЛА-самолёта, совершавшего суборбитальные пилотируемые космические полёты Посадка суборбитального ракетоплана SpaceShipOne Спуск космоплана X-20 в представлении художника Космолёт VentureStar на орбите в представлении художника Космолёт Rockwell X-30 на орбите в представлении художника Космоплан X-37 на стоянке АКС-космолёт Skylon по проекту

Гиперзвуково́й лета́тельный аппара́т (ГЛА, ГЗЛА) — летательный аппарат (ЛА), способный осуществлять полёт в атмосфере с гиперзвуковой скоростью (бо́льшей или равной 5М; М — число Маха) и маневрировать с использованием аэродинамических сил.

Крылатый летательный аппарат, обладающий такой скоростью полёта, может планировать на значительно бо́льшие дальности, чем обычный, так как планирование становится «динамическим».

Деление летательных аппаратов на «дозвуковые», «сверхзвуковые» и «гиперзвуковые» имеет достаточно прочную физическую основу и отражает сущность явлений при взаимодействии ЛА с воздушной средой: полёт на гиперзвуковых скоростях так же принципиально отличается от полёта на сверхзвуковых, как последний от полёта на скоростях дозвуковых[1][2][3].

Реализация

В истории ГЛА были реализованы в виде нескольких испытательных самолётов, беспилотных летательных аппаратов и орбитальных ступеней-космопланов многоразовых космических кораблей (МТКК). Также существовало и существует большое количество проектов транспортных средств указанных типов, а также аэрокосмических систем (орбитальных самолётов) с гиперзвуковыми разгонными и орбитальными ступенями или одноступенчатых АКС-космолётов и пассажирских лайнеров-космопланов.

Одним из первых детальных проектов ГЛА был нереализованный проект Зенгера по созданию частично-орбитального боевого космолёта-бомбардировщика «Зильберфогель» в Нацистской Германии.

В отличие от космопланов, ввиду необходимости при создании космолётов на порядок более сложных двигательных и конструкционных технологий ни один из проектов космолётов к настоящему времени реализован не был.

Гиперзвуковые самолёты

В 1960-е годы в США была осуществлена программа разработки и полётов экспериментального самолёта-ракетоплана North American X-15, который стал первым в истории и на 40 лет единственным ГЛА-самолётом, совершавшим суборбитальные пилотируемые космические полёты. В США 13 его полётов выше 80 км, а в мире (ФАИ) — 2 из них, в которых была превышена граница космоса в 100 км, признаны суборбитальными пилотируемыми космическими полётами, а их участники — астронавтами.

Аналогичные программы в СССР и других странах.

В начале XXI века начал развиваться частный космический туризм, в русле которого возникло и развивается несколько проектов частных суборбитальных пилотируемых космических кораблей многоразового использования с космопланами, совершающими гиперзвуковой полёт на траектории подъёма и спуска. В 2004 году были совершены полёты первого из таких аппаратов SpaceShipOne компании «Virgin Galactic». Развитием программы стал SpaceShipTwo. Следующими предполагаются не доходящие до космоса суборбитальные LYNX и другие частные аппараты.

Также существуют проекты гиперзвуковых суборбитальных пассажирских авиалайнеров (напр, SpaceLiner, ZEHST) и военных транспортников быстрого реагирования.

Гиперзвуковые ступени АКС и МТКК — космопланы и космолёты

Во всех крылатых МТКК и АКС их вторая (космоплан) или единственная (космолёт) выходящая на орбиту ступень совершает гиперзвуковой полёт на траектории спуска, а в некоторых — в одно- или двухступенчатых системах с горизонтальным стартом — также и при подъёме.

В 1960-х годах и позже, в США и СССР существовали, но не были реализованы проекты орбитальных самолётов-космопланов. Проекты X-20 Dyna Soar в США и Лапоток, ЛКС в СССР предусматривали вертикальный запуск на обычных ракетах-носителях (РН) орбитальных самолётов, которые становились ГЛА только при возвращении. В нереализованном проекте АКС СССР Спираль и разгонная первая ступень (самолёт-разгонщик), и орбитальный самолёт были гиперзвуковыми и совершали горизонтальные совместный старт и раздельную посадку.

В США в 1980-х — 2000-х гг. была отработана обширная программа из более чем 100 полётов первого в истории МТКК Спейс Шаттл с орбитальным самолётом-космопланом. Аналогичный, но запускаемый на РН, космоплан СССР Буран совершил только один полёт на орбиту. Ему предшествовали испытательные суборбитальные и орбитальные полёты прототипов космопланов БОР-4 и БОР-5, также запускаемых на РН.

В 1990-х и 2000-х годах существовали, но были отменены до стадии практической реализации проекты ряда многоразовых транспортных космических систем и АКС: в России — запускаемый с обычного самолёта космоплан МАКС и космолёт РАКС, в США — одноступенчатые космолёты VentureStar с вертикальным стартом и горизонтальной посадкой и NASP (Rockwell X-30) с горизонтальным стартом и посадкой, во Франции и Евросоюзе — запускаемый на РН космоплан Гермес, в Японии — запускаемый на РН космоплан HOPE (полёт на орбиту совершил его прототип HIMES) и двухступенчатый ASSTS с горизонтальным стартом и посадкой, в Германии — двухступенчатый Зенгер-2 с горизонтальным стартом и посадкой, в Великобритании — одноступенчатый HOTOL с горизонтальным стартом и посадкой, в Индии — запускаемый на РН космоплан Hyperplane и др.

В начале XXI века в России существовал, но был отменён проект частично-многоразового крылатого космического корабля Клипер, запускаемого на обычной РН.

В США продолжается проект Boeing X-37 с полётами на орбиту экспериментального космоплана, запускаемого на РН. Разрабатываются проекты: в Великобритании — одноступенчатый АКС-космолёт Skylon с горизонтальным стартом и посадкой, в Индии — запускаемый на РН космоплан-прототип одноступенчатой АКС-космолёта RLV/AVATAR с вертикальным стартом и горизонтальной посадкой, в Китае — запускаемый на РН космоплан и его прототип Шэньлонг и двухступенчатый МТКК с горизонтальным стартом и посадкой и др.

Гиперзвуковые БПЛА

Проекты специальных экспериментальных беспилотных ГЛА разрабатываются и осуществляются в целях отработки возможностей создания двух- и одноступенчатых многоразовых транспортных АКС (космопланов и космолётов) следующих поколений и перспективных технологий ракетного двигателестроения (ГПВРД) и других.

Существовали доведённые до разных начальных степеней реализации проекты беспилотных ГЛА в США — Boeing X-43, России — «Холод» и «Игла», Германии — SHEFEX (прототип космоплана/космолёта), Австралии — AUSROCK и другие.

Гиперзвуковые ракеты и управляемые боевые блоки ракет

Ранее разрабатывался ряд проектов экспериментальных и боевых крылатых (например, Х-90 в СССР) и некрылатых (например, Х-45 в СССР) ракет, достигающих гиперзвуковых скоростей.

  • 26 мая 2010 г. состоялось первое испытание гиперзвуковой крылатой ракеты США X-51 Waverider.
  • 20 апреля 2010 г. состоялось первое испытание планирующего гиперзвукового управляемого боевого блока США проекта DARPA Falcon HTV-2.
  • 18 ноября 2011 г. Минобороны США провело первое испытание планирующего гиперзвукового боевого блока другого проекта AHW[4].
  • В январе 2014 г. стало известно об испытаниях имеющего скорость до 10 Маха гиперзвукового боевого блока WU-14 в КНР.
  • 28 июня 2015 г. издание Washington Free Beacon опубликовало информацию о разработке и испытании в России гиперзвукового боевого блока Ю-71 (4202)[5][6][7] — первоначально боевой блок МБР «Сармат», вылившийся в самостоятельный проект (скорость до 11 Маха)[8].
  • 19 февраля 2016 г. сообщено о планах размещения гиперзвуковых противокорабельных ракет «Циркон» на российском тяжёлом атомном ракетном крейсере «Пётр Великий»[9]
  • «Кинжал» — базирующийся на самолётах МИГ-31 российский гиперзвуковой противокорабельный авиационно-ракетный комплекс, принят на опытное вооружение с 1 декабря 2017 г.
  • Гиперзвуковая крылатая ракета БраМос-2 предполагается совместной разработкой Индией и Россией.
  • 11 октября 2017 г. Украина на выставке «Зброя та безпека-2017» представила проект гиперзвуковой ракеты разработки КБ Южное[10].

Видео по теме

Технологии и применение

ГЗЛА могут быть без двигателей или оснащаться различными типами двигательных установок:[11]жидкостными ракетными двигателями (ЖРД), гиперзвуковыми прямоточными воздушно-реактивными двигателями (ГПВРД), твердотопливными ракетными двигателями (РДТТ) (а также теоретически ядерными ракетными двигателями (ЯРД) и другими), в том числе комбинацией таких двигателей и ускорителей. То есть термин «гиперзвуковой» подразумевает способность аппарата двигаться с гиперзвуковой скоростью в воздушной среде, используя как двигатели, так и в той или иной форме воздух.

Учитывая потенциал технологии, организации по всему миру осуществляют исследования в области гиперзвукового полёта и развития ГПВРД. По всей видимости, первое применение будет иметь место для управляемых военных ракет, потому как эта область требует только самолётный режим в диапазоне высот, а не ускорение до орбитальной скорости. Таким образом, основные средства на разработки в этой области идут именно в рамках военных контрактов.

Гиперзвуковые космические системы могут иметь, а могут не иметь преимущество от использования ступеней с ГПВРД. Удельный импульс или эффективность ГПВРД теоретически составляет от 1000 до 4000 секунд, в то время как в случае ракеты эта величина на 2009 год не превышает 470 секунд[12][13], что в принципе означает гораздо более дешёвый доступ в космос. Однако этот показатель будет быстро уменьшаться вместе с ростом скорости и также будет происходить ухудшение аэродинамического качества. Существенна проблема маленького отношения тяги ГПВРД к его массе,[14] которая составляет 2, что примерно 50 раз хуже этого показателя для ЖРД. Частично это компенсируется тем, что затраты на компенсирование силы тяжести при фактически самолётном режиме несущественны, но более продолжительное нахождение в атмосфере означает бо́льшие аэродинамические потери.

Воздушное судно-авиалайнер с ГПВРД должно значительно сократить время путешествия из одной точки в другую, потенциально сделав достижимой любую точку Земли в пределах 90 минут. Однако при этом остаются вопросы по тому, смогут ли такие аппараты перевозить на себе достаточно топлива для совершения полётов на достаточно большие расстояния и смогут ли они летать на достаточной высоте, чтобы избежать связанных со сверхзвуковым полётом звуковых эффектов. Также остаются неопределёнными вопросы, связанные с общей стоимостью таких полётов и возможностью многократного использования аппаратов после гиперзвукового полёта.

Военное

[1]

Преимущества и недостатки в случае космических аппаратов

Преимущество гиперзвукового самолёта наподобие X-30 состоит в исключении или уменьшении количества транспортируемого окислителя. Например, внешний бак МТКК Спейс Шаттл на старте содержит 616 тонн жидкого кислорода (окислитель) и 103 тонн жидкого водорода (топливо). Сам космический челнок-космоплан при приземлении весит не более 104 тонн. Таким образом, 75 % всей конструкции составляет транспортируемый окислитель. Исключение этой дополнительной массы должно облегчить аппарат и, как можно надеяться, увеличить долю полезной нагрузки. Последнее можно считать основной целью изучения ГПВРД вместе с перспективой уменьшения стоимости доставки грузов на орбиту.

Но имеются определённые недостатки:

Низкое отношение тяги к весу аппарата

Жидкостный ракетный двигатель («ЖРД») отличается очень высоким показателем тяги по отношению к его массе (до 100:1 и более), что позволяет ракетам достичь высоких показателей при доставке грузов на орбиту. Напротив, отношение тяги ГПВРД к его массе составляет порядка 2, что означает увеличение доли двигателя в стартовой массе аппарата (без учета необходимости уменьшить эту величину по крайней мере в четыре раза из-за отсутствия окислителя). Вдобавок наличие нижнего предела скорости ГПВРД и падение его эффективности с ростом скорости определяет необходимость использования на таких космических системах ЖРД со всеми их недостатками.

Необходимость дополнительных двигателей для достижения орбиты

Гиперзвуковые ПВРД имеют теоретический диапазон рабочих скоростей от 5-7 М вплоть до первой космической скорости 25 М, но как показали исследования в рамках проекта X-30, верхний предел устанавливается возможностью сгорания топлива в проходящем воздушном потоке и составляет порядка 17 М. Таким образом, требуется другая дополнительная система реактивного ускорения в нерабочем диапазоне скоростей. Поскольку необходимая разница восполнения скоростей незначительна, а доля ПН в стартовой массе гиперзвукового самолёта велика, применение дополнительных ракетных ускорителей различного типа является вполне приемлемым вариантом. Оппоненты исследований ГПВРД утверждают, что любая перспективность этого типа аппаратов может проявиться лишь для одноступенчатых космических систем. Сторонники этих исследований утверждают, что варианты многоступенчатых систем с использованием ГПВРД также оправданы.

Этап возвращения

Потенциально, нижняя часть тепловой защиты гиперзвукового космического аппарата должна быть увеличена вдвое в целях возвращения аппарата на поверхность. Использование абляционного покрытия может означать его потерю после выхода на орбиту, активная теплозащита с использованием топлива в качестве хладагента требует работы двигателя для своего функционирования.

Стоимость

Сокращение количества топлива и окислителя в случае гиперзвуковых аппаратов означает увеличение доли стоимости самого аппарата в общей стоимости системы. На самом деле, стоимость одного самолёта с ГПВРД может быть очень высокой по сравнению со стоимостью топлива, потому как стоимость аэрокосмического оборудования по крайней мере на два порядка выше, чем на жидкий кислород и баки к нему. Таким образом, аппараты с ГПВРД наиболее оправданы в качестве систем многоразового использования. Может ли оборудование многократно использоваться в экстремальных условиях гиперзвукового полёта остаётся не до конца ясным — все сконструированные до сих пор системы не предусматривали возвращение и их повторное использование.

Окончательная стоимость такого аппарата является предметом интенсивного обсуждения, потому как сейчас нет четкой убеждённости в перспективности таких систем. По всей видимости, для того чтобы быть экономически оправданным, гиперзвуковой аппарат должен будет обладать бо́льшей ПН по сравнению с ракетой-носителем с той же стартовой массой.

В произведениях искусства и массовой культуре

В фильмах
В других медиа
  • Истребитель «Mave» в японском анимационном фильме «Юкикадзе» имел режим в своем списке возможностей, называемый RAM-AIR, который, как утверждалось, был СПВРД, но по возможностям скорее соответствовал ГПВРД.
  • В эпизоде «Ящик Пандоры» в телешоу «Числа» телеканала CBS разбившийся самолёт перевозил ГПВРД в качестве незадекларированного груза.
  • Одна из опций выбора типа двигателя в игре Ace Combat X: Skies of Deception для самолёта с настраиваемым набором двигателей и других компонентов называется SCRAMjet.

См. также

Материалы

  1. Пышнов В. С. Полёт с большими докосмическими скоростями. ВВИА им. проф. Н. Е. Жуковского, 1959. — 59 с.
  2. Нестеренко Г. Н. Космическая авиация. М.: ВИ, 1969. — 60 с.
  3. Шкадов Л. М. и др. Механика оптимального пространственного движения летательных аппаратов в атмосфере. — М.: «Машиностроение», 1972. — 244 с.
  4. ↑ США испытали гиперзвуковую бомбу, Лента.ру (18 ноября 2011 года).
  5. ↑ Ю-71 — Российское новейшее гиперзвуковое маневрирующее средство доставки ядерных боеголовок // LiveInternet, 29.06.2015
  6. ↑ Россия испытала гиперзвуковой летательный аппарат // «Российская газета» — Проект «Русское оружие», 03.07.2015
  7. ↑ Объект «4202»: к берегам Америки на гиперзвуке // Свободная пресса
  8. ↑ Ю-71 — Российское новейшее гиперзвуковое маневрирующее средство доставки ядерных боеголовок/«Испытания Ю-71, Сирия» // Макспарк, 10.10.2015 (статья с видео программы «Военная тайна»)
  9. ↑ Источник: крейсер «Пётр Великий» в ходе модернизации получит гиперзвуковые ракеты (рус.). Армия и ОПК. ИТАР-ТАСС (19.02.2016). — «…крейсер получит на вооружение гиперзвуковые противокорабельные ракеты «Циркон». На данный момент ракеты проходят лётно-конструкторские государственные испытания… Параметры «Циркона» являются секретными. Открытые источники указывают, что дальность новой ракеты может составить до 400 километров, а скорость её полёта будет примерно в пять раз превышать скорость звука.». Проверено 19 февраля 2016.
  10. ↑ Гіперзвукова ракета України – міжнародна виставка “Зброя та безпека – 2017”
  11. ↑ Авиационные двигатели
  12. Kors, D.L. «Design considerations for combined air breathing-rocket propulsion systems.», AIAA Paper No. 90-5216, 1990.
  13. Varvill, R., Bond, A. A Comparison of Propulsion Concepts for SSTO Reuseable Launchers Архивная копия от 28 июня 2012 на Wayback Machine, JBIS, Vol 56, pp 108—117, 2003. Figure 8.
  14. ↑ Varvill, R., Bond, A. «A Comparison of Propulsion Concepts for SSTO Reuseable Launchers Архивная копия от 28 июня 2012 на Wayback Machine», JBIS, Vol 56, pp 108—117, 2003. Figure 7.

Ссылки

wiki2.red

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *