Радиация — Что такое Радиация?

, Обновлено 4 марта 10:10

156784

Существуют различные виды ионизирующего излучения

Радиация — совокупность разновидностей ионизирующих излучений, т. е. микрочастиц и физических полей, способных ионизировать вещество.

По сочетанию таких свойств, как состав, энергия и проникающая способность, выделяют следующие виды ионизирующего излучения:

  • излучение альфа-частиц – обладает сильной ионизацией – это достаточно тяжелые ядра гелия с положительным зарядом;
  • излучение бета-частиц – это поток заряженных электронов, по проникающей способности значительно превосходит альфа-частицы;
  • гамма-излучение – похоже на видимый световой поток, а по своей природе – это короткие волны электромагнитного излучения, способные проникать в окружающие предметы;
  • рентгеновское излучение – электромагнитные волны с меньшей энергией, чем гамма-излучение. Солнце – естественный и не менее мощный источник рентгеновских лучей, но слои атмосферы обеспечивают защиту от солнечного излучения;
  • нейтроны – электрически нейтральные частицы, которые возникают около работающих атомных реакторов. Доступ на такую территорию всегда ограничен.

В качестве мощного источника излучения, опасного для здоровья и жизни человека, может выступать совершенно любой радиоактивный предмет или вещество.
И в сравнении со многими другими возможными опасностями радиацию невозможно почувствовать и увидеть.
Определить ее уровень можно только специальными приборами.

Влияние радиационного излучения на здоровье человека зависит от его конкретного вида, периода времени и частоты воздействия.

Гамма-излучение для человека считается самым опасным.
Альфа-излучение, хотя и обладает малой проникающей способностью, опасно в случае попадания альфа-частиц непосредственно в организм человека (в легкие или пищеварительную систему).
При излучении бета-частиц необходимо защитить кожные покровы человека и не допустить их попадания внутрь.
При работе с рентгеновским оборудованием необходимо соблюдать меры защиты, поскольку излучение от него является мутагенным фактором, что приводит к мутации генов – изменению генетического материала клетки.

Все перечисленные виды радиационного излучения могут вызывать у человека:

  • серьезные заболевания – лейкоз, рак (легких, щитовидной железы),
  • инфекционные осложнения, нарушение обмена веществ, катаракту,
  • генетические нарушения (мутации), врожденные пороки,
  • выкидыши и бесплодие.

#Радиация #излучение

Последние новости

Типы радиационного излучения — какое опасно

Радиационное излучение образуется в результате реакций на уровне атомов. Процесс характеризуется выбросом потока микрочастиц, имеющих заряд: протонов, электронов, фотонов и нейтральных микроэлементов – нейтронов. Они определяют тип радиационного излучения.

Излучение подразделяется на энергетическое, к нему относятся потоки гамма и рентгеновских частиц, и атомное, в его основе лежит выделение элементов вещества: альфа, бета и гамма-частиц. Классифицируется излучение в зависимости от структуры частиц, расстояния их действия, способности проникать в ткани, клетки и степени воздействия на них, скорости излучения.
Практически все типы излучения, за исключением альфа-излучения можно обнаружить с помощью бытового дозиметра радиации.

Альфа-излучение (α)

Альфа-частицы – результат распада нестабильных изотопов атома. Они имеют положительный заряд, состоят из 2-х пар протонов и нейтронов. Частицы образуются в результате распада таких элементов, как радий, уран характеризуются низкой скоростью излучения – 20 000км/с, обладают небольшой проникающей способностью из-за высокой удельной массы. Препятствие небольшой толщины и плотности остановит альфа частицы. Защитой от них может стать даже бумага.

Низкая проникающая способность альфа частиц, их большой энергетический заряд, обуславливает высокий уровень взаимодействия с клетками организма. Это приводит к мутации, патогенным изменениям тканей. Альфа частицы оседают в организме человека, попадая через повреждения кожи, воду, воздух, оказывают на него длительное воздействие. Поэтому они опасны для живых организмов, вывести их из тканей практически невозможно.

Бета-излучение (β)

Появление бета-частиц обусловлено процессами, происходящими в ядре вещества. Их результат – изменение свойств нейтронов и протонов. В итоге образуется поток частиц с положительным зарядом. Этот тип излучения характеризуется:

  • небольшой дальностью действия – не более 20м;
  • высокой скоростью излучения – 300 000км/с;
  • средней проникающей способностью. От бета частиц защитит металлический лист толщиной более 3мм;
  • средней степенью воздействия на клетки тканей.

Бета-частицы обладают способностью накапливаться в тканях и оказывать на них длительное ионизирующее воздействие. Его результатом становятся тяжелые онкологические заболевания.

Нейтронное излучение

Поток нейтронов образуется в результате техногенной деятельности – работы ректоров, взрывов ядерных боеприпасов. Не имеющие заряда частицы, имеют наибольшую дальность действия по сравнению с другими типами радиационного излучения. Человек получает опасную для жизни дозу излучения на расстоянии 1,3–1,5км от его источника.

Нейтроны глубоко проникают в ткани, провоцируя мутации, патогенные изменения. Защитой от таких частиц станет вода и другие вещества, где много водорода. Нейтронное излучение является наиболее опасным для человека из-за большого радиуса действия.

Рентгеновское излучение

В результате смены орбит электронов в структуре атома, образуются фотоны или электромагнитное, энергетическое излучение. Оно характеризуется:

  • небольшим радиусом действия – до 100м;
  • высокой скоростью – 300 000км/с;
  • высокой проникающей способностью.

Фотоны оказывают слабое воздействие на клетки, ткани живых организмов, поэтому широко используются в медицине для проведения диагностических исследований.

Гамма излучение (y)

Поток фотонов, образующийся в результате изменения энергетического состояния атомов. Гамма излучение обладает высокой проникающей способностью, поэтому для защиты от него используется толстый слой металла или бетона. Его дальность действия достигает нескольких сотен метров. Гамма излучение не оказывает серьезного патогенного воздействия на клетки и ткани, менее опасно, чем альфа, бета или нейтронное.

 Дозиметр – функциональные особенности

Прибор позволяет измерить дозу излучения, которую получают организмы за определенный промежуток времени. Не стоит его путать с радиометром, который показывает активность частиц. Он дает представление о радиационном фоне в то время, как дозиметр определяет мощность дозы излучения, что помогает оценить нанесенный человеку ущерб и его возможные последствия.

 

 

Основы радиации | NRC.gov

Излучение — это энергия, испускаемая материей в виде лучей или высокоскоростных частиц. Вся материя состоит из атомов. Атомы состоят из различных частей; ядро содержит мельчайшие частицы, называемые протонами и нейтронами, а внешняя оболочка атома содержит другие частицы, называемые электронами. Ядро несет положительный электрический заряд, а электроны несут отрицательный электрический заряд. Эти силы внутри атома работают над прочным и стабильным балансом, избавляясь от избыточной атомной энергии (радиоактивности). В этом процессе нестабильные ядра могут излучать некоторое количество энергии, и это спонтанное излучение и есть то, что мы называем излучением.

Для получения дополнительной информации см. следующие темы на этой странице:

  • Физические формы излучения
  • Радиоактивный распад
  • Ядерное деление
  • Ионизирующее излучение
    • Альфа-частицы
    • Бета-частицы
    • Гамма-лучи и рентгеновские лучи
    • Нейтроны

Физические формы излучения

Как указывалось ранее, материя испускает энергию (излучение) в двух основных физических формах. Одной из форм излучения является чистая энергия без веса. Эта форма излучения, известная как электромагнитное излучение, похожа на вибрирующие или пульсирующие лучи или «волны» электрической и магнитной энергии. Знакомые типы электромагнитного излучения включают солнечный свет (космическое излучение), рентгеновские лучи, радар и радиоволны.

Другая форма излучения — известная как излучение частиц — представляет собой крошечные быстро движущиеся частицы, обладающие как энергией, так и массой (весом). Эта менее знакомая форма излучения включает альфа-частицы, бета-частицы и нейтроны, как объясняется ниже.

Радиоактивный распад

Как указывалось ранее, большие нестабильные атомы становятся более стабильными, испуская радиацию, чтобы избавиться от избыточной атомной энергии (радиоактивности). Это излучение может испускаться в форме положительно заряженных альфа-частиц, отрицательно заряженных бета-частиц, гамма-лучей или рентгеновских лучей, как поясняется ниже.

Благодаря этому процессу, называемому радиоактивным распадом, радиоизотопы со временем теряют свою радиоактивность. Эта постепенная потеря радиоактивности измеряется периодами полураспада. По сути, период полураспада радиоактивного материала — это время, за которое половина атомов радиоизотопа распадается, испуская радиацию. Это время может колебаться от долей секунды (для радона-220) до миллионов лет (для тория-232). Когда радиоизотопы используются в медицине или промышленности, очень важно знать, как быстро они теряют свою радиоактивность, чтобы знать точное количество радиоизотопа, доступного для медицинских процедур или промышленного использования.

Ядерное деление

В некоторых элементах ядро ​​может расщепляться в результате поглощения дополнительного нейтрона посредством процесса, называемого ядерным делением. Такие элементы называются делящимися материалами. Одним из особенно примечательных делящихся материалов является уран-235. Это изотоп, который используется в качестве топлива на коммерческих атомных электростанциях.

Когда ядро ​​делится, оно вызывает три важных события, которые приводят к высвобождению энергии. В частности, этими событиями являются выброс радиации, выброс нейтронов (обычно двух или трех) и образование двух новых ядер (продуктов деления).

Ионизирующее излучение

Излучение может быть ионизирующим или неионизирующим, в зависимости от того, как оно воздействует на материю. К неионизирующему излучению относятся видимый свет, тепло, радар, микроволны и радиоволны. Этот тип излучения выделяет энергию в материалы, через которые оно проходит, но у него недостаточно энергии, чтобы разорвать молекулярные связи или удалить электроны из атомов.

Ионизирующее излучение (такое как рентгеновские и космические лучи) напротив, обладает большей энергией, чем неионизирующее излучение. Следовательно, когда ионизирующее излучение проходит через материал, оно выделяет достаточно энергии, чтобы разорвать молекулярные связи и вытеснить (или удалить) электроны из атомов.

Это смещение электронов создает две электрически заряженные частицы (ионы), которые могут вызывать изменения в живых клетках растений, животных и людей.

Ионизирующее излучение имеет ряд полезных применений. Например, мы используем ионизирующее излучение в детекторах дыма, а также для лечения рака или стерилизации медицинского оборудования. Тем не менее, ионизирующее излучение потенциально опасно, если его неправильно использовать. Следовательно, Комиссия по ядерному регулированию США (NRC) строго регулирует коммерческое и институциональное использование ядерных материалов, включая следующие пять основных типов ионизирующего излучения:

  • Альфа-частицы
  • Бета-частицы
  • Гамма-лучи и рентгеновские лучи
  • Нейтроны

Альфа-частицы

Альфа-частицы — это заряженные частицы, испускаемые природными материалами (такими как уран, торий и радий) и искусственными элементами (такими как плутоний и америций). Эти альфа-излучатели в основном используются (в очень небольших количествах) в таких предметах, как детекторы дыма.

Как правило, альфа-частицы обладают очень ограниченной способностью проникать через другие материалы. Другими словами, эти частицы ионизирующего излучения могут быть заблокированы листом бумаги, кожей или даже несколькими сантиметрами воздуха. Тем не менее, материалы, испускающие альфа-частицы, потенциально опасны при вдыхании или проглатывании, но внешнее воздействие обычно не представляет опасности.

Бета-частицы

Бета-частицы, похожие на электроны, испускаются природными материалами (такими как стронций-90). Такие бета-излучатели используются в медицине, например, для лечения заболеваний глаз.

Как правило, бета-частицы легче альфа-частиц и обладают большей способностью проникать в другие материалы. В результате эти частицы могут перемещаться по воздуху на несколько футов и проникать в кожу. Тем не менее, тонкий лист металла, пластика или деревянного бруска может остановить бета-частицы.

Гамма-лучи и рентгеновские лучи

Гамма-лучи и рентгеновские лучи состоят из волн высокой энергии, которые могут распространяться на большие расстояния со скоростью света и, как правило, обладают большой способностью проникать в другие материалы. По этой причине гамма-лучи (например, от кобальта-60) часто используются в медицине для лечения рака и стерилизации медицинских инструментов. Точно так же рентгеновские лучи обычно используются для получения статических изображений частей тела (таких как зубы и кости), а также используются в промышленности для обнаружения дефектов сварных швов.

Несмотря на свою способность проникать в другие материалы, в целом ни гамма-лучи, ни рентгеновские лучи не способны сделать что-либо радиоактивным. Несколько футов бетона или несколько дюймов плотного материала (например, свинца) способны блокировать эти виды излучения.

Нейтроны

Нейтроны — это высокоскоростные ядерные частицы, обладающие исключительной способностью проникать через другие материалы. Из пяти обсуждаемых здесь типов ионизирующего излучения нейтроны — единственный, который может сделать объекты радиоактивными. Этот процесс, называемый нейтронной активацией, приводит к образованию многих радиоактивных источников, которые используются в медицине, академических и промышленных целях (включая разведку нефти).

Из-за своей исключительной способности проникать в другие материалы нейтроны могут перемещаться в воздухе на большие расстояния, и для их блокировки требуются очень толстые водородосодержащие материалы (например, бетон или вода). Однако, к счастью, нейтронное излучение в основном происходит внутри ядерного реактора, где много футов воды обеспечивают эффективную защиту.

Страница Последнее рассмотрение/обновление 20 марта 2020 г.

Какие виды излучения существуют?

Излучение, с которым обычно приходится сталкиваться, относится к одному из четырех типов: альфа излучение, бета-излучение, гамма-излучение и рентгеновское излучение. нейтрон излучение также встречается на атомных электростанциях и в высокогорных летающих и выбрасываемых некоторыми промышленными радиоактивными источниками.

  1. Альфа-излучение

    Альфа-излучение — это тяжелая частица с очень малым радиусом действия. выброшенное ядро ​​гелия. Некоторые характеристики альфа-излучения:

    • Большая часть альфа-излучения не способна проникать через кожу человека.
    • Материалы, излучающие альфа-частицы, могут нанести вред человеку при вдыхании, проглатывании или всасывании через открытые раны.
    • Для измерения альфа- излучение. Для использования этих инструментов требуется специальная подготовка. необходимо для проведения точных измерений.
    • Датчик Гейгера-Мюллера (GM) с тонким окном может обнаруживать присутствие альфа-излучения.
    • Приборы не могут обнаружить альфа-излучение даже через тонкий слой воды, пыли, бумаги или другого материала, потому что альфа-излучение не проникающий.
    • Альфа-излучение распространяется по воздуху только на небольшое расстояние (несколько дюймов), но не представляет собой внешней опасности.
    • Альфа-излучение не проникает через одежду.

    Примеры некоторых альфа-излучателей: радий, радон, уран, торий.
  2. Бета-излучение

    Бета-излучение представляет собой легкую частицу ближнего действия и на самом деле представляет собой выброшенный электрон.

    Некоторые характеристики бета-излучения:

    • Бета-излучение может распространяться по воздуху на несколько футов и обладает умеренной проникающей способностью.
    • Бета-излучение может проникать через кожу человека в «зародышевый слой». где образуются новые клетки кожи. Если высокий уровень бета-излучения загрязняющие вещества могут оставаться на коже в течение длительного периода времени времени они могут вызвать повреждение кожи.
    • Загрязняющие вещества, излучающие бета-излучение, могут быть вредными, если оседают внутри.
    • Большинство бета-излучателей можно обнаружить с помощью геодезического прибора и ГМ-зонд с тонким окном (например, типа «блин»). Некоторые бета-излучатели, однако производят очень низкоэнергетическое, плохо проникающее излучение, которое может быть трудно или невозможно обнаружить. Примеры этих трудно обнаруживаемые бета-излучатели – водород-3 (тритий), углерод-14, и сера-35.
    • Одежда обеспечивает некоторую защиту от бета-излучения.

    Примеры некоторых чистых бета-излучателей: стронций-90, углерод-14, тритий и сера-35.
  3. Гамма- и рентгеновское излучение

    Гамма-излучение и рентгеновское излучение представляют собой электромагнитное излучение с высокой проникающей способностью. Некоторые характеристики этих излучений:

    • Гамма-излучение или рентгеновские лучи способны распространяться по воздуху на многие футы и много дюймов в ткани человека. Они легко проникают в большинство материалов и иногда называются «проникающими» излучениями.
    • Рентгеновские лучи похожи на гамма-лучи. Рентгеновские лучи тоже являются проникающим излучением. Закрытые радиоактивные источники и машины, испускающие гамма-излучение и х лучи соответственно представляют в основном внешнюю опасность для человека.
    • Гамма-излучение и рентгеновское излучение представляют собой электромагнитное излучение, подобное видимый свет, радиоволны и ультрафиолетовое излучение. Эти электромагнитные излучения отличаются только количеством энергии, которую они имеют. Гамма излучение и рентгеновские лучи являются наиболее энергичными из них.
    • Плотные материалы необходимы для защиты от гамма-излучения. Одежда мало защищает от проникающей радиации, но предотвратить загрязнение кожи гамма-излучающими радиоактивными материалы.
    • Гамма-излучение легко обнаруживается при помощи измерительных приборов с детектором на основе йодистого натрия.
    • Гамма-излучение и/или характеристическое рентгеновское излучение часто сопровождают испускание альфа- и бета-излучения при радиоактивном распаде.

    Примеры некоторых гамма-излучателей: йод-131, цезий-137, кобальт-60, радий-226 и технеций-99m.

Информация, размещенная на этой веб-странице, предназначена только в качестве общей справочной информации. Конкретные факты и обстоятельства могут повлиять на применимость описанных здесь концепций, материалов и информации.