Содержание

найдена первая планета вне Млечного Пути

26 октября 2021 13:04 Ольга Мурая

Изображение М51, сделанное с помощью космического телескопа «Хаббл».
Фото NASA, ESA, S. Beckwith (STScI), Hubble Heritage Team (STScI/AURA).

Рентгеновская двойная система M51-ULS-1 до (a) и во время (b) астрономического транзита.
Иллюстрация Di Stefano et al./Nat. Astron., 2021.

Если расчёты учёных подтвердятся, их метод откроет новые возможности для поиска экзопланет, расположенных за пределами Млечного Пути.

Используя рентгеновскую обсерваторию НАСА «Чандра», астрономы обнаружили первую потенциальную планету за пределами Млечного Пути. Эта планета расположена в величественной спиральной Галактике Водоворот (M51).

Этот захватывающий результат открывает новые возможности для поиска экзопланет на больших расстояниях, чем когда-либо прежде.

В общей сложности исследователи изучили 55 различных систем в M-51, 64 системы в Мессье 101 (Галактика Вертушка) и 119 систем в Мессье 104 (Галактика Сомбреро).

Экзопланеты — это планеты за пределами Солнечной системы. До сих пор астрономы находили все другие известные экзопланеты и кандидаты в экзопланеты в галактике Млечный Путь, и почти все они находятся на расстоянии менее 3 000 световых лет от Земли.

Экзопланета в M51 находится на расстоянии около 28 миллионов световых лет, то есть в тысячи раз дальше, чем те, что обнаружены в Млечном Пути.

Исследовательская группа обнаружила объект в M51 благодаря астрономическому транзиту. Транзит, или прохождение, происходит, когда объект проходит перед звездой, блокируя часть её света и создавая кратковременное затемнение.

Ранее ученые использовали этот метод для открытия тысяч экзопланет. Но все они были обнаружены в нашей галактике.

Рентгеновская двойная система M51-ULS-1 до (a) и во время (b) астрономического транзита.

Иллюстрация Di Stefano et al./Nat. Astron., 2021.

Чтобы найти первую планету за пределами Млечного Пути, учёные использовали телескоп «Чандра» для поиска «провалов» в яркости рентгеновских лучей.

Поскольку рентгеновские лучи производятся небольшими областями на звёздах, планеты, проходящие перед этими звёздами, могут фактически полностью блокировать это рентгеновское излучение.

Таким образом, вместо лёгкого затемнения видимого света, исследователи смогли увидеть более очевидный транзит, который, согласно авторам новой работы, может облегчить наблюдение за объектами на большом расстоянии.

Предполагаемая экзопланета в Галактике Водоворот находится в двойной системе M51-ULS-1, вращающейся вокруг двух больших объектов: нейтронной звезды или чёрной дыры, обращающейся вокруг общего центра тяжести вместе с массивной звездой-компаньоном.

Транзит, который наблюдали астрономы, длился в общей сложности около трёх часов, в его ходе регистрируемое рентгеновское излучение звезды упало до нуля.

Это помогло исследователям рассчитать, что объект может быть размером примерно с Сатурн и обращается вокруг нейтронной звезды или чёрной дыры на расстоянии, вдвое превышающем расстояние от Сатурна до нашего Солнца.

Эта работа может стать первой, подтверждающей наличие планеты в другой галактике, и потенциально открыть новую эру обнаружения и изучения планет. Но прямо сейчас эти наблюдения не подтверждают, что обнаруженный объект является планетой. Исследователи заявили, что необходимо собрать больше данных, чтобы подтвердить это утверждение.

Однако объект вновь пройдёт перед своей звездой лишь через 70 лет, поэтому ещё много времени пройдёт до тех пор, когда ученые смогут снова наблюдать это событие.

Возможно, но крайне маловероятно, что затемнение могло быть вызвано чем-то наподобие облака, проходящего перед звездой.

Исследователи ожидают, что другие учёные помогут проверить их работу и улучшить это исследование, несмотря на десятилетия, оставшиеся до следующего транзита.

«Мы знаем, что делаем захватывающее и смелое заявление, поэтому ожидаем, что другие астрономы очень внимательно изучат его, – говорит соавтор исследования Джулия Берндтссон (Julia Berndtsson) из Принстонского университета в Нью-Джерси. – Мы думаем, что у нас есть веские аргументы, и именно так работает наука».

В архивах рентгеновских телескопов «Чандра» и XMM-Newton может быть обнаружено больше кандидатов в экзопланеты в других галактиках. Внушительная коллекция данных о галактиках, расположенных намного ближе, чем M51, может позволить обнаружить более короткие транзиты.

Ещё одно интересное направление исследований — поиск транзитов рентгеновских лучей в источниках рентгеновского излучения Млечного Пути. Это может привести к открытию новых близлежащих планет.

Описание нового открытия будет опубликовано в издании Nature Astronomy. Ознакомиться с ним на английском языке в формате PDF можно по ссылке.

Ранее мы подробно писали об этой работе, опубликованной в прошлом году в формате препринта. Лишь сейчас исследование прошло процедуру оценки независимыми экспертами и стало официально доступно для широкого обсуждения и возможной критики.

Также мы писали о первой планете, обнаруженной вне плоскости Млечного Пути, а ещё о невероятно далёкой и редкой экзопланете. Рассказывали мы и о миниатюрной планете, которая потеряла родительскую звезду и скитается по Галактике.

Больше новостей из мира науки вы найдёте в разделе «Наука» на медиаплатформе «Смотрим».

наука космос планета астрономия галактики экзопланеты новости

Астрономы открыли первую планету в другой галактике. Но ее сложно рассмотреть, так что сомнения остаются

  • Пол Ринкон
  • Научный редактор, Би-би-си

Подпишитесь на нашу рассылку ”Контекст”: она поможет вам разобраться в событиях.

Автор фото, ESO / L. Calçada

Подпись к фото,

Находка сделана в процессе наблюдений двойной звездной системы, где вещество перетекает от более легкого компаньона к более тяжелому

Астрономы впервые обнаружили признаки существования планет за пределами нашей галактики.

На сегодняшний день обнаружено уже почти пять тысяч экзопланет, однако все они находятся в нашей галактике Млечный Путь.

  • Трезуб, Солярис, Домбай и другие. Страны мира выбрали имена для 112 экзопланет и их звезд

Теперь же ученым удалось с помощью принадлежащего НАСА рентгеновского телескопа Chandra обнаружить планету величиной с Сатурн в галактике М51. Она находится на расстоянии примерно 28 миллионов световых лет от Млечного Пути.

Экзопланеты обычно обнаруживают так называемым методом транзита: вращаясь вокруг звезды, планета в какой-то момент оказывается перед ней и вызывает небольшое изменение яркости звезды, которое можно зарегистрировать с помощью приборов.

Именно таким образом были обнаружены предыдущие экзопланеты.

Однако наблюдать транзит в видимом спектре на таких расстояниях сложно. Поэтому ученые под руководством доктора Розанны Ди Стефано искали изменения в интенсивности излучения звезды в рентгеновском диапазоне. Для наблюдения выбрали яркую двойную рентгеновскую систему.

  • Опубликован самый подробный рентген-снимок неба. Что на нем за пятна?

Как правило, такие системы состоят из объекта значительной массы — нейтронной звезды или черной дыры — и обращающейся вокруг него обычной звезды. Возникающий при этом аккреционный диск — поток вещества, под действием гравитационных сил перетекающий от более легкого компаньона на более тяжелый, — сильно разогревается и излучает и в рентгеновском диапазоне.

Аккреционный диск относительно невелик по размерам, поэтому проходящая перед ним планета вызывает достаточное изменение интенсивности излучения, чтобы его можно было наблюдать.

Ученые использовали эту технику для обнаружения первого кандидата в экзопланеты за пределами нашей галактики в двойной системе M51-ULS-1.

«Метод, который мы разработали и использовали, на сегодня единственный для открытия планетных систем в других галактиках, — рассказала Би-би-си доктор Ди Стефано, работающая в Смитсоновском центре астрофизики в Кембридже, в США. — Это уникальный метод, особенно хорошо подходящий для поиска планет вокруг рентгеновских двойных систем на любом расстоянии, излучение которых мы можем измерить».

Автор фото, NASA

Подпись к фото,

Телескоп Chandra был запущен в 1999 году для изучения рентгеновского излучения

Двойная система M51-ULS-1 содержит нейтронную звезду (остаток взрыва сверхновой, очень маленький сверхмассивный объект размером в несколько сотен или даже десятков километров) или черную дыру, вокруг которой вращается звезда-компаньон с массой примерно в 20 солнечных.

Транзит продолжался около трех часов, в течение которых рентгеновское излучение системы упало до нуля. На основании этих и других данных астрономы пришли к выводу, что планета по размеру сопоставима с Сатурном и вращается вокруг двойной системы на расстоянии примерно в две астрономические единицы (среднее расстояние от Земли до Солнца).

  • НАСА: ближайшая к Земле экзопланета может быть пригодна для жизни

По словам Ди Стефано, методы, применяемы для поиска экзопланет в нашей галактике, на межгалактических расстояниях не работают. Значительные расстояния делают невозможным наблюдение отдельных звезд в световом диапазоне — у оптических телескопов не хватает разрешающей способности, чтобы различить отдельные звезды, тем более — колебания их яркости.

С источниками рентгеновского излучения дело обстоит иначе. Во-первых, их относительно немного — всего несколько десятков на всю галактику. Некоторые из них настолько яркие, что их излучение легко может быть измерено. И как правило, мощные рентгеновские источники невелики по размерам, поэтому проходящая мимо планета может существенно (а в этом случае — полностью) заблокировать излучение.

Автор фото, NASA / ESA / S. Beckwith / HHT

Подпись к фото,

Галактику М51 также называют «Водоворотом» из-за ее характерной спиральной формы

Исследователи признают, что их выводы нуждаются в более тщательной проверке.

Повторить их эксперимент будет непросто: значительная величина орбиты потенциальной экзопланеты означает, что она совершает полный оборот вокруг двойной системы примерно за 70 лет, что делает невозможным повторение эксперимента в ближайшем будущем.

  • Ученые получили самые детальные изображения галактик. По ним можно наблюдать за деятельностью черных дыр

К тому же это вообще может оказаться не планета, а облако межзвездной пыли, хотя ученые считают эту возможность маловероятной: характеристики объекта не соответствуют свойствам газовых и пылевых облаков.

«Мы понимаем, что делаем очень смелое заявление, поэтому мы ожидаем, что другие астрономы тщательно проверят наши результаты, — говорит Джулия Берндтссон из Принстонского университета, принимавшая участие в исследовании. — Но нам кажется, у нас хорошие данные. Именно так и работает наука».

  • Взрыв невиданной силы потряс космос. Такого не было со времен Большого взрыва

Ди Стефано считает, что новое поколение оптических и инфракрасных телескопов все равно не будет обладать достаточной разрешающей способностью, чтобы наблюдать отдельные объекты в удаленных галактиках. Поэтому наблюдения в рентгеновском диапазоне, вероятно, останутся главным методом поиска планет в других галактиках.

Однако, по ее словам, метод микролинзирования (наблюдение искривления лучей света, проходящих вблизи массивных объектов) тоже может принести хорошие результаты.

Исследование было опубликовано в рецензируемом журнале Nature Astronomy.

  • Хотите быть в курсе последних событий? Подписывайтесь на наш Telegram-канал

структура и размеры нашей галактики, сколько в ней звезд, масса, строение

Млечный Путь (так называется наша галактика) представляет для астрономов особый интерес.   Именно здесь находится Солнечная система и, собственно, наш дом – Земля. Здесь также сконцентрированы все звезды, которые может разглядеть человек невооруженным глазом. Ежедневно астрономы делают новые открытия, исследуя нашу галактику. Каковы ее размер и масса, сколько в ней звезд, как она образовалась и что с ней произойдёт через миллиарды лет, вы узнаете из этой статьи.

Содержание

  1. История открытия
  2. Открытие Галилея
  3. Открытие Уильяма Гершеля
  4. Основные характеристики и параметры Млечного Пути
  5. Масса
  6. Размер
  7. Сколько звезд
  8. Светимость
  9. Класс и общее строение
  10. Структура и состав Млечного Пути
  11. Ядро
  12. Перемычка
  13. Диск
  14. Спиральные рукава
  15. Гало
  16. Расположение Солнечной системы в галактике
  17. Место Млечного пути во Вселенной
  18. Галактика Млечный Путь и что ее окружает
  19. Столкновение Млечного пути и Андромеды
  20. Эволюция и будущее галактики
  21. Мифология
  22. Армянская
  23. Венгерская
  24. Греческая
  25. Индийская
  26. Восточная мифология
  27. Мифология коренных народов Северной Америки

История открытия

По мере изучения космоса стало ясно, что небесные тела вращаются вокруг определенного центра. К примеру, Луна вращается вокруг Земли. Наша и другие планеты вращаются вокруг Солнца. Следовательно, появлялся справедливый вопрос: не вращается ли Солнце вокруг какой-то большей звездной системы?

Открытие Галилея

Галилео Галилей – итальянский математик, физик, астроном, оказавший огромное влияние на развитие науки о звездах. Еще в начале XVII века он соорудил телескоп, который включал в себя выпуклый объектив и вогнутый окуляр. Этот телескоп позволял добиться трехкратного увеличения. Вскоре более усовершенствованный телескоп Галилея давал 32-кратное увеличение. Примечательно, что название увеличительного аппарата «телескоп» ввел в научный обиход именно Галилей.

Галилео Галилей

Наблюдения в телескоп показали, что Луна покрыта возвышенностями и кратерами. Ученый объяснил происхождение так называемого пепельного света Луны, либрацию, обнаружил наличие спутников Юпитера.

Также он доказал, что Млечный Путь – это множество звезд. Однако наблюдения Галилея не прояснили происхождения нашей галактики и самого главного: являются ли они подобными Солнцу.

Открытие Уильяма Гершеля

Английский ученый У. Гершель в 18 веке занялся подсчетом звезд на ночном небе. Он обнаружил большой круг, которому дано наименование «галактический экватор», разделяющий видимую часть небесной сферы на 2 равные части. В нем количество звезд было максимальным. Оказалось также, что количество светил увеличивается по мере приближения того или иного участка неба к «галактическому экватору». Так удалось доказать, что все космические тела, доступные наблюдателю, образуют одну большую систему, которая является сплюснутой к экваториальной зоне.

Уильям Гершель

Гершелю даже удалось нарисовать схему Млечного Пути. Она получилась у него в виде вытянутого облака неправильной формы. Солнце находилось внутри этого кольца. Так себе представляли нашу галактику Млечный Путь все ученые даже до начала ХХ в.

Детальное описание нашей галактики было сделано голландским астрономом Я. Каптейном в 1920 г. Он описал его максимально похоже на то, которое известно нам сегодня.

Якобус Каптейн

Основные характеристики и параметры Млечного Пути

Одна из главных особенностей нашей галактики – способность поглощать другие скопления. Вокруг Млечного Пути движется несколько галактик, попадающих под его влияние и затягивающихся в его рукава. На данный момент Млечный Путь поглощает небольшую галактику в созвездии Стрельца.

Однако наша галактика взаимодействует и с Андромедой – значительно большим по размерам звездным скоплением. Через несколько миллиардов лет Млечный Путь будет поглощен им.

Основные характеристики Млечного Пути такие:

  • относится к спиральным галактикам;
  • является элементом Местной группы с другими звездными скоплениями;
  • диаметр – около 100 тыс. св. лет;
  • количество звезд – 200 – 400 миллиардов;
  • расстояние Солнца от центра – 27 тыс. св. лет;
  • скорость вращения Солнечной системы вокруг центра – около 230 км/с;
  • масса – примерно в 3 триллиона раз больше массы Солнца;
  • возраст – приблизительно 13,7 млрд. световых лет.

Масса

Узнать, сколько весит такой громадный объект во Вселенной, помогли расчеты. За основу было взято количество звезд в нашей галактике – как минимум 200 млрд, и предположено, что каждая из них весит столько, сколько Солнце. Общая их масса составляет 4% галактической. Газ (водород и гелий) весят в 3 раза больше, чем все 200 млрд звезд. Остальная масса приходится на темную материю. Итого Млечный Путь весит как минимум столько, сколько 3 трлн. Солнц. В тоннах это будет примерно 6*1039.

Размер

Размер Млечного Пути – свыше 100 тыс. световых лет в диаметре, или более 940 квадриллионов километров. Толщина Галактики – около 1000 световых лет.

В 2020 году ученые сообщили, что диаметр Галактики может достигать 1,9 млн. световых лет. Такая информация еще не подтверждена.

Сколько звезд

Точное количество звезд в Галактике не установлено. По нынешним оценкам, их от 200 до 400 миллиардов. Предполагается также, что в Млечном Пути находится до 100 млрд. коричневых карликов. Это промежуточные между звездами и планетами объекты. Их масса меньше солнечной в 13 – 77 раз.

В недрах коричневых карликов поддерживаются термоядерные реакции. Однако их мощность не сопоставима со светимостью такого небесного тела. Кроме того, они постепенно сжимаются и тускнеют. Наиболее холодные коричневые карлики имеют температуру, сравнимую с земной, а наиболее горячие нагреты до 2800 градусов по Кельвину.

Светимость

Полная светимость Галактики равна примерно 20 млрд. светимостей Солнца. В абсолютных показателях это невообразимая мощность – порядка 8∙1036 Вт. Звездная величина Млечного Пути равна –21.

Класс и общее строение

Млечный путь – это типичная галактика спирального класса с перемычкой. Половина всех звездных скоплений в космосе такие же. Две трети этого количества – это галактики с перемычкой. Это сравнительно молодые объекты. По мере эволюции у них исчезает эта часть. Составные части Млечного Пути такие.

  1. Ядро – центральная часть, где сосредоточена вся масса звездного скопления. Оно относится к активным, так как выделяет больше энергии, чем все небесные тела, вместе взятые.
  2. Вздутие, или балдж – оболочка центра, состоящая из гигантов, старых светил, раскаленных газовых облаков. Все они вращаются на больших скоростях вокруг ядра. Это самая яркая часть галактики, однако мы ее не видим: она закрыта от глаз наблюдателя рукавами Млечного Пути.
  3. Перемычка – это своего рода мост, к которому крепятся рукава. Астрономы сравнивают ее с бурным руслом реки.
  4. Рукава – часть галактики, в которой содержится значительная часть пыли и газа, молодых звёзд, а также множество звёздных скоплений.
  5. Диск – тонкий слой, в котором сконцентрировано большинство видимого вещества Галактики.
  6. Гало – остальная часть звездного скопления. Неизвестна длина этого гало и место, где оно заканчивается.
  7. Шаровые скопления — группы звезд, связанные гравитацией и вращающиеся вокруг центра галактики в качестве спутника.
Строение галактики Млечный Путь

Выглядит Млечный Путь как слабое свечение на ночном небе с большим количеством слабо светящихся звезд. Лучшие условия видимости – в августе и сентябре.

Структура и состав Млечного Пути

Даже по приближенным расчетам, в нашей галактике не менее 200 миллиардов звезд. Преимущественное большинство их локализовано в зоне с формой сплющенного диска.

Ядро

В центральной части Галактики есть утолщенная зона – балдж. Его диаметр – 8 тысяч парсек, он представляет собой звездное скопление эллипсоидной формы. Середина ядра расположена в созвездии Стрельца. Солнце удалено от него примерно на 8500 парсек, или 27,7 тыс. св. лет, или же на 262 квадриллиона километров.

По-видимому, в рассматриваемой зоне находится огромная черная дыра. Ее масса в 4 млн раз больше массы Солнца. Вокруг нее обращается еще один подобный массивный объект, тяжелее солнца в 1000 – 10000 раз, а также несколько тысяч черных дыр помельче, с периодом вращения около сотни лет. Воздействие гравитации от этого центра заставляет близко расположенные от центра звезды вращаться по особым орбитам. Астрономы допускают, что практически все звездные скопления  во Вселенной обращаются вокруг черных дыр.

Ядро Млечного Пути. Это самая богатая туманностями, звездными скоплениями, пылью и газом область нашей галактики.

В рассматриваемых участках Млечного Пути сконцентрировано много звезд. Например, только в одном кубическом парсеке этой области их находится несколько тысяч. Масса галактики распределяется так, что скорость обращения на орбите светил не зависит от того, насколько они удалены от центра. Обычная скорость обращения космических объектов здесь доходит до 240 км/с.

В 2016 г японские ученые обнаружили в центре галактики еще одну огромную черную дыру. Размеры этого объекта вместе с облаком – около 0,3 световых лет, а вес – 100 тыс. солнечных масс.

Исследования структуры Млечного пути продолжаются, и, по-видимому, ученые удивят нас новыми открытиями.

Перемычка

Длина этой части Галактики примерно 27 тыс. св. лет. Этот объект проходит сквозь ее  центр под углом 44° относительно границе между Солнцем и центром. Здесь наблюдаются в основном «красные» звезды. Их возраст значительно больше солнечного. Вокруг перемычки находится «Кольцо в пять килопарсек». В нем преобладает молекулярный водород, который является источником образования звезд.

В конце ХХ в. ученые предположили, что Млечный путь – это спиралеподобная галактика, имеющая перемычку. В 2005 г. с использованием мощного телескопа эта гипотеза подтвердилась. Более того, было установлено, что перемычка имеет значительно больший диаметр, нежели это считалось раньше.

Диск

Диаметр диска Галактики – примерно 100 тыс. св. лет. Он вращается намного быстрее, чем гало, и, причем, на разных скоростях. Вблизи черной дыры она приближается к нулю, а вот на удалении примерно 2 тыс. световых лет возрастает до 240 км/с. Затем скорость немного уменьшается, а затем увеличивается до указанного уровня и остается неизменной. Масса галактического диска в 150 миллиардов раз больше массы Солнца.

Вблизи диска находятся молодые звезды (возраст таких объектов не более нескольких миллиардов лет). Молодые космические тела образуют плоскую составляющую, среди них много объектов с высокой температурой. Вблизи плоскости диска находится основное количество газа в виде газовых облаков. Небольшие облака имеют диаметр около одного парсека. Гигантские газовые объекты располагаются во вселенском пространстве на протяжении тысяч световых лет.

Спиральные рукава

Поскольку Млечный Путь относится к спиралевидным звездным скоплениям, у нее есть рукава. Они располагаются в плоскости диска. Сам же диск находится в короне. Существуют такие рукава:

  • Лебедя;
  • Персея;
  • Ориона;
  • Стрельца;
  • Центавра.

С внутренней стороны рукава Ориона размещено Солнце. Оно вращается вокруг ядра со скоростью – примерно 230 км/с. Один оборот вокруг центра галактики Солнце делает примерно за 240 миллионов лет.

Спиральные рукава галактики Млечный Путь

Гало

Эта часть имеет форму шара и выходит за его границы примерно на 5 – 10 световых лет. Температура гало – 500 тысяч градусов Кельвина. В его составе – старые, малые, малояркие звезды, а также шаровые скопления. Подавляющее большинство таких скоплений расположены ближе 100 тысяч световых лет от центра Млечного Пути, но некоторые шаровые скопления находятся на расстоянии более 200 тысяч световых лет от галактического центра. Центр симметрии гало полностью совпадает с центром диска Галактики.

Звезды в этой области могут встречаться как одиночные, так и в составе скоплений, по несколько миллионов каждое. Их возраст обычно превышает 12 млрд. лет. Здесь процессы звездообразования завершились и в основном встречается темная материя.

Галактическое гало

Объекты, входящие в гало, движутся по весьма вытянутым орбитам. В целом эта область вращается медленно. Отдельные звезды имеют и вовсе хаотичное движение.

Расположение Солнечной системы в галактике

Результаты последних исследований говорят о том, что расстояние от Солнца до центра галактики примерно 27 тыс. св. лет. Предварительные оценки свидетельствуют, что наша дневная звезда находится примерно в 35 тыс. св. лет от зоны перемычки.

Астрономам удалось изучить в окрестностях Солнца участки вокруг двух рукавов – Персея и Стрельца. Они удалены от нашей планеты приблизительно на 3 тысячи световых лет. Наша дневная звезда находится в центре между этими образованиями.

Расположение нашей планеты в галактике

Скорость обращения Солнца вокруг галактического центра почти такая же, как скорость волны уплотнения, образующей рукава. Это связано с тем, что оно находится в так называемом коротационном центре. Для Земли такое расположение Солнца в галактике критически важно для возникновения и поддержания жизни. Спиральные рукава продуцируют мощнейшее излучение, способное убить все живое. От него не смогла бы спасти ни одна атмосфера. Выходит, нам посчастливилось, что мы живём в таком месте Млечного пути, которое защищено и удалено от космических катаклизмов.

Место Млечного пути во Вселенной

Гавайские астрономы определили наши космические координаты. Млечный Путь является частью огромного сверхскопления галактик Ланиакея. Сверхскопления – это крупнейшие структуры в космосе. Они состоят из локальных скоплений и массивных кластеров. В каждом из них находятся сотни галактик. Все они связаны между собой.

Красной точкой отмечена галактика Млечный путь в сверхскоплении галактик Ланиакея

В Ланиакее находится сверхскопление Девы. Составной его частью является Местная группа с Великим аттрактором. В Местной группе находится Млечный путь. Ланиакея является частью комплекса Рыб-Кита. Астрономы пока не могут изучить движение объектов в Ланиакее. Предполагается, что наша галактика Млечный Путь постепенно направляется вглубь этого скопления.

Галактика Млечный Путь и что ее окружает

С момента Большого взрыва и образования космоса все в нем постоянно движется. Некогда ученые предполагали, что Млечный путь – это и есть вся Вселенная, и что за его границами нет ничего.

С использованием современных телескопов удалось пролить свет на вопрос, что же окружает нашу галактику. Ее «соседями» являются объекты Местной группы, крупнейшее из которых – туманность Андромеды. Несколько дальше находится туманность Треугольника. Вокруг них находятся спутники – карликовые скопления.

В Местной группе также находятся эллиптические и неправильные галактики. Все они расположены в определенных созвездиях.

Столкновение Млечного пути и Андромеды

Млечный путь не только вращается. Любой космический объект во Вселенной движется по собственной заданной траектории. Согласно расчетам, примерно через 4 миллиарда лет наш космический дом столкнется с туманностью Андромеды. Оба объекта сближаются со скоростью 120 км/с. Интересно, что для наблюдателя из этой галактики Земля находилась бы в созвездии Малого Пса.

Проявления самого столкновения будут происходить медленно и неизвестно смогут ли быть замечены земными наблюдателями. Практически исключено любое непосредственное воздействие этого космического события на Солнце.

Так через 4 миллиарда лет может выглядеть с Земли слияние Андромеды и Млечного Пути

Вероятно, что Солнечная система может быть целиком отброшена из новообразованной галактики. Так она станет межгалактическим объектом. Для Солнечной системы это не вызовет никаких негативных моментов. Разве что для земного наблюдателя поменяется звездное небо: оно не будет таким красивым. Изменятся и созвездия Млечного Пути. Не будет никаких последствий и для всего живого, ведь от космического излучения хорошо защищает земная атмосфера. Для жизни гораздо более важна эволюция Солнца.

Эволюция и будущее галактики

Возраст Млечного Пути «почтенный»: наиболее старая его звезда имеет возраст приблизительно 13,7 миллиарда лет. Предположительно она «всего лишь» на 100 млн. лет моложе Вселенной. На этом этапе галактики развивались очень бурно, и в них возникали тяжелые элементы – такие, как углерод, кислород и прочие. Если бы их не было, то звезды Млечного Пути разрастались бы до внушительных размеров и выгорали за несколько миллионов лет.

В то же время Млечный путь поглощал вещество, которое находилось в пределах гало. Этот процесс происходит и до сих пор. Газовые облака, попадая в диск, являются строительным материалом для новых звезд. На ранних этапах развития Млечный Путь поглощал другие галактики помельче.

Млечный Путь «прожил» только половину своей жизни: звезды еще молоды, но для рождения новых заканчивается газ. Пока ученые не обнаружили признаков того, что наша галактика превращается в галактику красной последовательности.

Сегодня уже началось поглощение Млечным путем Большого и Малого Магелланового облака. Они буквально наматываются на южный полюс скопления. Известно точно, что Млечный путь объединится с Андромедой при столкновении.

При столкновении наша галактика никуда не исчезнет, а планеты Млечного Пути не уничтожатся. Он просто станет частью другого скопления. Впрочем, даже фантасты не возьмутся загадывать столь отдаленные во времени перспективы: это на много больший временной отрезок, чем существует жизнь на планете.

Мифология

Древние мифы по-разному описывают эволюцию Вселенной.

Армянская

Предок армян – божество Ваагн украл у предка ассирийцев солому и убежал на небо. Когда же он шел по нему, то его соломинки падали, и из них образовался небесный след. И сегодня по-армянски наша галактика называется «дорогой соломокрада». Такие же рассказы о рассыпанной соломе есть в арабской, еврейской, персидской, турецкой мифологии.

Венгерская

Согласно древней легенде, Аттила снизойдет на землю по Млечному Пути, если почувствуют себя в опасности. Искры же появились в результате ударов от копыт

Греческая

Легенда повествует о том, что когда Гера кормила своим молоком Геракла, то по небу разлилось материнское молоко. Вскоре Гера узнала, что она кормила грудью не своего сына, а незаконнорожденного сына Зевса и женщины, жившей на Земле. Она отбросила ребенка, а пролившееся молоко стало основанием для названия нашей галактики.

Другая легенда рассказывает о Рее – жене Кроноса. Он поедал собственных детей, потому что он не хотел, чтобы сбылось предсказание, когда он будет свергнут сыном. Рея же думала, как спасти только что родившегося Зевса. Она одела камень младенческой одеждой и дала его Кроносу. Он попросил ее накормить малыша, перед тем, как он проглотит его. Молоко пролилось из груди на камень, из-за чего и образовался Млечный Путь.

Индийская

Индийцы считали, что Млечный путь возник от молока красной коровы, которая каждый вечер проходит по небу. В «Ригведе» говорится о священной дороге Арьямана. В «Бхагавата-пуране» говорится о животе небесного дельфина.

Восточная мифология

Вьетнамцы, китайцы, японцы сравнивают галактику с серебряной рекой. Китайцы также называют звездное скопление «желтой рекой».

Мифология коренных народов Северной Америки

Эскимосские мифы говорят о пути, усеянном пеплом, который появился, когда девушка рассыпала его по небу. Она сделала это, чтобы люди могли ночью найти дорогу. Эскимосы говорят о следах ворона – Творца мира, который шел по небу. Чероки же считали, что Млечный Путь образовался в то время, когда охотник украл у другого жену, а ее собака ела кукурузную муку и рассыпала ее по небу. Интересно, что такой же сюжет есть у племен, проживающих в районе пустыни Калахари.

Млечный Путь – одна  из наиболее изученных галактик. Несмотря на это, она таит в себе еще много тайн и загадок. Развитие космических технологий и исследования астрономов помогут жителям Земли подробнее изучить наш космический дом.

За пределами нашей Солнечной системы – Исследование Солнечной системы НАСА

Введение

Ученые используют мощные телескопы — на Земле и в космосе — для изучения далеких звезд и галактик. Знаменитый космический телескоп Хаббла, который впервые открыл космос в мельчайших деталях, скоро будет заменен еще более мощным космическим телескопом Джеймса Уэбба. Тем временем миссия Кеплера прочесала часть нашей галактики в поисках других планет.

На этой иллюстрации, ориентированной вдоль плоскости эклиптики, космический телескоп НАСА «Хаббл» смотрит вдоль траекторий космических кораблей НАСА «Вояджер-1» и «Вояджер-2», когда они путешествуют через Солнечную систему и в межзвездное пространство. Хаббл смотрит на две линии обзора (двойные конусообразные элементы) вдоль траектории каждого космического корабля. Цель телескопа — помочь астрономам нанести на карту межзвездную структуру вдоль звездного маршрута каждого космического корабля. Каждая линия обзора простирается на несколько световых лет до ближайших звезд. Авторы изображений: НАСА, ЕКА и З. Левей (STScI).

Пять автоматических космических кораблей имеют достаточную скорость, чтобы покинуть пределы нашей Солнечной системы и отправиться в межзвездное пространство, но только один — «Вояджер-1» НАСА — пока пересек эту границу. «Вояджер-1» вышел в межзвездное пространство в 2012 году. «Вояджер-2», вероятно, будет следующим. Оба космических корабля, запущенных в 1977 году, до сих пор поддерживают связь с сетью дальнего космоса НАСА.

Аппарат НАСА «Новые горизонты», который пролетел мимо Плутона в 2015 году и в настоящее время исследует пояс Койпера за пределами Нептуна, в конечном итоге покинет нашу Солнечную систему. Как и ныне бездействующие космические корабли Pioneer 10 и 11.

Важные события

Важные события

До 1983 года единственными подтвержденными планетами были планеты в нашей Солнечной системе, хотя ученые считали, что многие планеты вращаются вокруг далеких звезд. Затем в 1983 году команда обнаружила диск вокруг Беты Живописца, который, как считается, состоит из сырья, образовавшегося при формировании планет, — первое свидетельство существования экзопланеты. Первая экзопланета была открыта девятью годами позже, в 1992 году, и с тех пор число известных планет за пределами нашей Солнечной системы быстро растет.

Чтобы узнать больше об открытиях и историях исследований, посетите временную шкалу исследований экзопланет.

Известные исследователи

Уильям Боруки

Главный научный сотрудник

«Не делайте этого, если вы не готовы потратить огромное количество времени и усилий.»

Подробнее о Уильяме Боруки

Вероника Аллен

Астрохимик-наблюдатель

«То, что ваша история отличается от истории других людей, не означает, что вы не заслуживаете счастья.»

Подробнее о Веронике Аллен

Сюзанна «Сьюзи» Додд

Руководитель проекта

«Математика станет основой для всей науки и техники, которыми вам придется заниматься в будущем.

»

Подробнее о Сюзанне «Сьюзи» Додд

Стивен Эдберг

Астроном (на пенсии)

«Увидьте красоту мира своими глазами и научитесь видеть ту красоту, о которой говорят математические расчеты.»

Подробнее о Стивене Эдберге

София Санчес-Маес

Летний студент-исследователь

«Я понял, что могу направить всю эту энергию и страсть на сложные проблемы, которые действительно важны и действительно волнуют меня.»

Подробнее о Софии Санчес-Маес

Сара «Салли» Додсон-Робинсон

Доцент

«Ученая степень в области естественных наук или математики может пригодиться для очень многих захватывающих профессий.»

Подробнее о Саре «Салли» Додсон-Робинсон

Роланд Вандерспек

Ученый-исследователь

«Все в порядке, если я не все знаю.»

Подробнее о Роланде Вандерспеке

Роб Зеллем

Астроном

Продолжайте усердно работать и не сдавайтесь.

Подробнее о Робе Зеллеме

Пэт Бреннан

Научный писатель

«Присоединяйтесь. Хочешь быть репортером — пиши. Хочешь стать писателем — пиши. Иногда бывает полезно посидеть и подумать, но не переусердствуй.»

Подробнее о Пэт Бреннан

Нил Герелс (1952-2017)

Астрофизик

Самые счастливые люди, которых я знаю, это те, кто считает свою сферу деятельности и хобби, и работой.

Подробнее о Ниле Герелсе (1952-2017)

Насим Рангвала

Астрофизик / научный сотрудник проекта SOFIA

«Есть много способов добиться того, что вы ищете, так что никогда не сдавайтесь.»

Подробнее о Насим Рангвала

Нэнси Роман (1925-2018)

Астроном / «Мать Хаббла»

«Если вам нравятся головоломки, вам могут подойти наука или инженерное дело. Научные исследования и инженерное дело — это непрерывная серия решений головоломок.»

Подробнее о Нэнси Роман (1925-2018)

Майк Браун

Астроном

Вы упорствуете, пока не достигнете стабильного уровня сложности, а затем просто продолжаете идти.

Подробнее о Майке Брауне

Мишель Таллер

Ученый

«Быть астрономом во многом значит уметь думать на ходу и на лету придумывать убедительные аргументы.»

Подробнее о Мишель Таллер

Мелисса МакГрат

Главный научный сотрудник

Делай то, что любишь, и люби то, что делаешь. Это требует тяжелой работы; не обманывайте себя, думая, что вы можете быть действительно хороши в чем-то без

Подробнее о Мелиссе МакГрат

Мамта Патель Нагараджа

Заместитель научного сотрудника по космической биологии в Отделе биологических и физических наук НАСА

«В настоящее время я заместитель научного сотрудника по космической биологии в группе биологических и физических наук НАСА».

Дополнительная информация о Мамта Патель Нагараджа

Константин Батыгин

Адъюнкт-профессор планетологии

Наука — это не то, чем вы просто занимаетесь в одиночестве в комнате, потому что пытаетесь решить что-то для высшей цели. Это должно быть весело.

Подробнее о Константине Батыгине

Колонка Колон

Астрофизик

Если у вас есть страсть к чему-либо, будь то астрономия или какой-либо другой предмет, никогда не отказывайтесь от этой страсти.

Подробнее о Книколе Колон

Джонатан Лунин

Ученый

Ни один человек никогда раньше не видел этот пейзаж. И в течение, может быть, минут 20, получаса, мы были единственными, кто видел этот чужой мир.

Подробнее о Джонатане Лунине

Джон Дженкинс

Соисследователь по обработке данных

«Я помогаю открывать маленькие каменистые, потенциально пригодные для жизни планеты, вращающиеся вокруг других звезд в нашем галактическом соседстве.»

Подробнее о Джоне Дженкинсе

Джон М. Грюнсфельд

Бывший заместитель администратора

Джон является ветераном пяти полетов космических челноков и трижды посещал Хаббл во время этих миссий.

Подробнее о Джоне М. Грюнсфельде

Джоби Харрис

Визуальный стратег

Я использую искусство и дизайн, чтобы помочь ученым и инженерам общаться.

Подробнее о Джоби Харрисе

Джим Кастинг

Эван Пью Профессор наук о Земле

«Усердно работайте на уровне бакалавриата, но не ограничивайтесь получением только технического образования».

Подробнее о Джиме Кастинге

Джеймс Грин

Главный научный сотрудник НАСА

«Моя работа — быть главным сторонником планетарной науки в федеральном правительстве».

Подробнее о Джеймсе Грине

Хизер Дойл

Менеджер по связям с общественностью и сетям Solar System

«Будь позитивным, поставщиком решений, и ты добьешься успеха в любой карьере!»

Подробнее о Хизер Дойл

Джада Арни

Ученый-исследователь

«К тому времени, когда я поступил в колледж, в какой-то момент я подумал: «Это круто, может быть, я мог бы делать это для своей работы». Многие мои друзья метались между разными специальностями, но я знал, что хочу заниматься астрономией».

Подробнее о Джаде Арни

Элизабет Ландау

Старший рассказчик

«Я всегда был очень полон решимости сделать карьеру, в которую я верил, которая позволила бы мне узнавать что-то новое каждый день. Я хочу постоянно учиться, и мне очень повезло, что у меня всегда была такая работа, где каждый день я сталкиваюсь с чем-то новым — людьми, идеями или способами ведения дел».

Подробнее об Элизабет Ландау

Элиза Кинтана

Астрофизик

«Я думаю, что людям важно знать, что нет единственного пути.»

Подробнее об Элизе Кинтане

Доктор Линн Квик

Планетарный ученый Ocean Worlds

«Я планетарный ученый Ocean Worlds, что означает, что моя работа сосредоточена на изучении карликовых планет нашей Солнечной системы и спутников планет-гигантов».

Подробнее о докторе Линне Квик

Дэвид Уилкинсон (1935–2002)

Профессор физики

«Наука Дэйва часто шла по неизведанному пути, с результатами, которые посеяли большие и активные поля. »

Подробнее о Дэвиде Уилкинсоне (1935–2002)

Дэвид Лэтэм

Астроном

Кто вас вдохновляет? «Мои студенты или ученики.»

Подробнее о Дэвиде Лэтэме

Костюм Кортни

Профессор астрономии

«Верь в себя и не отчаивайся.»

Подробнее о Кортни Дрессинг

Карл Саган (1934-1996)

Планетарный ученый

Воображение часто уносит нас в миры, которых никогда не было. Но без него мы никуда.

Подробнее о Карле Сагане (1934-1996)

Уильям Боруки

Главный научный сотрудник

«Не делайте этого, если вы не готовы потратить огромное количество времени и усилий.»

Подробнее о Уильяме Боруки

Миссии

Миссии

Следующие миссии представляют собой планетарные научные миссии с достаточной скоростью, чтобы выйти за пределы нашей Солнечной системы. Полный список миссий для исследования за пределами нашей Солнечной системы можно найти в Отделе астрофизики НАСА.

Карьера

10 профессий, которые исследуют космос

1

Астронавт

Астронавты прокладывают путь для исследования людьми за пределами нашей Земли. Это пилоты, ученые, инженеры, учителя и многие другие.

Знакомство с космонавтом

2

Руководитель проекта

Руководители проектов ведут миссии от концепции до завершения, тесно сотрудничая с членами команды, чтобы выполнить то, что они намеревались сделать.

Встреча с менеджером проекта

3

Оператор камеры вездехода

Ведущий восходящей линии связи полезной нагрузки камеры записывает программные команды, которые сообщают марсоходу, какие снимки делать.

Познакомьтесь с оператором камеры вездехода

Первое, что пробудило мое воображение в планетарной науке, было, когда космический корабль НАСА «Вояджер» обнаружил действующие вулканы на спутнике Юпитера Ио.

— Эшли Дэвис, вулканолог

4

Художник

Сочетая науку с дизайном, художники создают все, от крупномасштабных инсталляций до плакатов НАСА, висящих в вашей спальне.

Знакомство с художником

5

Специалист по СМИ

Специалисты по СМИ рассказывают истории в социальных сетях и помогают рассказывать о миссиях и людях на телевидении и в фильмах, книгах, журналах и новостных сайтах.

Встреча со специалистом по СМИ

6

Сценарист/продюсер

Сценаристы/продюсеры снимают невероятные истории миссий НАСА и людей и делятся ими со всем миром.

Познакомьтесь с продюсером

7

Администратор/Директор

Администраторы и директора работают в штаб-квартире НАСА, отдавая приоритет научным вопросам и стремясь расширить границы открытий.

Знакомство с режиссером

8

Педагог

Будь то знакомство детей с космосом или обучение физике кандидатов наук, преподаватели помогают делиться своими знаниями с общественностью.

Знакомство с педагогом

9

Инженер

Инженеры разрабатывают и строят все типы машин, от того, как выглядит космический корабль, до программного обеспечения, которое определяет, куда каждый день направляется луноход.

Познакомьтесь с инженером

10

Ученый

Ученые всех видов, от астрофизика до вулканолога, задают вопросы и помогают найти ответы на загадки нашей вселенной.

Знакомство с ученым

Чтобы стать ученым или инженером, важно научиться мыслить критически, научиться быть креативным, научиться решать проблемы и научиться учиться.

— Трейси Дрейн, инженер полетных систем

Исследуйте в 3D

Исследуйте в 3D — взгляд на экзопланеты

Подготовьтесь к запуску. «Взгляд на экзопланеты» доставит вас на любую планету, которую вы пожелаете, если она находится далеко за пределами нашей Солнечной системы. Эта полностью визуализированная трехмерная вселенная является научно точной, позволяя вам приблизить более 1000 экзотических планет, которые, как известно, вращаются вокруг далеких звезд.

Одним щелчком мыши вы можете посетить недавно обнаруженные газовые гиганты, планеты размером с Землю и «суперземли» — каменистые, как наша, но гигантские. Программа ежедневно обновляется последними находками из миссии НАСА «Кеплер» и из наземных обсерваторий по всему миру, которые охотятся за планетами, подобными нашей.​

Взгляд на экзопланеты

Галактика Млечный Путь

: факты о нашем космическом соседстве

Движения звезд в галактике Млечный Путь в следующие 400 тысяч лет на основе данных европейской миссии Gaia. (Изображение предоставлено ЕКА)

Млечный Путь — спиральная галактика с перемычкой, возраст которой составляет около 13,6 миллиардов лет, с большими вращающимися рукавами, простирающимися через космос.

Краткая информация о Млечном Пути:

– Тип галактики: Спиральная перемычка
– Возраст: 13,6 миллиарда лет (и продолжает расти)
– Размер: 100 000 световых лет в диаметре
– Количество звезд: около 200 миллиардов
– Время вращения: 250 миллионов лет -лет толщиной, по данным обсерватории Лас-Кумбрес .

 Подобно тому, как Земля вращается вокруг Солнца, Солнечная система вращается вокруг центра Млечного Пути. Несмотря на то, что наша Солнечная система мчится в космосе со скоростью около 515 000 миль в час (828 000 км в час), наша Солнечная система занимает около 250 миллионов лет, чтобы совершить один оборот, согласно Интересной инженерии (открывается в новой вкладке). В последний раз, когда наша планета находилась в таком положении, динозавры только появлялись, а млекопитающие еще не эволюционировали.

Если бы центром Млечного Пути был город, мы бы жили в пригороде, на расстоянии от 25 000 до 30 000 световых лет от центра города. Жизнь на окраине хороша; мы оказываемся в одном из меньших районов, рукаве Ориона-Лебедя, зажатом между большими рукавами Персея и Киля-Стрельца. Если бы мы двинулись вглубь к центру города, мы бы нашли рукава Щита-Центавра и Норма.

Связанный: Как фотографировать Млечный Путь: руководство для начинающих и любителей 

В ясную ночь, лишенную светового загрязнения, мы можем мельком увидеть яркие огни галактического города, прочерчивающие ночное небо. Наше окно во Вселенную, эта молочно-белая полоса звезд, пыли и газа — вот откуда наша галактика получила свое название.

В самом сердце Млечного Пути находится сверхмассивная черная дыра под названием Стрелец A*. Этот зверь, масса которого примерно в 4 миллиона раз превышает массу Солнца, поглощает все, что подходит слишком близко, поглощая достаточный запас звездного материала, что позволяет ему вырасти в гиганта. В 2022 году нам впервые сфотографировал этого обжора в центре нашей галактики с помощью инновационной техники, позволяющей нам увидеть тень черной дыры.

Почему наша галактика называется Млечный Путь?

По данным Американского музея естественной истории (AMNH), наш галактический дом называется Млечный Путь из-за его кажущегося молочно-белого цвета, когда он простирается по ночному небу. В греческой мифологии эта молочная полоса появилась потому, что богиня Гера разбрызгивала молоко по небу.

Во всем мире Млечный Путь известен под разными именами. Например, в Китае она называется «Серебряная река», а в пустыне Калахари в Южной Африке — «Хребет ночи».

Тип галактики Млечный Путь и великие дебаты 1920 года

Галактика Андромеды находится на пути столкновения с Млечным Путем. (Изображение предоставлено Ян Ханвэнь и Чжоу Цзэчжэнь)

(открывается в новой вкладке)

Мы постоянно расширяем наши знания о Млечном Пути, хотя до относительно недавнего времени астрономы считали, что все звезды на небе принадлежат нашей галактика.

«Большие дебаты» в 1920 году стали поводом для обсуждения астрономами Гербером Кертисом и Харлоу Шепли масштаба Вселенной и перспективы «островных вселенных» (галактик), согласно данным Национальной академии наук .

С одной стороны, Шепли считал, что Млечный Путь намного больше, чем предполагалось ранее, и что мы не были в центре. Он также утверждал, что «спиральные туманности», такие как Андромеда, были частью Млечного Пути. С другой стороны, Кертис не оспаривал утверждения Шепли о гораздо большем Млечном Пути, однако он утверждал, что существуют большие островные вселенные (галактики), такие как Андромеда, которые лежат за пределами Млечного Пути.

Спор разрешился, когда Эдвин Хаббл измерил переменные звезды-цефеиды и доказал, что Андромеда находится далеко за пределами Млечного Пути. По современным оценкам, галактика Андромеды, ближайшая к нам галактика, находится на расстоянии 2,5 миллиона световых лет.

Совсем недавно астрономы пытались выяснить, к какому типу галактик относится Млечный Путь. Наши лучшие оценки на сегодняшний день предполагают, что это спираль с перемычкой, а это означает, что в центре есть перемычка. Астрономы могут оценить форму Млечного Пути, глядя на его звездное население, а также на их движение по небу.

Будущее столкновение галактических масштабов

Изучение других галактических столкновений дает представление о будущем слиянии Андромеды и Млечного Пути. (Изображение предоставлено NASA Hyperwall)

(открывается в новой вкладке)

Теперь мы знаем, что Млечный Путь находится в Местной группе галактик, состоящей из более чем 30 галактик, включая Андромеду, Треугольник и Лев I, и это лишь некоторые из них. Оказывается, неплохо знать, кто ваши соседи, поскольку они могут быть ближе, чем вы думаете. Млечный Путь в настоящее время мчится к Андромеде со скоростью 250 000 миль в час (400 000 км/ч). Хотя пока не о чем беспокоиться, этот крах космических масштабов произойдет не раньше, чем через 4 миллиарда лет.

НАСА и другие космические объекты уже несколько десятилетий наблюдают за далекими столкновениями галактик, чтобы понять, с чем мы можем столкнуться, когда Андромеда и Млечный Путь столкнутся. Короче говоря, беспокоиться не о чем; Чем длиннее история, тем интереснее процесс, поскольку он показывает, как могут развиваться галактики.

Например, наблюдения трехстороннего галактического столкновения в 2022 году с использованием знаменитого космического телескопа Хаббла дали некоторые интригующие выводы. Самый большой из группы, когда он вышел на узкую орбиту с двумя другими, зацепил какой-то материал своей относительно более сильной гравитацией. Это создало интригующую полосу газа, пыли и других материалов, стекающих в большую галактику, видимую даже с Земли.

В то время как рукава Млечного Пути наверняка будут разорваны в результате этого процесса, отдельные звезды находятся в относительной безопасности, так как промежутки между ними довольно велики. Другими словами, не ищите столкновений звезд, так как их практически не будет. Однако рождение звезды ускорится из-за количества газа, закачиваемого в нашу галактику, в результате чего наша галактика станет ярче, а ее население увеличится в ближайшие миллионы лет после столкновения.

Таким образом, наша собственная Солнечная система должна быть относительно безопасной из-за низкого риска столкновения со звездами. Тем не менее, мы можем оказаться брошенными на совершенно другой путь вокруг нового галактического центра по мере того, как происходит слияние.

Практический эффект состоит в том, что созвездия, которые мы наблюдаем с Земли, могут меняться по мере изменения орбит звезд или добавления новых звезд; при этом столкновение происходит так далеко в будущем, что созвездия, которые мы видим сегодня, могут быть изменены в любом случае из-за естественного звездообразования и звездной гибели вне столкновения. Этот таймлапс Млечного Пути показывает, как ночное небо будет меняться со временем.

Млечный Путь: Размер, структура и масса

Завораживающая светящаяся полоса Млечного Пути веками поражала человечество. (Изображение предоставлено: Фото Кендалла Хупса с сайта Pexels)

Раньше изучение Млечного Пути было заведомо трудным делом. Астрономы иногда сравнивают свои усилия с попыткой описать размер и структуру леса, теряясь посреди него. С нашего положения на Земле нам просто не хватает обзора. Но два новаторских космических телескопа, запущенных с 1990-х годов, помогли открыть золотой век исследований Млечного Пути. Были достигнуты значительные успехи, особенно после запуска в 2013 году миссии Gaia Европейского космического агентства (ЕКА).

Телескопы позволили астрономам различать основную форму и структуру некоторых из ближайших галактик до того, как они поняли, что смотрят на галактики. Но воссоздание формы и структуры нашего собственного галактического дома было медленным и утомительным. Процесс включал создание каталогов звезд, нанесение на карту их положения на небе и определение того, насколько далеко они находятся от Земли.

Голландский астроном Ян Оорт, которого иногда называют мастером галактической системы, первым понял, что Млечный Путь не неподвижен, а вращается, и рассчитал скорости, с которыми звезды на разных расстояниях вращаются вокруг галактического центра. Также именно Оорт определил положение нашего солнца в огромной галактике. (Облако Оорта, хранилище триллионов комет вдали от Солнца, было названо в его честь.)

Структура галактики Млечный Путь, вид сверху на галактический диск. (Изображение предоставлено: NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech)

Постепенно возникла сложная картина спиральной галактики, которая кажется совершенно обычной.

В центре Млечного Пути находится сверхмассивная черная дыра под названием Стрелец A*. Черную дыру, открытую в 1974 году, с массой, равной массе четырех миллионов солнц, можно наблюдать в небе с помощью радиотелескопов вблизи созвездия Стрельца.

Все остальное в галактике вращается вокруг этих мощных врат в небытие. В непосредственной близости от него находится плотно упакованная область пыли, газа и звезд, называемая галактической выпуклостью. По данным ESA, в случае Млечного Пути эта выпуклость имеет форму арахиса и имеет диаметр 10 000 световых лет. В нем находится 10 миллиардов звезд (из общего количества Млечного Пути около 200 миллиардов), в основном это старые красные гиганты, сформировавшиеся на ранних стадиях эволюции галактики.

Связанные: 904:16 «Странный сигнал» исходит из Млечного Пути. Что вызывает это?

За выпуклостью простирается галактический диск. Эта особенность составляет 100 000 световых лет в поперечнике и 1000 световых лет в толщину, и в ней находится большинство звезд галактики, включая наше Солнце. Звезды диска рассеяны в облаках звездной пыли и газа. Когда мы смотрим на небо ночью, вид этого диска с ребра, простирающегося к галактическому центру, захватывает дух.

Звезды в диске вращаются вокруг галактического центра, образуя закрученные потоки, которые, кажется, исходят из галактической выпуклости, как рукава. Исследования механизмов, которые управляют созданием спиральных рукавов, все еще находятся в зачаточном состоянии, но последние исследования показывают, что эти рукава формируются и рассеиваются в течение относительно коротких периодов до 100 миллионов лет (из 13 миллиардов лет эволюции галактики).

Внутри этих рукавов звезды, пыль и газ упакованы более плотно, чем в менее заполненных областях галактического диска, и эта повышенная плотность вызывает более интенсивное звездообразование. В результате звезды в галактическом диске, как правило, намного моложе звезд в балдже.

«Спиральные рукава подобны автомобильным пробкам в том смысле, что газ и звезды собираются вместе и движутся в рукавах медленнее. По мере того, как материал проходит через плотные спиральные рукава, он сжимается, и это вызывает большее звездообразование», — Денилсо Камарго из Федеральный университет Риу-Гранди-ду-Сул в Бразилии, говорится в заявлении .

Млечный Путь в настоящее время имеет четыре спиральных рукава, согласно данным Национального научного фонда (NSF). Есть два основных рукава — Персей и Щит-Центавр — и Стрелец и Местный Рукав, которые менее выражены. Ученые до сих пор обсуждают точное положение и форму этих рукавов, используя данные Gaia.

Диск Млечного Пути не плоский, а искривленный (открывается в новой вкладке), по данным ЕКА. Когда он вращается, он прецессирует, как качающийся волчок. Это колебание, по существу гигантская рябь, вращается вокруг галактического центра гораздо медленнее, чем звезды на диске, совершая полный оборот примерно за 600–700 миллионов лет. Астрономы считают, что эта рябь может быть результатом прошлого столкновения с другой галактикой.

Структура Млечного Пути с его вращающимся искривленным галактическим диском. (Изображение предоставлено: Stefan Payne-Wardenaar; вставка: NASA/JPL-Caltech; макет: ESA)

(открывается в новой вкладке)

Вокруг диска и выпуклости разбросаны шаровые скопления, скопления древних звезд, а также приблизительно Согласно заявлению ЕКА, 40 карликовых галактик либо вращаются вокруг Млечного Пути, либо сталкиваются с ним (открывается в новой вкладке).

Все это окружено сферическим ореолом из пыли и газа, который в два раза шире диска. Астрономы считают, что вся галактика окружена еще большим ореолом невидимой темной материи. Поскольку темная материя не излучает никакого света, о ее присутствии можно судить только косвенно по ее гравитационному влиянию на движение звезд в галактике. Расчеты показывают, что этот загадочный материал составляет до 90% массы галактики.

Масса Млечного Пути, включая темную материю, составляет 1,5 триллиона масс Солнца, согласно последним оценкам НАСА . Видимая материя галактики распределена между ее 200 миллиардами звезд, их планетами и массивными облаками пыли и газа, заполняющими межзвездное пространство. Астрономы не совсем уверены, сколько планет находится в Млечном Пути, учитывая, что мы нашли всего несколько тысяч, но одна оценка НАСА предполагает, что это на больше, чем 100 миллиардов планет.0444 . Сколько солнечных систем в Млечном Пути — тоже загадка, так как мы все еще ищем планеты.

Где находится солнце на Млечном Пути?

Солнце — одна из 200 миллиардов звезд, составляющих галактику Млечный Путь. (Изображение предоставлено NASA/GSFC/SDO)

Солнце вращается на расстоянии около 26 000 световых лет от черной дыры Стрельца A*, примерно в середине галактического диска. Путешествуя со скоростью 515 000 миль в час (828 000 км в час), Солнцу требуется 230 миллионов лет, чтобы совершить полный оборот вокруг галактического центра.

Солнце находится у края Местного рукава Млечного Пути, одного из двух меньших спиральных рукавов галактики. В 2019 году, используя данные миссии Gaia, астрономы обнаружили, что Солнце, по сути, скользит по волне межзвездного газа длиной 9000 световых лет, шириной 400 световых лет и колеблющейся на 500 световых лет выше и ниже галактического диска, согласно ЕКА. .

Планеты Солнечной системы вращаются не в плоскости галактики, а наклонены примерно на 63 градуса.

«Это похоже на то, что мы плывем по галактике боком», — сказал Space. com Мерав Офер, астрофизик из Университета Джорджа Мейсона в Вирджинии.

Что такое черная дыра в Млечном Пути?

Стрелец A*, сделанный рентгеновской обсерваторией НАСА Чандра. (Изображение предоставлено NASA/CXC/Caltech/M.Muno et al.)

(открывается в новой вкладке)

Черная дыра в Млечном Пути называется Стрелец A* . Черная дыра в основном спит, что делает ее очень сложной для наблюдения. Стрелец A* имеет массу, в 4,3 миллиона раз превышающую массу Солнца, астрономы Рейнхард Генцель и Андреа Гез открыли его в 2008 году. Приблизительный диаметр составляет 14,6 миллиона миль (23,5 миллиона километров) . Для сравнения, сам Млечный Путь имеет примерно 100 000 световых лет в ширину и 1000 световых лет в толщину.

Огромный газовый диск вокруг Стрельца A* выбрасывается на расстояние от 5 до 30 световых лет от сверхмассивной черной дыры. Именно эта огромная, но разреженная область газа дает немного материала для активности Стрельца А*. Известно, что этот регион излучает рентгеновские лучи из-за питания газом или из-за трения внутри диска, когда температура достигает 18 миллионов градусов по Фаренгейту (10 миллионов градусов по Цельсию).

Ученые хотели бы получить больше информации об этой сверхмассивной черной дыре, чтобы узнать больше о том, как она образовалась и какие условия сделали возможным ее рост. Пара возможностей включает в себя меньшие черные дыры, которые становятся довольно большими, поскольку они поглощают пыль и газ в окружающей среде поблизости; в качестве альтернативы, более мелкие черные дыры могут сливаться вместе и создавать что-то более чудовищное.

Изображение сверхмассивной черной дыры в центре Млечного Пути, бегемота, получившего название Стрелец A*, полученное телескопом Event Horizon 12 мая 2022 года. (Изображение предоставлено коллаборацией Event Horizon Telescope)

(открывается в новая вкладка)

Как правило, у ученых есть улучшающие модели черных дыр звездной массы и черных дыр промежуточной массы. Эти объекты образуются, когда огромные звезды, масса которых во много раз превышает массу нашего Солнца, коллапсируют после остановки ядерного синтеза. Поскольку они больше не могут остановить гравитационный коллапс, они сжимаются до гравитационно мощного объекта, который может искривлять время и пространство вокруг себя настолько сильно, что свет больше не может выйти.

Мы постепенно узнаем больше о Стрельце A* благодаря таким усилиям, как первое в истории изображение черной дыры , которое было получено 12 мая 2022 года. -быстро к центру черной дыры; изображение представляет собой тень высокой четкости. Для этого изображения потребовалось большое количество обсерваторий по всему миру, размером примерно с Землю, что стало возможным благодаря телескопу горизонта событий (EHT).

Связанный: Вот как ученые превратили мир в телескоп (чтобы увидеть черную дыру)

Составление карты истории Млечного Пути

Эволюция Млечного Пути началась, когда облака газа и пыли начали коллапсировать, сталкиваясь друг с другом гравитация . Из схлопнувшихся облаков выросли первые звезды, те, что мы видим сегодня в шаровых скоплениях. Вскоре после этого появилось сферическое гало, за которым последовал плоский галактический диск. Галактика начиналась с малого и росла по мере того, как неизбежная сила гравитации стягивала все воедино.

Возраст Млечного Пути примерно 13,6 миллиарда лет. (Изображение предоставлено: Будущее)

(открывается в новой вкладке)

Однако эволюция галактики все еще окутана тайной. Дисциплина под названием галактическая археология медленно разгадывает некоторые загадки жизни Млечного Пути благодаря миссии Gaia, которая выпустила свой первый каталог данных в 2018 году. 

Gaia измеряет точные положения и расстояния более чем 1 миллиарда звезд, а также их световые спектры, что позволяет ученым понять состав и возраст звезд, по данным ЕКА. Данные о положении позволяют астрономам определять скорости и направления движения звезд в космосе. Поскольку объекты в космосе следуют предсказуемым траекториям, астрономы могут реконструировать пути звезд на миллиарды лет в прошлое и будущее. Объединение этих реконструированных траекторий в один звездный фильм отражает эволюцию галактики на протяжении эпох.

Есть также свидетельство , что Млечный Путь столкнулся с несколькими более мелкими галактиками в ходе своей эволюции. В 2018 году группа голландских астрономов обнаружила группу из 30 000 звезд (откроется в новой вкладке), синхронно движущихся по окрестностям Солнца в направлении, противоположном остальным звездам в наборе данных. Картина движения соответствовала тому, что ученые ранее видели в компьютерном моделировании галактических столкновений. Эти звезды также различались по цвету и яркости, что свидетельствовало о том, что они произошли из другой галактики.

Вопреки ожиданиям, карликовые галактики в окрестностях Млечного Пути только что появились. (Изображение предоставлено ESA)

Истории по теме:

Год спустя были обнаружены остатки другого, немного более молодого столкновения. Млечный Путь продолжает поглощать более мелкие галактики и по сей день. Галактика под названием Стрелец (не путать с черной дырой) в настоящее время вращается близко к Млечному Пути и, вероятно, несколько раз врезалась в его диск за последние 7 миллиардов лет. Используя данные Gaia, ученые обнаружили, что эти столкновения вызвали периоды интенсивного звездообразования в Млечном Пути и могут даже иметь какое-то отношение к фирменной спиральной форме галактики. Исследование предполагает, что наше Солнце родилось в один из этих периодов около 4,6 миллиарда лет назад.

Съемка Млечного Пути

Съемка Млечного Пути требует темного неба. (Изображение предоставлено Getty)

(открывается в новой вкладке)

Для фотографирования Млечного Пути требуется темное небо, хороший «сезон» (обычно между февралем и октябрем), некоторое расстояние от светового загрязнения и возможность использовать фотографическое оборудование. поймать его слабый свет. К счастью, Млечный Путь виден как в северном, так и в южном полушариях, и его можно запечатлеть с помощью стандартных предметов любительской фотосъемки.

Если есть возможность, доберитесь до своего места в дневное время, так как вы, вероятно, захотите разведать местность в поисках лучших ракурсов. Хорошие изображения Млечного Пути, как правило, творчески используют ландшафт, поэтому ищите интересные и выдающиеся природные особенности, такие как горы, валуны или формы скал.

Дальше фотосессия. Вообще говоря, используйте штатив, настройте свое оборудование на режим интервальной съемки и будьте готовы экспериментировать с разными фокусами и разными объективами. Для начинающих у нас также есть полное руководство по как сфотографировать Млечный Путь (откроется в новой вкладке).

Будущее исследований Млечного Пути

С начала своей деятельности миссия Gaia представила три обновления своего массивного звездного каталога. Астрономы со всего мира продолжают анализировать данные в поисках новых закономерностей и открытий.

Данные Gaia в настоящее время генерируют больше исследовательских работ, чем даже знаменитый космический телескоп Хаббл. Gaia будет продолжать составлять карты галактики по крайней мере до 2025 года, пока космический корабль остается в добром здравии, а составленный им каталог будет занимать астрономов на десятилетия вперед.

До Gaia самый большой набор данных о положении и расстоянии до звезд в Млечном Пути был получен из миссии под названием Hipparcos, названной в честь древнегреческого астронома, который начал картографировать ночное небо за 150 лет до нашей эры. Hipparcos видел только около 100 000 самых ярких звезд в окрестностях Солнца, по сравнению с одним миллиардом Gaia. Данные также были менее точными.

Несмотря на то, что Gaia видит менее 1% звезд в галактике, астрономы могут расширить свои выводы и смоделировать поведение всего Млечного Пути.

Дополнительные ресурсы

Узнайте больше о Млечном Пути и других галактиках с помощью этого бесплатного учебного материала от Открытого университета (открывается в новой вкладке). Исследуйте Млечный Путь в виртуальной реальности (откроется в новой вкладке) с миссией ESA Gaia. Совершите путешествие по Млечному Пути с Gaia Sky (откроется в новой вкладке), программным обеспечением для трехмерной астрономической визуализации в реальном времени, которое использует данные миссии ESA Gaia. Узнайте, почему было так сложно изучать Млечный Путь до Гайи, в этой статье ЕКА (откроется в новой вкладке).

Библиография

Сян, М., Рикс, Х.В. «Изображение ранней истории формирования нашего Млечного Пути с временным разрешением (откроется в новой вкладке)». Природа 603, 599–603 (2022). https://doi.org/10.1038/s41586-022-04496-5

Робин, Энни С. и др. «Синтетический взгляд на структуру и эволюцию Млечного Пути (открывается в новой вкладке)» Астрономия и астрофизика 409.2 (2003): 523-540.

Денен, Уолтер и Джеймс Бинни. «Массовые модели Млечного Пути. (открывается в новой вкладке)» Ежемесячные уведомления Королевского астрономического общества 294.3 (1998): 429-438.

Хельми, Амина. «Потоки, подструктуры и ранняя история Млечного Пути (открывается в новой вкладке)» Ежегодный обзор астрономии и астрофизики 58 (2020): 205–256.

Присоединяйтесь к нашим космическим форумам, чтобы продолжать обсуждать последние миссии, ночное небо и многое другое! А если у вас есть новость, исправление или комментарий, сообщите нам об этом по адресу: [email protected].

Дейзи Добриевич присоединилась к Space.com в феврале 2022 года в качестве справочного автора, ранее работавшего штатным автором в нашем сестринском журнале All About Space. Прежде чем присоединиться к нам, Дейзи прошла редакционную стажировку в журнале BBC Sky at Night Magazine и работала в Национальном космическом центре в Лестере, Великобритания, где ей нравилось знакомить общественность с космической наукой. В 2021 году Дейзи защитила докторскую диссертацию по физиологии растений, а также имеет степень магистра наук об окружающей среде. В настоящее время она живет в Ноттингеме, Великобритания.0003

Млечный Путь: одна из многих галактик | Моделирование космоса | Статьи и очерки | В поисках нашего места в космосе: от Галилея до Сагана и далее | Цифровые коллекции

Прослушать эту страницу

Идея о том, что каждая звезда является солнцем, многие из которых имеют свои собственные солнечные системы, является мощным напоминанием об огромных масштабах космоса. Однако расстояния до звезд в нашей галактике крошечные по сравнению с расстояниями до других галактик.

С древних времен наблюдатели отмечали существование туманных звезд; рассеянные нечеткие или мутные звезды. Некоторые из них оказались тем, что мы теперь знаем как туманности, места, где формируются звезды. Многие оказались совсем другими. Только в 1920-х годах было подтверждено, что многие из этих туманных звезд на самом деле были совершенно другими галактиками, целыми наборами из миллиардов звезд, таких как Млечный Путь, далеко за пределами нашей собственной.

Теперь мы знаем, что Млечный Путь — всего лишь одна из миллиардов галактик во Вселенной. Оглядываясь назад на то, как астрономия развивала эту концепцию с течением времени, можно увидеть, как философы и ученые боролись с пониманием природы галактик и, следовательно, огромности нашей Вселенной.

Млечный Путь превращается в большее количество звезд

Невооруженным глазом неясно, что именно представляет собой Млечный Путь. В Древней Греции философ-атомщик Демокрит предположил, что яркая полоса света может состоять из далеких звезд. Взгляды атомистов затмили взгляды Аристотеля на вселенную.

В аристотелевской космологии Млечный Путь понимался как точка соприкосновения небесных сфер с земными сферами. Одно из важных наблюдений, сделанных Галилеем в его 1610 г. Sidereus Nuncius заключался в том, что под взглядом телескопа части Млечного Пути превратились в скопление многих звезд. Вновь была обнаружена слабость аристотелевской космологии — Млечный Путь не был результатом взаимодействия между земной и небесной сферами. Наблюдения Галилея показали, что Млечный Путь представляет собой массивное скопление отдельных звезд, планет и других туманных элементов.

Островные вселенные и внешние творения

В 1750 году английский астроном Томас Райт опубликовал Оригинальная теория или новая гипотеза Вселенной.  В этой книге Райт предположил, что Млечный Путь представляет собой плоский слой звезд, частью которого является наша Солнечная система.

Кроме того, он предположил, что многие из очень слабых туманностей «по всей вероятности могут быть внешними созданиями, граничащими с известными, слишком далекими, чтобы их могли достать даже наши телескопы». Идея о том, что тусклые туманности могут быть их собственными «внешними творениями», предполагала, что Вселенная намного больше, чем предполагалось ранее. В 1755 году философ Иммануил Кант развил идеи Райта и назвал эти тусклые туманности «островными вселенными». Как представления о внешних творениях, так и об островных вселенных изо всех сил пытались уловить последствия этого нового более крупного масштаба вселенной. Помимо того факта, что наше Солнце было звездой, могли ли туманности быть их собственными вселенными или совершенно отдельными творениями?

Исследование Млечного Пути

В 1780-х годах Уильям Гершель исследовал звезды в различных направлениях. Он обнаружил, что звезды на одной стороне неба были намного плотнее, чем на другой стороне.

Его сын Джон Гершель провел аналогичное исследование неба в южном полушарии и обнаружил ту же закономерность. То, что они видели, было ядром галактики Млечный Путь, где плотность звезд намного выше.

Гершель поместил наше Солнце почти в центр Млечного Пути; это будет не раньше 1920-х годов, когда Харлоу Шепли продемонстрировал, что наше Солнце находится далеко от центра Млечного Пути.

Андромеда и другие туманности

Звезды-туманности наблюдались на протяжении тысячелетий. В 964 году исламский астроном Ас-Суфи наблюдал и записал то, что он назвал «маленьким облачком» на иллюстрации созвездия Андромеды. Теперь мы понимаем это описание как галактику Андромеды. Только с появлением и усовершенствованием телескопа стало возможным документировать различные виды туманных звезд.

Как уже упоминалось, Томас Райт и Иммануил Кант опубликовали свои предположения о том, что тусклые туманные звезды, подобные этой, на самом деле являются независимыми образованиями, такими как Млечный Путь. В конце 18 века Шарль Мессье составил каталог из 109 самых ярких туманностей, за которым последовал гораздо более крупный каталог Уильяма Гершеля, насчитывающий более 5000. Даже при документировании всех этих туманностей оставалось неясным, что именно они представляют собой.

Поиск и интерпретация красного смещения

Изучение светового спектра таких туманностей, как Андромеда, в конечном итоге позволит получить информацию о том, что именно представляют собой эти объекты. Целый ряд астрономов работал над этим вопросом в начале 20 века. В 1912 году астроном Весто Слайфер изучил световые спектры некоторых из самых ярких туманностей. Ему было интересно определить, сделаны ли они из тех химических веществ, которые можно было бы найти в планетарной системе.

Слайфер обнаружил кое-что очень интересное — можно рассчитать относительную скорость и расстояние, на которое движется звезда или туманность, изучив испускаемый ею световой спектр и увидев, насколько индикаторы элементов сместились в синий или красный цветовой спектр. . Объекты, смещенные в синий цвет, приближаются к нам, а объекты, смещенные в красный цвет, удаляются от нас. В анализе Слайфера спектры туманности были настолько сдвинуты в красную область, что эти туманности должны были удаляться от Земли со скоростью, превышающей космическую скорость Млечного Пути. Наряду с этим свидетельством в 1917 Гербер Кертис наблюдал новую, яркую взорвавшуюся звезду, внутри туманности Андромеды. Просматривая фотографии Туманности, он смог задокументировать еще 11 новых, которые были в среднем в 10 раз слабее, чем звезды Млечного Пути. Свидетельств, позволяющих предположить, что эти туманности находились далеко за пределами Млечного Пути, становилось все больше.

В 1920 году Харлоу Шепли и Хибер Кертис обсуждали природу Млечного Пути, туманностей и масштабов Вселенной. Используя 100-дюймовый телескоп на горе Вильсон, Эдвин Хаббл смог разглядеть края некоторых спиральных туманностей, чтобы определить, что они на самом деле являются скоплениями звезд, некоторые из которых соответствуют стандартным образцам, позволяющим астрономам рассчитать, что звезды были слишком далеки, чтобы их можно было увидеть. стать частью Млечного Пути. Таким образом, представление о Млечном Пути как об одной из многих галактик стало доминирующей научной точкой зрения.

Когда Земля считалась центром относительно небольшой вселенной, мы пришли к пониманию ее как единого мира, вращающегося вокруг одной из 300 миллиардов звезд в нашей галактике, которая сама является всего лишь одной из более чем ста миллиардов галактик в нашей галактике. наблюдаемая Вселенная. Даже сегодня по-прежнему трудно понять, насколько крошечной и малой является наша планета на просторах наблюдаемой Вселенной.

Уголь на бумаге рисует землю с Млечным Путем за ней. Опубликовано в: «Будущее Земли» Мориса Метерлинка, Cosmopolitan, 19 марта.18, Отдел эстампов и фотографий. Галилей проиллюстрировал отдельные звезды, видимые в Млечном Пути. Более крупные звезды видны невооруженным глазом, а более мелкие стали видны с помощью его телескопа. Это было одно из серии открытий, которые он опубликовал в Sidereus Nuncius . 1610 г., изображение 37. Редкая книга и специальные коллекции. Иллюстрация «отдельных творений», которые Томас Райт представлял себе туманностями. Каждое отдельное творение имеет в центре глаз создателя. Оригинальная теория или новая гипотеза Вселенной г., первоначально опубликовано, 1750 г., Общие собрания. На этой иллюстрации из учебника астрономии область звезд Млечного Пути показана в виде тонкой полосы на небе с областью туманностей или других галактик по обеим сторонам.