10 странных объектов Солнечной системы

Тем не менее Вселенная не устает преподносить нам сюрпризы. И вдруг оказывается, что мы до конца не разобрались даже с тем, что происходит в нашей собственной Солнечной системе.

Орк и Вант

Все мы знаем о Плутоне. Особенно повышенное внимание к нему было в 2006 году, когда его лишили статуса полноценной планеты.

Но слышали ли вы когда-нибудь об объекте, который иногда называют «анти-Плутоном»?

Объект 90482 Орк — это объект пояса Койпера, который имеет почти такой же орбитальный период, как у Плутона, почти такой же угол наклона оси и находится почти на таком же расстоянии от Солнца.

Как Плутон, так и Орк находятся в 2:3 орбитальном резонансе с Нептуном, хотя Орк немного по-другому ориентирован в пространстве. Орбиты Плутона и Орка практически идентичны, и, более того, у Орка и Плутона есть спутники, которые довольно велики по сравнению с этими планетами.

Спутник Плутона Харон в два раза меньше Плутона, а спутник Орка Вант, по разным оценкам, составляет треть от размера Орка.

Название «Орк» было выбрано потому, что это этрусский эквивалент римского слова «Плутон». Поверхность Орка покрыта кристаллическим льдом из воды и, возможно, из аммиака, который указывает на то, что в прошлом на Орке была геологическая активность и криовулканизм. Если присутствие на Орке аммиака будет официально подтверждено, то Орк сможет помочь специалистам понять механизм формирования других транснептуновых объектов.

(90) Антиопа

Число 90 в названии этого объекта говорит о том, что астероид Антиопа был открыт девяностым по счету, хотя этот факт до сих пор считается спорным.

Дело в том, что орбита объекта находится внутри астероидного поля между Марсом и Юпитером, и, что самое интересное, Антиопа — это первый двойной астероид, который удалось открыть ученым.

С момента открытия Антиопу считали одиночным астероидом, но в 2000 году с помощью 10-метрового телескопа «Кек-2», находящегося в обсерватории на Гавайских островах, группа астрономов установила, что этот астероид на самом деле состоит из пары объектов. Размер каждого из них — около 86 километров, а дистанция, которая их разделяет, составляет всего 171 километр.

Вообще-то пара объектов с одинаковой орбитой в астрономии не редкость, однако разница в массе между составляющими Антиопы настолько мала, что лучший способ представить себе, как она выглядит, — это вообразить пару вращающихся шаров для боулинга, связанных куском струны.

Шестиугольник Сатурна

Все знают о кольцах Сатурна, но слышали ли вы что-нибудь о форме его облаков? В начале 80-х аппарат «Вояджер» сделал удивительное и беспрецедентное открытие, которое было подтверждено позднее, после прибытия к Сатурну аппарата «Кассини».

Весь северный полюс Сатурна охватывает гигантский шторм в форме шестиугольника, каждая сторона которого больше диаметра Земли. Эта буря бушует там уже более 30 лет.

Невероятно, но этот шестиугольник не перемещается вместе с остальными облаками на планете, а его потрясающая геометрическая точность дает богатую пищу для всевозможных псевдонаучных теорий (к счастью, большинство из них трудно назвать серьезными).

Хотя полностью объяснить это явление до сих пор не удалось, ученые пытаются объяснить происходящее на Сатурне с помощью гидрогазодинамики.

Лабораторные эксперименты показали, что в жидкости, центр которой вращается намного быстрее периферии, появляются так называемые грани. Если скорости вращения очень велики, в жидкости формируются полигоны. Скорость ветра в «шестиугольнике» на Сатурне достигает 322 километров в час. Возможно, эта скорость и создает столь отчетливую геометрическую форму.

Хаумеа

Прежде чем объект 136108 Хаумеа получил свое официальное название, он был известен как «Санта», потому что открыли его 24 декабря 2004 года.

Это неофициальное название, вообще-то, довольно уместно, поскольку Хаумеа — это очень «одаренная» и уникальная карликовая планета. Специалистам было очень непросто проводить измерения Хаумеа из-за ее невероятно быстрого вращения. Вращается она быстрее, чем любое из известных науке тел Солнечной системы.

Само по себе вращение создает не слишком много проблем, однако из-за него Хаумеа сформировалась не так, как другие планеты.

Состоит она из камня и льда, гравитация там очень низкая, а из-за чудовищной центробежной силы поверхность планеты превратилась в то, что называют «косым эллипсоидом».

Это означает, что расстояние между полюсами планеты составляет 996 километров, а длинная ось эллипсоида равна 1960 километрам.

Кстати, такими свойствами, связанными с быстрым вращением, обладает не только планета. Такие же свойства имеют и ее спутники — Хииака и Намака, чья масса составляет всего 6% от массы нашей Луны.

Пан и Атлас

У этих двух лун Сатурна много общего, к тому же они расположены ближе всех к Сатурну.

А особенными эти спутники делает то, что они, кажется, скопировали себе кольца Сатурна и в результате по форме стали напоминать НЛО из фильмов 50-х годов.

Пан, который также известен как «пастушья луна», получил свое название в честь древнегреческого бога пастухов, а Атлас был назван в честь титана, державшего на своих плечах небо.

В этой паре лун Атлас является более плоским, расстояние между полюсами составляет всего 19 километров. А вот «талия» у него широкая — 46 километров. Длинные экваторы этих лун нельзя объяснить теми же процессами, что происходят на Хаумеа, так как скорость их вращения не такая бешеная.

В результате обширного компьютерного моделирования в Парижском университете нашли ответ: все дело в аккреационных дисках: экваторы этих лун постепенно увеличиваются и выравниваются за счет того, что к ним прилипают окружающие обломки. Во время формирования лун Сатурна вокруг них сформировались и небольшие аккреационные диски, состоящие из пыли и обломков, в изобилии присутствующих в кольцах Сатурна. Постепенный рост этих дисков и привел к форме лун, которую мы наблюдаем сейчас.

2008 KV42

Все-таки почему такое множество астрономических объектов имеет такие раз

www.o000o.ru

Странные и малоизвестные объекты Солнечной системы

На сегодняшний день с помощью космического аппарата «Кеплер» астрономам удалось найти и подтвердить существование 4896 планет. А совсем недавно был открыт газовый гигант с колоссальной системой из 160 колец, так что может показаться, что мы уже кое-что знаем о том, что происходит в космосе.

Тем не менее Вселенная не устаёт преподносить нам сюрпризы. И вдруг оказывается, что мы до конца не разобрались даже с тем, что происходит в нашей собственной Солнечной системе.

1. Орк и Вант

Все мы знаем о Плутоне. Особенно повышенное внимание к нему было в 2006 году, когда его лишили статуса полноценной планеты.
Но слышали ли вы когда-нибудь об объекте, который иногда называют «анти-Плутоном»?
Объект 90482 Орк — это объект пояса Койпера, который имеет почти такой же орбитальный период, как у Плутона, почти такой же угол наклона оси и находится почти на таком же расстоянии от Солнца.
Как Плутон, так и Орк находятся в 2:3 орбитальном резонансе с Нептуном, хотя Орк немного по-другому ориентирован в пространстве. Орбиты Плутона и Орка практически идентичны, и более того, у Орка и Плутона есть спутники, которые довольно велики по сравнению с этими планетами.

Спутник Плутона Харон в два раза меньше Плутона, а спутник Орка Вант, по разным оценкам, составляет треть от размера Орка.
Название «Орк» было выбрано потому, что это этрусский эквивалент римского слова «Плутон». Поверхность Орка покрыта кристаллическим льдом из воды, и возможно, из аммиака, который указывает на то, что в прошлом на Орке была геологическая активность и криовулканизм. Если присутствие на Орке аммиака будет официально подтверждено, то Орк сможет помочь специалистам понять механизм формирования других транснептуновых объектов.

2. (90) Антиопа

Число 90 в названии этого объекта говорит о том, что астероид Антиопа был открыт девяностым по счёту, хотя этот факт до сих пор считается спорным.
Дело в том, что орбита объекта находится внутри астероидного поля между Марсом и Юпитером, и, что самое интересное, Антиопа — это первый двойной астероид, который удалось открыть учёным.
С момента открытия Антиопу считали одиночным астероидом, но в 2000 году с помощью 10-метрового телескопа «Кек-2», находящегося в обсерватории на Гавайских островах, группа астрономов установила, что этот астероид на самом деле состоит из пары объектов. Размер каждого из них около 86 километров, а дистанция, которая их разделяет, составляет всего 171 километр.

Вообще-то пара объектов с одинаковой орбитой в астрономии не редкость, однако разница в массе между составляющими Антиопы настолько мала, что лучший способ представить себе, как она выглядит, это вообразить пару вращающихся шаров для боулинга, связанных куском струны.

3. Шестиугольник Сатурна

Все знают о кольцах Сатурна, но слышали ли вы что-нибудь о форме его облаков? В начале 80-х аппарат «Вояджер» сделал удивительное и беспрецедентное открытие, которое было подтверждено позднее, после прибытия к Сатурну аппарата «Кассини».
Весь северный полюс Сатурна охватывает гигантский шторм в форме шестиугольника, каждая сторона которого больше диаметра Земли. Эта буря бушует там уже более 30 лет.
Невероятно, но этот шестиугольник не перемещается вместе с остальными облаками на планете, а его потрясающая геометрическая точность даёт богатую пищу для всевозможных псевдонаучных теорий (к счастью, большинство из них трудно назвать серьёзными).

Хотя полностью объяснить это явление до сих пор не удалось, учёные пытаются объяснить происходящее на Сатурне с помощью гидрогазодинамики.
Лабораторные эксперименты показали, что в жидкости, центр которой вращается намного быстрее периферии, появляются так называемые «грани». Если скорости вращения очень велики, в жидкости формируются полигоны. Скорость ветра в «шестиугольнике» на Сатурне достигает 322 километров в час. Возможно, эта скорость и создаёт столь отчётливую геометрическую форму.

4. Хаумеа

Прежде чем объект 136108 Хаумеа получил своё официальное название, он был известен как «Санта», потому что открыли его 24 декабря 2004 года.
Это неофициальное название, вообще-то, довольно уместно, поскольку Хаумеа — это очень «одарённая» и уникальная карликовая планета. Специалистам было очень непросто проводить измерения Хаумеа из-за её невероятно быстрого вращения. Вращается она быстрее, чем любое из известных науке тел Солнечной системы.
Само по себе вращение создаёт не слишком много проблем, однако из-за него Хаумеа сформировалась не так, как другие планеты.

Состоит она из камня и льда, гравитация там очень низкая, а из-за чудовищной центробежной силы поверхность планеты превратилась в то, что называют «косым эллипсоидом».
Это означает, что расстояние между полюсами планеты составляет 996 километров, а длинная ось эллипсоида равна 1960 километрам.
Кстати, такими свойствами, связанными с быстрым вращением, обладает не только планета. Такие же свойства имеют и её спутники — Хииака и Намака, чья масса составляет всего 6% от массы нашей Луны.

5. Пан и Атлас

У этих двух лун Сатурна много общего, к тому же они расположены ближе всех к Сатурну.
А особенными эти спутники делает то, что они, кажется, скопировали себе кольца Сатурна и в результате по форме стали напоминать НЛО из фильмов 50-х годов.
Пан, который также известен как «пастушья луна», получил своё название в честь древнегреческого бога пастухов, а Атлас был назван в честь титана, державшего на своих плечах небо.
В этой паре лун Атлас является более плоским, расстояние между полюсами составляет всего 19 километров. А вот «талия» у него широкая — 46 километров. Длинные экваторы этих лун нельзя объяснить теми же процессами, что происходят на Хаумеа, так как скорость их вращения не такая бешеная.

В результате обширного компьютерного моделирования в Парижском университете нашли ответ: всё дело в аккреационных дисках: экваторы этих лун постепенно увеличиваются и выравниваются за счёт того, что к ним прилипают окружающие обломки. Во время формирования лун Сатурна вокруг них сформировались и небольшие аккреационные диски, состоящие из пыли и обломков, в изобилии присутствующих в кольцах Сатурна. Постепенный рост этих дисков и привёл к форме лун, которую мы наблюдаем сейчас.

6. 2008 KV42

Всё-таки почему такое множество астрономических объектов имеет такие раздражающие названия?
К счастью, эту комету называют «Драк». Её так назвали в честь Дракулы, у которого была способность ходить по стенам. Но как хождение по стенам связано с кометой? Драк — это первый транснептуновый объект, который, как оказалось, вращается вокруг Солнца по ретроградной орбите, то есть назад. Это происходит медленно, период обращения составляет 306 лет (хотя до сих пор непонятно, где же тут связь с прогулками по стенам).
К настоящему моменту в Солнечной системе есть несколько объектов с ретроградными орбитами. Одним из таких объектов является комета Галлея, чья орбитальная траектория проходит довольно близко к Солнцу. Драк же никогда не приближалась к Солнцу на дистанцию, превышающую 20 расстояний от Солнца до Земли, что примерно эквивалентно орбите Урана.
Эта особенность кометы может стать связующим звеном между кометой Галлея и другими объектами из облака Оорта, которое, предположительно, и является источником комет для нашей Солнечной системы, и это звено, возможно, поможет учёным объяснить специфику формирования этих комет, которая на данный момент остаётся тайной для науки.

Есть много версий, пытающихся объяснить, почему орбита Драка отличается от всех остальных. Наиболее интересная теория гласит, что эта комета не была сформирована вместе с остальной Солнечной системой, потому что если бы это было так, то она бы двигалась по орбите в ту же сторону, что и все остальные объекты. Вполне возможно, что комета просто попала в нашу систему как в ловушку, тем самым дав нам возможность получить беспрецедентный объём информации о космосе.

7. Тритон

Вы наверняка хотя бы раз слышали это название. Масса Тритона составляет примерно 99,5% от суммарной массы всех известных спутников Нептуна. Аппарат «Вояджер», пролетавший мимо Тритона в 1989 году, показал, что у Тритона весьма непростая геологическая история, свидетельством которой является криовулканизм. На этом спутнике до сих пор есть действующие вулканы, но выбрасывают они не лаву и пепел, как на Земле, а воду и аммиак.
Тритон чуть меньше нашей Луны, и это единственный спутник в Солнечной системе, который движется в направлении, обратном вращению Нептуна. А так как Тритон — один из крупных спутников Солнечной системы (он даже больше Плутона), у него хватает силы гравитации, чтобы поддерживать собственный атмосферный слой. Но атмосферное давление на Тритоне в 50 000 раз ниже земного, так что вы вряд ли смогли заниматься там кайтингом.
И наконец, Тритон — это один из объектов с очень высокой отражающей способностью, он способен отразить от 60 до 95% света, падающего на его поверхность. Для сравнения: наша Луна отражает лишь 11% падающего на неё света.

8. Дополнительное кольцо Сатурна

Сатурн в данной статье упоминался уже не раз. Это планета славится своими необычными кольцами, состоящими изо льда и пыли. Но относительно недавно, в 2009 году, специалисты узнали, что у Сатурна есть ещё одно, дополнительное и невероятно огромное, кольцо. От основных колец оно отклонено на 27 градусов, расстояние от Сатурна до кольца составляет примерно 128 радиусов этой планеты. Кольцо настолько разряжено, что увидеть его можно лишь в инфракрасном спектре. Именно оно может быть причиной того, что один из спутников Сатурна, Япет, называют «двуликим»: одно его полушарие чёрное, как сажа, второе — белое, как снег.
В том же кольце проходит орбита ещё одного спутника Сатурна — Фебы. Возможно, как раз из-за этого спутника кольцо и возникло. Пыль, выбрасываемая Фебой, оседает на Япет, чья орбита пересекается с кольцом. Каждый раз, когда Япет проходит через кольцо, частицы, содержащиеся в кольце, скапливаются на его экваторе. Возможно, именно из-за этого процесса Япет по прошествии сотен тысяч лет и приобрёл свой поразительный внешний вид.

9. «Сиамские луны»

Спутники Янус и Эпиметей также известны как «сиамские луны», потому что они делят одну орбиту, и расстояние между ними всего 50 километров. Это даже меньше радиуса самих спутников.
Из-за этого они вынуждены танцевать своё гравитационное танго, которое буквально заставляет их меняться местами каждые четыре года.

Первоначально учёные не могли понять, почему данные, получаемые ими от луны, которую они назвали Янус, не соответствуют их ожиданиям. И лишь в 1978 году, спустя 12 лет после открытия общей орбиты «сиамских лун», специалисты поняли, что то, что они называют Янусом — это фактически две разных луны. Это предположение было подтверждено в ходе полёта аппарата «Вояджер» в 1980 году. Интересно, что в районе орбиты спутников наблюдается едва заметное кольцо пыли. Это позволяет предположить, что две этих луны раньше были одной луной, которая по каким-то причинам раскололась, образовав небольшое количество обломков и пыли.

10. Круитни

Ознакомившись с самыми странными вещами в Солнечной системе, давайте обратим взор на Землю и обсудим один весьма спорный вопрос о втором спутнике нашей планеты.
Астрономы ищут второй спутник Земли с 1846 года. Фредерик Пёти первым начал утверждать, что нашёл вторую Луну. Он предположил, что период её обращения вокруг Земли менее трёх часов и что проходит она всего в 11 километрах над поверхностью нашей планеты. С той поры многие астрономы заявляли, что нашли вторую Луну, но доказать это не могли.
3753 Круитни — это астероид, который делает полный оборот вокруг Солнца за 364 дня и находится в прекрасном орбитальном резонансе с Землёй. Это означает, что ежегодно на короткое время 5-километровый астероид Круитни становится частью земной системы. Каждый ноябрь он подходит к Земле на максимально близкое расстояние. Технически считать этот астероид вторым спутником Земли нельзя, так как, приблизившись на максимально близкое расстояние, он затем надолго уходит от нашей планеты. Но всё равно приятно думать, что каждый год, в одно и то же время, к нам в гости приходит старый знакомый.


ribalych.ru

Топ-10 Самых интересных «непланетных» объектов Солнечной системы

Космос – это круто. Спорить с этим никто не будет. Но все самые прикольные вещи находятся далеко от нас – за пределами Солнечной системы, в глубоком космосе. Может показаться, что наша Солнечная система достаточно скучная. Все узнают об этом в детстве: у нас есть девять планет (хотя, уже и того меньше – всего 8 после того, как с Плутоном некрасиво обошлись), несколько скучных спутников, двигающихся на их орбите, Солнце и вроде бы всё, да? На самом деле космос скрывает больше чудес, чем вы могли бы представить, и некоторые из них находятся в непосредственной близи.

10. Астероид со своим спутником

Согласно логике, все, что меньше планеты, не обладает достаточной силой притяжения, чтобы удерживать спутник, но на деле это не всегда так. Перед вами (243) Ида – астероид, длина которого составляет всего 30 километров. Ида обладает миниатюрным спутником размером в 1,6 километров, под названием Дактиль. Это первая двойная система из астероидов, найденная людьми, и единственная к которой мы послали космический аппарат, чтобы снять их поближе, но с тех пор было обнаружено более десяти двойных астероидов.

9. Ио

Если что-то во вселенной может напоминать вам об Аде, это спутник Юпитера – Ио. Спутник похож скорее на что-то из Средиземья, чем реальности – на этом астрономическом объекте проходит больше вулканической активности, чем на любом другом небесном теле в нашей Солнечной системе. Эта геологическая активность вызывается сильными приливными силами между Ио и Юпитером, которые постоянно вытягивают и деформируют спутник.

Извержения на Ио могут быть гигантскими - покрывающими более 30 квадратных километров вулканическим материалом, что хорошо заметно из космоса.

Движение Ио сквозь магнитосферу Юпитера вырабатывает мощное электричество, вызывающее сильнейшие грозы в верхней части атмосферы Юпитера. Но не думайте, что только Юпитеру плохо от их взаимодействия – его мощные магнитные пояса каждую секунду забирают от Ио 1 000 килограммов веществ. Это дополнительно усиливает магнитосферу Юпитера, фактически увеличивая её размеры в два раза.

8. Плутон совсем не похож на то, чем мы его себе представляли

Несмотря на то, что мы давно знали о существовании Плутона, учёные знают удивительно мало о карликовых планетах. Например, посмотрите на фотографию. Это самое чёткое изображение Плутона, причём даже его учёные получили, соединив несколько снимков.

Обусловлено это тем, что космос большой – поражающе, невероятно огромен. Самое близкое к нам расстояние от Плутона составляет 4,2 миллиарда километров – это настолько большое число, что наш мозг не очень хорошо его осознаёт. Самые мощные телескопы дают только несфокусированное, плохое изображение на таких дистанциях.

Но эти снимки достаточно чёткие, чтобы мы поняли, что Плутон совсем не таков, каким мы его себе представляли: скучный кусок камня. Его поверхность это смесь богатая углеродом белого, чёрного и тёмно оранжевого цвета, а учёные заметили, что полюса его постепенно светлеют или темнеют. Лучшее объяснение на данный момент гласит, что это сезонные изменения, вызываемые далёким Солнцем, которое испаряет поверхностный метан и выбрасывает его в атмосферу (да, у него и это есть).

7. Мимас

Это не спутник… а, нет, всё-таки спутник. Вы видите Мимас – спутник Сатурна и один из самых испещрённых кратерами астрономических объектов в Солнечной системе. На первый взгляд он также очень похож на Звезду Смерти. И до того, как вы скажете: «Судя по всему, Мимас послужил вдохновением для Звезды Смерти», мы упомянем, что кратер был обнаружен только спустя три года после выхода на экраны фильма «Звёздные войны. Эпизод IV: Новая надежда».

Мимас также достаточно загадочен – его орбита расположена ближе к Сатурну, чем орбита Энцелада (его ледяного соседа). Оба спутника почти полностью состоят изо льда, но только Энцелад достаточно разогревается Сатурном, чтобы растопить лёд и вызывать гейзеры, выплёскивающие воду в космос. Это не очень логично, так как Мимас намного ближе к Сатурну и его орбита менее округлая, а значит, он должен испытывать больший нагрев по сравнению с Энцеладом. Учёные пока не могут объяснить это явление.

6. Ганимед

Ганимед является самым крупным спутником Солнечной системы и даже превышает по размерам планету Меркурий, то есть, если бы он находился на орбите Солнца, а не Юпитера, его считали бы планетой. Он также обладает собственным магнитным полем, чего нельзя сказать обо всех других спутниках.

Ганимед даже обладает тонкой кислородной атмосферой, но, к сожалению, она не может поддерживать жизнь. Кратеры на Ганимеде очень плоские по сравнению с кратерами других спутников, что показывает, что под его поверхностью происходит геологическая активность – неудивительно для такого крупного объекта, находящегося так близко к Юпитеру.

5. Гигантское кольцо Сатурна

Первое, что вспоминают люди при разговоре о Сатурне – его огромные кольца. И хотя это далеко не единственная планета, окружённая концентрическими образованиями, его кольца являются одним из самых впечатляющих примеров. Однако вплоть до недавнего времени мы не знали, что система колец Сатурна намного больше, чем мы изначально думали.

Одно кольцо, состоящее из пыли и льда, избегало обнаружения настолько долго из-за того, что оно почти невидимо. Если смотреть на него не в инфракрасном диапазоне, его можно легко не заметить. Размер кольца сложно себе представить – оно начинается в 6 миллионах километров от Сатурна и протянулось ещё на шесть миллионов километров. Кольцо в 20 раз толще высоты планеты, хотя сказать, что Сатурн небольшой нельзя. Для того чтобы наполнить пространство, занимаемое кольцом, понадобился бы 1 миллиард планет размером с Землю.

4. Размеры Солнечной системы

Хотя мы многое знаем о Солнечной системе, существуют простые вопросы, на которые мы всё ещё не можем найти ответа. Например, вопрос «насколько большая наша Солнечная система?» Когда вы учились в школе, вам сказали, что Плутон был самым далёким объектом от Солнца, который ещё считается частью системы. Но затем мы обнаружили Эриду – самую массивную карликовую планету в системе (и объект, из-за которого мы лишили Плутона его статуса планеты), на расстоянии в два раза превышающем расстояние от Плутона до Солнца. Что находится дальше? Облако Оорта – сферическое «облако» комет на максимальном расстоянии от Солнца, где оно ещё может оказывать влияние.

А что находится ещё дальше? В 1977 году США запустило два автоматических зонда (Вояджер-1 и Вояджер-2). Зонды всё ещё передают нам данные 36 лет спустя и мы только сейчас осознали, что Вояджер-1 покинул Солнечную систему. Проще говоря, присутствие плазмы, выбрасываемой другими звёздами, указало на то, что зонд наконец-то покинул систему и … больше мы почти ничего не знаем. Теперь учёные пытаются получить, как можно больше информации до того, как у зонда закончится топливо (считается, что это произойдёт примерно в 2025 году).

3. Гиперион

Гиперион, очень похожий на губку, является самым крупным несферическим спутником в Солнечной системе. Он никогда не вращается постоянным образом из-за того, что Титан, близкий к нему спутник, постоянно притягивает его в разные направления.

Плотность Гипериона ненамного превышает половину плотности воды (так что он бы оставался на поверхности достаточно большого океана), из-за чего и выглядит как губка – всё, что сталкивается с ним, проникает достаточно глубоко внутрь Гипериона из-за низкой плотности. Губковый спутник, плавающий на воде – осталось только найти спутник, похожий на кусок мыла. А, мы уже нашли и такой? Хорошая работа, НАСА.

2. Церера

Церера (в нижнем левом углу изображения) это единственная карликовая планета, расположенная в «главной» части Солнечной системы. Она расположена в астероидном поясе и «впитывает» в себя всю окружающую материю (планета составляет одну треть всей материи астероидного пояса). Представьте себе, если бы мы могли запустить штат Техас в космос, и получите примерное представление о размерах Цереры, правда, там нет такого количества оружия, как в Техасе.

Из-за неточного определения термина «астероид», это единственная карликовая планета в нашей системе, которая является и астероидом – самым крупным в поясе. Под поверхностью Цереры, скорее всего, расположено больше воды, чем всей пресной воды на Земле.

1. Пространство

В Солнечной системе так много интересных вещей, что мы зачастую забываем, насколько она на самом деле пуста. Пустое пространство космоса занимает абсолютно большую часть Солнечной системы. (Посмотрите на изображение Земли и Луны – и оцените огромное пустое пространство).

Солнце составляет 99,8 массы всей Солнечной системы. Логично, что всё остальное – гигантские газовые планеты, все астероиды, кометы и небольшие планеты, как Земля – составляют всего 0,2 массы материи, причём из этой доли процента большую часть берёт на себя Юпитер. Само Солнце, которое по объёму превышает в 600 раз все объекты из Солнечной системы вместе, составляет менее 1 триллионной части объёма всей системы. В Солнечной системе так много пустого пространства, что человеческий разум не может по-настоящему его представить себе.

bugaga.ru

Интересные объекты Солнечной системы | Блогер Honey-Princess на сайте SPLETNIK.RU 9 марта 2015

Благодаря проделанной космическим аппаратом «Кеплер» работе, астрономы к этому моменту нашли и подтвердили существование 4826 планет. Казалось бы, мы уже знаем немало нового о космосе, однако Вселенная часто любит нас удивлять, и поэтому даже в нашей Солнечной системе до сих пор остались объекты, о существовании которых вы могли и не подозревать. Портал Listverse подготовил список из 10 таких необычных космических объектов в пределах нашей Солнечной системы.

Орк и Вант

Все мы знаем о Плутоне. Это космическое тело стало объектом пристального внимания в последнее время, особенно после того, как в 2006 году было переклассифицировано из разряда планет в разряд карликовых планет. А вы слышали когда-нибудь о «Анти-Плутоне»? Крупный транснептуновый объект 90482 «Орк» из пояса Койпера обладает практически одинаковым с Плутоном орбитальным периодом, углом наклона и почти аналогичной между Солнцем и Плутоном дистанцей. Несмотря на то, что орбита Орка подходит довольно близко к орбите Нептуна, резонанс между двумя объектами и большой угол наклона орбиты Орка не позволяет им приблизиться друг к другу. Единственным, пожалуй, существенным отличием Орка от Плутона является разворот его орбиты. Помимо того, что орбиты Орка и Плутона очень похожи, оба космических объекта имеют свои луны, которые в обоих случая оказываются несколько крупнее предполагаемых значений, учитывая размеры самих карликовых планет. Например, спутник Плутона Харон размером почти в половину самого Плутона. Размер спутника Орка, имеющий название Вант, составляет примерно 1/3 от размера Орка.

Назван Орк в честь этрусского бога смерти и подземного царства. Поверхность Орка покрыта кристаллическими частицами льда, которые могли бы свидетельствовать о криовулканической деятельности в прошлом. Помимо этого, возможно наличие других соединений, в том числе аммиака. Если его наличие будет действительно подтверждено, то эта информация сможет помочь ученым лучше понять процесс формирования других транснептуновых объектов.

Антиопа

Число 90 в названии Антиопы говорит о том, что этот астероид оказался 90-м обнаруженным по счету. Хотя этот момент по-прежнему является предметом жарких споров. Дело в том, что его орбита лежит внутри астероидного поля между Юпитером и Марсом, и, что более интересно, Антиопа представляет собой первый открытый двойной астероид. С момента его обнаружения Антиопа считался одиночным астероидом, однако в 2000-м году благодаря 10-метровому телескопу в обсерватории Кек на Гавайских островах группа астрономов обнаружила, что астероид на самом деле состоит из двух объектов размером около 86 километров и разделенных дистанцией всего в 171 километр. Астероиды со спутниками открывали и ранее, однако практически одинаковый размер и масса этих объектов позволила ученым классифицировать Антиопу как первый обнаруженный двойной астероид.

Шестиугольник Сатурна

Все мы знаем, что Сатурн обладает кольцами. Но слышали вы когда-нибудь о том, что эта планета может похвастаться необычными облаками? В начале 1980-х годов космический аппарат «Вояджер» сделал неожиданное и удивительное открытие, которое впоследствии было подтверждено космическим зондом «Кассини». Это подтверждение показало, что на северном полюсе Сатурна бушует гигантский шторм, обладающий формой гексагона (шестиугольника). Каждая из его сторон имеет правильную форму, а сам шторм размером больше, чем диаметр Земли. По мнению ученых, шторм на Сатурне продолжается уже больше 30 лет. Что еще более удивительно, его скорость вращения не соответствует скорости движения других облаков на планете.

Для того чтобы выяснить причину возникновения этого гексагонального шторма, ученые решили провести лабораторный эксперимент. Исследователи поставили на вертящийся стол 30-литровый баллон с водой. Она моделировала атмосферу Сатурна и её обычное вращение. Внутри баллона были помещены маленькие кольца, вращающиеся быстрее ёмкости. Это генерировало миниатюрные вихри и струи, которые экспериментаторы визуализировали при помощи зелёной краски. Чем быстрее вращалось кольцо, тем больше становились вихри, заставляя близлежащий поток отклоняться от круговой формы. Таким образом авторам опыта удалось получить различные фигуры — овалы, треугольники, квадраты и, конечно, искомый шестиугольник. И хотя данный эксперимент не рассказал ученым о том, как на Сатурне могут происходить подобные атмосферные течения, он показал, почему вся система получается столь красивой и, главное, столь продолжительной.

Хаумеа

Перед получением своего официального имени карликовая планета 136108 Хаумеа была известна под прозвищем «Санта». Получила она его в результате того, что была обнаружена сразу после Рождества, 28 декабря 2004 года. Прозвище, следует отметить, весьма удачное, потому что Хаумеа действительно является уникальной карликовой планетой. Сперва ученые отметили, что выяснить точные размеры карликовой планеты является весьма трудной задачей ввиду скорости ее вращения. Она обладает самой высокой скоростью вращения среди известных объектов Солнечной системы — день на планете длится всего около 3,9 часа.

Скорость вращения при этом явилась для ученых не самой большой проблемой в вопросе выяснения ее размеров. Больший интерес вызвала ее форма. Хаумеа, состоящая из породы и льда и обладающая очень низкой гравитацией, для того чтобы удержать все это вместе, имеет сильно вытянутую форму. В итоге оказалось, что дистанция между полюсами карликовой планеты составляют 996 километров, однако длина его самой большой оси составляет 1960 километров.

Еще одним интересным фактом о карликовой планете Хаумея является то, что она обладает двумя спутниками — Хииака и Намака. Весьма недурно для космического тела, представляющего собой всего 6 процентов массы Луны, спутника нашей Земли.

Пан и Атлас

Эти два спутника Сатурна имеют много общего между собой и наиболее близко расположены к планете, вокруг которой они вращаются. Особенными делает эти два космических объекта факт того, что они являются своего рода спутниками-«пастухами» кольца Сатурна. Они, воздействуя своей гравитацией, отталкивают от себя или, наоборот, притягивают к себе частицы кольца планеты, не позволяя им от себя уходить. Они как бы «пасут» эти частицы. Спутник Пан, кстати, и получил свое название в честь древнегреческого бога Пана — покровителя пастушества и скотоводства, плодородия и дикой природы.

Размеры спутника Атлас еще меньше. От полюса до полюса расстояние составляет всего 19 километров, а диаметр — около 46 километров. Выглядит он как летающая тарелка. Столько необычная продолговатая форма обоих спутников, по мнению ученых, не может объясняться тем же способом, как и в случае Хаумеи, так как скорость их вращения недостаточно быстра для этого. Кроме того, быстрое вращение способствовало бы созданию однородной продолговатости их формы. Но их форма неоднородна.

После создания множества компьютерных моделей ученые из Парижского университета, кажется, нашли объяснение вопроса образования столь необычной формы у этих двух лун. Этим объяснением является аккреционное формирование, когда при вращении края структуры объекта сплющиваются. Во время формирования спутников Сатурна вокруг них появились аккреционные диски, состоящие из пыли колец Сатурна, которая в итоге сильнее скопилась на их экваторах и создала на спутниках выпуклые гребни.

2008 KV42

Астероид 2008 KV42 получил прозвище «Драк» в честь вампира Дракулы, обладавшего возможностью ходить по стенам. Но каким образом хождение по стенам может быть связано с астероидом? Оказывается, Драк является первым обнаруженным транснептуновым объектом, имеющим ретроградную орбиту вращения. Другими словами, он движется в противоположную сторону вращения Солнца. Орбитальный период Драка при этом составляет 306 лет.

К настоящему моменту в Солнечной системе обнаружено несколько объектов с ретроградным движением. Одним из этих объектов, например, является комета Галлея, чья орбитальная траектория очень близко расположена к Солнцу. Драк, в свою очередь, никогда не приближается к Солнцу на расстояние, равное примерно 20 расстояниям между Солнцем и Землей, что примерно эквивалентно орбите Урана. Такая особенность астероида может являться связующим звеном между такими объектами, как комета Галлея и другими объектами из облака Оорта, предположительно выступающего источником комет в нашей Солнечной системе, и, возможно, поможет ученым объяснить специфику их формирования, которая до сегодняшнего дня является загадкой для науки.

Есть несколько предположений о том, почему орбита Драка так отличается от орбит остального большинства объектов нашей Системы. Одной из интересных идей на этот счет является предположение о том, что этот астероид вовсе не имеет ничего общего с нашей Солнечной системой — в противном случае его орбита имела бы то же направление, что и у других объектов. Вполне вероятно, что астероид был «пойман» нашей Солнечной системой из межзвездного пространства и может содержать невероятный объем новой информации о космосе.

Тритон

Это имя вы наверняка не раз слышали. Масса Тритона составляет 99,5 процента от суммарной массы всех известных на данный момент спутников Нептуна. Как показал пролетавший мимо Тритона в 1989 году космический аппарат «Вояджер-2», Тритон обладает сложной геологической историей, о которой свидетельствует криовулканизм. На Тритоне до сих пор находятся активные вулканы, но выбрасывают они не пепел и лаву, как на Земле, вместо этого они выбрасывают воду и аммиак.

Будучи чуть меньше нашей собственной Луны, Тритон является единственным крупным спутником нашей Солнечной системы, который движется в обратном вращению Нептуна направлении. Кроме того, являясь одним из самых крупных спутников в нашей Солнечной системе (он больше Плутона), Тритон имеет достаточно гравитации для поддержания тонкой атмосферы. Однако давление воздуха на спутники гораздо ниже земного и составляет 1/70000 атмосферного давления на Земле.

В конце концов стоит отметить о том, что Тритон обладает одним из самых высоких альбедо (способность отражать свет), известных науке. Этот спутник отражает 60-95 процентов света, который его достигает. Для сравнения: наша Луна отражает всего 11 процентов света.

Дополнительное кольцо Сатурна

В этой статье не раз упоминался Сатурн — планета, известная своей необычной системой окружающих ее колец, состоящих из плоских концентрических образований изо льда и пыли. Совсем недавно, в 2009 году, наука узнала, что у Сатурна имеется одно дополнительное кольцо. Невероятно гигантское кольцо. Отклоненное на 27 градусов от основных колец, новое обнаруженное кольцо расположено на расстоянии, равном примерно 128 радиусам планеты, и занимает еще 207 потенциальных радиусов в пространстве. Оно настолько разряжено, что увидеть его можно только в инфракрасном спектре. И кольцо это может быть причиной «двуликости» одного из спутников Сатурна — Япета. Двуликим его называют потому, что одно из его полушарий черное как копоть, а второе — белое и блестящее, как только что выпавший снег.

В этом же кольце расположена орбита еще одного спутника Сатурна — Фебы, — который, в свою очередь, и может являться виновником образования этого кольца. Некоторые ученые предполагают, что выбрасываемая Фебой пыль оседает на Япет, чья орбита пролегает на грани нового обнаруженного кольца. Каждый раз, когда Япет проходит через кольцо, на его экваторе накапливаются частицы, содержащиеся в кольце. В течение сотни тысяч лет этого процесса они образовали огромные горы, получившие название Стена Япета.

Сиамские близнецы — Янус и Эпиметей

Спутники Сатурна Янус и Эпиметей нередко называют «сиамскими близнецами», потому что расстояние между их орбитами составляет всего около 50 километров — меньше, чем радиус самих спутников. В результате этого эти спутники раз в четыре года меняются местами. Эпиметей и Янус движутся по своим орбитам независимо друг от друга до тех пор, пока внутренний спутник не начинает нагонять внешний. При этом под действием гравитационных сил Эпиметей выталкивается на более высокую орбиту, а Янус переходит на более близкую к Сатурну. Эта особенность в некоторой степени запутала ученых, которые по ошибке приняли Янус за Эпиметей. В 1978 году, спустя 12 лет после первоначального открытия Януса (а возможно, и Эпиметея) ученые выяснили, что на самом деле они все это время наблюдали за двумя спутниками, а не за одним. В 1980 году это мнение было подтверждено космическим аппаратом «Вояджер». По догадкам некоторых ученых, Янус и Эпиметей ранее являлись одним целым, более крупным спутником, который впоследствии раскололся на две половины и с тех пор не раз путал исследователей.

Круитни

Давайте вернемся к околоземному космическому пространству и поговорим о втором «спутнике» нашей планеты. Предполагать наличие второй «Луны» ученые стали еще в 1846 году. Первым о ее наличии заявил Фредерик Пети, которого первоначально никто не воспринял всерьез. А позже и вовсе объявили лжеученым. По его мнению, присутствие второй луны могло объяснять множество несоответствий, с которыми сталкивались многие астрономы. Пити заявил, что время вращения второй луны составляет менее трех часов. Спустя столетие, в 1986 году, наличие этого квазиспутника, или второй луны, подтвердил британский астроном-любитель Дункан Уалдрон.

Тогда выяснилось, что объект 3753 Круитни является астероидом, который через каждые 364 дня совершает полный оборот вокруг Солнца (то есть находится в орбитальном резонансе 1:1 с нашей планетой). Другими словами, каждый год этот 5-километровый астероид становится частью системы Земли. Своей ближайшей точки расположения относительно Земли Круитни достигает в ноябре. С технической точки зрения, этот астероид нельзя называть луной, так как он каждый раз то приближается, то отдаляется от Земли. Но идеальный орбитальный резонанс с планетой позволяет ему оставаться вблизи планеты на протяжении многих орбитальных периодов.

 Listverse.ком, Hi-News.ру

www.spletnik.ru

Фотографии объектов Солнечной системы в высоком разрешении

Фотографии космоса > Фотографии объектов Солнечной системы

Насладитесь качественными фото планет Солнечной системы по порядку высокого разрешения онлайн, добытыми из космоса с описанием поверхности и названиями планет.

В последние несколько десятилетий были сделаны множество замечательных фото Солнечной системы, полученные с помощью космических кораблей, исследующие космос. В данном разделе мы представляем вашему вниманию подборку фотографий, на которых отображены планеты Солнечной системы по порядку, а также самые известные объекты. Прежде всего, мы стремились выбрать реальные и красивые фото космоса, которые продемонстрируют и объяснят уникальные характеристики каждого из небесных тел для детей и взрослых. Кроме того, мы старались сделать акцент на фото объектов космоса, которые мало изучены к настоящему времени. В заключение раздела, мы сделаем краткий фото-обзор объектов, расположенных за пределами Солнечной системы.

Нажмите на объект, чтобы увидеть больше фотографий объектов Солнечной системы:

Фотографии объектов Солнечной системы в высоком разрешении
Последние добавления раздела:

Сияние на Юпитере

Это изображение сочетает в себе фото, взятое из космического телескопа Хаббл в оптическом режиме (весна 2014 года), и наблюдение сияния в ультрафиолетовом (2016).

Марс в оппозиции 2016

Снимок показывает Марс, наблюдаемый незадолго до оппозиции в 2016 году космическим телескопом Хаббл. Отчетливо заметны некоторые характерные особенности планеты: древний и неактивный щитовидный вулкан Сырт, яркая и овальная равнина Эллада, серьезная эрозия Arabia Terra (в центре), темные черты Sinus Sabaeous и Sinus Meridiani вдоль экватора, а также небольшая южная полярная шапка.

Встреча Марса и кометы Сайдинг-Спринг

19 октября 2014 года сделали фото Марса и кометы Сайдинг-Спринг из космоса. Комета прошла всего лишь в 140000 км от Красной планеты (треть дистанции Земля-Луна). Тогда они были почти в 250 миллионах километров от нашей планеты. Это наиболее близкий проход Сайдинг-Спринг из когда-либо наблюдаемых!

Юпитер и Ганимед

На полноценный проход вокруг Юпитера Ганимед тратит 7 дней. Поскольку его орбита наклонена практически ребром по отношению к Земле, то его можно увидеть только мельком, а потом он прячется за гигантским хозяином.

Ганимед, состоящий из камня и льда, это наибольший спутник в нашей системе. По своим размерам он даже превосходит Меркурий. Но рядом с Юпитером кажется грязным снежным комом. Величина планеты настолько необъятная, что на снимке поместилась только часть.

Уран

Фото Урана от космического телескопа Хаббл в 2003 году.

Светящиеся кольца

При съемке, если вы направляете камеру против Солнца, большинство объектов кажутся затемненными. А вот некоторые кольца Сатурна, наоборот, словно начинают светиться. Этот эффект называют «рассеиванием в первоначальном направлении». Над ними разместились два спутника – Энцелад (313 миль или 504 км в ширину) и Янус (111 миль или 179 км).

Старый и новый Энцелад

Спутник демонстрирует заметное отличие в возрасте поверхности. Новая (слева) еще не успела накопить кратеры. Но так как материал статичен, то подвергается воздействиям, наращивая шрамы (области кратеров сверху и справа). Эта информация помогает ученым определять возраст твердых планет и спутников. Фотография Сатурна сделана аппаратом Кассини 18 августа 2015 года.

Нептун (в полном цвете)

Новое фото, запечатленное телескопом Хаббл, доказывает присутствие темного вихря в атмосфере Нептуна. Полный видимый свет слева показывает, что темная особенность располагается вблизи и ниже ярких облаков в южном полушарии планеты. Эти пятнышки растягиваются на 4800 км. Другие облака на большой высоте можно рассмотреть в экваториальной области и полярных регионах.

Динамичная авроральная зона Сатурна (28 января 2004)

Это комбинация из трех последовательных фотографий.

Астрономы объединили ультрафиолетовые кадры южного полярного региона Сатурна с видимым светом планеты и ее кольцами, чтобы воссоздать это невероятное зрелище. Авроральная зона (сияние) покажется красной, если наблюдать ее на Сатурне. Так происходит из-за наличия водорода в атмосфере. На Земле заряженные солнечным светом частицы контактируют с азотом и кислородом в верхних слоях, создавая цветные сияния зеленого и синего цветов.

Комета 73P/Швассмана-Вахмана – 3, фрагмент В (19 апреля 2006)

Второе изображение, полученное из наблюдения Хаббла, показывает распад кометы.


v-kosmose.com

Объекты Солнечной системы

Ганимед, спутник Юпитера - крупнейший в Солнечной системе. Он больше Луны и даже Меркурия,

Планета Уран - седьмая по счету и самая холодная в Солнечной системе. Там зафиксирована

Самая большая планета Солнечной системы - Юпитер, огромный газовый шар, в 11 раз больше

Самая маленькая планета Солнечной системы - Меркурий. Его размер в 2.5 раза меньше, чем

Самая близкая к Земле планета - Венера. Так утверждают многие, и они правы, но

Вулкан Олимп - самая большая гора в Солнечной системе. Он достигает в высоту 26

astro-world.ru

Схема Солнечной системы. Размеры Солнечной системы

Солнечная система — крошечная структура в масштабах Вселенной. При этом ее размеры для человека поистине грандиозны: каждый из нас, проживая на пятой по величине планете, с трудом может оценить даже масштабы Земли. Скромные габариты нашего дома, пожалуй, ощущаются, только когда смотришь на него из иллюминатора космического корабля. Похожее чувство возникает и во время просматривания снимков телескопа "Хаббл": Вселенная огромна и Солнечная система занимает лишь малый ее участок. Однако именно ее мы можем изучать и исследовать, используя полученные данные для интерпретации феноменов дальнего космоса.

Вселенские координаты

Расположение Солнечной системы ученые определяют по косвенным признакам, поскольку мы не можем наблюдать строение Галактики со стороны. Наш кусочек Вселенной размещается в одном из спиральных рукавов Млечного Пути. Рукав Ориона, названный так потому, что проходит вблизи одноименного созвездия, считается ответвлением одного из основных галактических рукавов. Солнце расположено ближе к краю диска, нежели к его центру: расстояние до последнего составляет примерно 26 тысяч световых лет.

Ученые предполагают, что местоположение нашего кусочка Вселенной имеет одно преимущество перед прочими. В целом Галактика Солнечной системы, Млечный Путь, обладает звездами, которые в силу особенностей своего движения и взаимодействия с другими объектами то погружаются в спиральные рукава, то выныривают из них. Однако есть небольшая область, называемая коротационным кругом, где скорость звезд и спиральных рукавов совпадает. Размещенные здесь космические тела не подвергаются воздействию бурных процессов, характерных для рукавов. К коротационному кругу относится и Солнце с планетами. Подобное положение считается одним из условий, способствовавших появлению жизни на Земле.

Схема Солнечной системы

Центральное тело любого планетарного сообщества — это звезда. Название Солнечной системы дает исчерпывающий ответ на вопрос, вокруг какого светила движется Земля и ее соседи. Солнце — звезда третьего поколения, находящаяся на середине своего жизненного цикла. Оно светит уже более 4,5 млрд лет. Примерно столько же вокруг него обращаются планеты.

Схема Солнечной системы сегодня включает восемь планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун (о том, куда делся Плутон, чуть ниже). Они условно поделены на две группы: планеты земного типа и газовые гиганты.

«Родственники»

Первый тип планет, как понятно из названия, включает и Землю. Кроме нее к нему принадлежат Меркурий, Венера и Марс.

Все они обладают набором схожих характеристик. Планеты земной группы в основном состоят из силикатов и металлов. Их отличает высокая плотность. Все они имеют схожее строение: железное ядро с примесью никеля обернуто силикатной мантией, верхний слой — кора, включающая соединения кремния и несовместимые элементы. Подобное строение нарушается только у Меркурия. Самая маленькая и ближайшая к Солнцу планета не обладает корой: она разрушена метеоритными бомбардировками.

Самая большая планета группы — это Земля, за ней следует Венера, затем Марс. Существует определенный порядок Солнечной системы: планеты земной группы составляют ее внутреннюю часть и отделяются от газовых гигантов астероидным поясом.

Большие планеты

В число газовых гигантов входят Юпитер, Сатурн, Уран и Нептун. Все они гораздо крупнее объектов земной группы. Гиганты обладают более низкой плотностью и, в отличие от планет предыдущей группы, состоят из водорода, гелия, аммиака и метана. Планеты-гиганты не имеют как таковой поверхности, ею считается условная граница нижнего слоя атмосферы. Все четыре объекта очень быстро вращаются вокруг своей оси, обладают кольцами и спутниками. Самая внушительная по размерам планета — Юпитер. Он сопровождается наибольшим числом спутников. При этом самые впечатляющие кольца - у Сатурна.

Характеристики газовых гигантов взаимосвязаны. Если бы они по размерам приближались к Земле, то имели бы иной состав. Легкий водород может удержать только планета, обладающая достаточно большой массой.

Карликовые планеты

Самое время для изучения того, что представляет собой Солнечная система, — 6 класс. Когда сегодняшние взрослые были в этом возрасте, космическая картина выглядела для них несколько иначе. Схема Солнечной системы на тот момент включала девять планет. Последним в списке значился Плутон. Так было до 2006 года, когда собрание МАС (Международный астрономический союз) приняло определение планеты и Плутон перестал ему соответствовать. Один из пунктов звучит так: «Планета доминирует на своей орбите». Траектория движения Плутона засорена другими объектами, превосходящими в общей сложности бывшую девятую планету по массе. Для Плутона и еще нескольких объектов было введено понятие «карликовая планета».

После 2006 года все тела в Солнечной системе были, таким образом, поделены на три группы:

  • планеты — объекты достаточно крупные, сумевшие расчистить свою орбиту;

  • малые тела Солнечной системы (астероиды) — объекты, обладающими столь небольшими размерами, что не могут достичь гидростатического равновесия, то есть принять округлую или приближенную к ней форму;

  • карликовые планеты, занимающие промежуточное положение между двумя предыдущими типами: они достигли гидростатического равновесия, но не очистили орбиту.

Последняя категория сегодня официально включает пять тел: Плутон, Эрида, Макемаке, Хаумеа и Церера. Последняя относится к поясу астероидов. Макемаке, Хаумеа и Плутон принадлежат поясу Койпера, а Эрида — рассеянному диску.

Астероидный пояс

Своеобразная граница, отделяющая планеты земной группы от газовых гигантов, на протяжении своего существования подвергается воздействию Юпитера. Из-за присутствия огромной планеты астероидный пояс имеет ряд особенностей. Так, его изображения создают впечатление, то это очень опасная для космических аппаратов зона: корабль может быть поврежден астероидом. Однако это не совсем верно: воздействие Юпитера привело к тому, что пояс представляет собой довольно разреженное скопление астероидов. Причем тела, составляющие его, имеют достаточно скромные размеры. В процессе формирования пояса гравитация Юпитера оказывала влияние на орбиты крупных космических тел, скопившихся здесь. В результате постоянно происходили столкновения, приведшие к появлению небольших осколков. Значительная часть этих обломков под воздействием все того же Юпитера была выдворена за пределы Солнечной системы.

Общая масса тел, составляющих Астероидный пояс, равна всего 4 % от массы Луны. Состоят они в основном из горных пород и металлов. Самым крупным телом на этом участке является карликовая планета Церера, за ней следуют астероиды Паллада, Веста и Гигея.

Пояс Койпера

Схема Солнечной системы включает и еще один участок, заселенный астероидами. Это пояс Койпера, расположенный за орбитой Нептуна. Объекты, размещающиеся здесь, в том числе и Плутон, получили название транснептуновых. В отличие от астероидов пояса, пролегающего между орбитами Марса и Юпитера, они состоят из льда - водяного, аммиачного и метанового. Пояс Койпера в 20 раз шире астероидного и значительно массивнее его.

Плутон по своему строению представляет собой типичный объект пояса Койпера. Он является наиболее крупным телом области. Здесь же размещаются еще две карликовые планеты: Макемаке и Хаумеа.

Рассеянный диск

Размеры Солнечной системы не ограничиваются поясом Койпера. За ним располагается так называемый рассеянный диск и гипотетическое облако Оорта. Первый частично пересекается с поясом Койпера, но пролегает значительно дальше его в космосе. Это место, где зарождаются короткопериодические кометы Солнечной системы. Для них характерен орбитальный период менее 200 лет.

Объекты рассеянного диска, в том числе и кометы, как и тела из пояса Койпера, состоят преимущественно из льда.

Облако Оорта

Пространство, где зарождаются долгопериодические кометы Солнечной системы (с периодом в тысячи лет), называется облаком Оорта. На сегодняшний день нет прямых доказательств его существования. Тем не менее обнаружено множество фактов, косвенно подтверждающих гипотезу.

Астрономы предполагают, что внешние границы облака Оорта удалены от Солнца на расстояние от 50 до 100 тысяч астрономических единиц. По своем размерам оно больше в тысячу раз пояса Койпера и рассеянного диска вместе взятых. Внешняя граница облака Оорта считается и границей Солнечной системы. Расположенные здесь объекты подвергаются воздействию ближайших звезд. В результате этого образуются кометы, орбиты которых проходят через центральные части Солнечной системы.

Уникальная структура

На сегодняшний день Солнечная система — единственная известная нам часть космоса, где есть жизнь. Не в последнюю очередь на возможность ее появления оказала влияние структура планетной системы и ее размещение в коротационной окружности. Земля, располагающаяся в «зоне жизни», где солнечный свет становится не столь губительным, могла быть такой же мертвой, как ее ближайшие соседи. Кометы, возникающие в поясе Койпера, рассеянном диске и облаке Оорта, а также крупные астероиды могли погубить не только динозавров, но и даже саму вероятность возникновения живой материи. От них нас защищает огромный Юпитер, притягивая к себе подобные объекты или изменяя их орбиту.

Во время изучения структуры Солнечной системы трудно не подпасть под влияние антропоцентризма: кажется, будто Вселенная сделала все только для того, чтобы люди смогли появиться. Вероятно, это не совсем так, однако огромное количество условий, малейшее нарушение которых привело бы к гибели всего живого, упорно склоняют к подобным мыслям.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *